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Preface

New books on the use of semiconductors in devices, of the last few years, have
been either directed to the practitioner by emphasizing the state of the art or
to the university student by using major simplifications in a treatment that
achieves analytic and closed-form mathematical solutions. Presumably, a rea-
son for this is the difficulty in describing numerical techniques and their valid-
ity in the restricted space of technical publications or the limited time in the
classroom. Modern devices, with their small dimensions, however, require an
understanding of the physics of reduced dimensions, the use of statistical meth-
ods, and the use of one-, two-, and three-dimensional analytic and numerical
analysis techniques. These techniques also bring with them alternate approxi-
mations and simplifications. An understanding of these is a prerequisite to the
appraisal of the results.

This book is an attempt at finding the common ground for the above, and
the product of a desire to write it the way I advocate the teaching of this sub-
ject. The subject is not trivial and I have resisted oversimplifications. It is
an intermediate-level text for graduate students interested in learning about
compound semiconductor devices and analysis techniques for small dimension
devices. It should be appealing to students who have already achieved an un-
derstanding of the principles of operation of field effect transistors and bipolar
transistors. While the emphasis of the treatment is on compound semiconduc-
tor devices, and examples are mostly drawn from them, it should also be useful
to those interested in silicon devices. The principles of devices are the same;
compound semiconductor devices only bring with them more complications as-
sociated with negative differential mobility and stronger quantum-mechanical
and off-equilibrium effects. As befitting a textbook, there is very little original
material here, and references have been chosen for the inquisitive to find elab-
orations and complementary treatments. I have included original material only
where I have felt a compelling reason to buttress and elaborate an argument
whose results were not in doubt.

Both one-dimensional classical approximations and numerical procedures of
better accuracy have been incorporated in order to clarify device behavior. I
have also tried to use consistent device examples for both the analytic and the
numerical approaches. This allows both a better appreciation of the approxi-
mations and a better feel for cause and effect. Students, I hope, will look at
appearances of unusual features carefully and try to recognize their origin either

xv



xvi Preface

in the underlying nature or the approximation of the model. Most problems at
the end of the chapters have been designed to emphasize the concepts and to
complement arguments or derivations in the chapters. The rest emphasize the
nature of approximations by critically evaluating realistic conditions. These rely
on the use of numerical techniques by the student. The reward is a deeper feel
for the subject; a note of caution though, they require both will and an access
to computers.

This effort owes its gratitude to many: family, teachers, authors of discerning
reviews and books, and my colleagues, who have generously discussed, encour-
aged, and criticized. I thank J. East, T. N. Jackson, P. McCleer, P. Mooney,
P. Solomon, W. Wang, and S. L. Wright for the conversations. M. Fischetti,
D. Frank, S. Laux, and J. Tang, premier practitioners of the art and science
of numerical techniques and their applications, have influenced this work in
countless ways. This book was partly written, revised, and practiced during a
sabbatical leave at the University of Michigan. For the delightful and refreshing
time, I thank Professors P. Bhattacharya, G. I. Haddad, J. Singh, D. Pavlidis,
F. L. Terry, and K. Tomizawa, and the students who attended my courses and
provided invaluable feedback. S. Akhtar, J. East, S. Laux, P. Price, J. Singh,
F. Stern, and J. Tsang have commented on parts of the manuscript in depth;
I am very grateful to them for this and to F. L. Terry for many exchanges on
the contents and teaching of semiconductor devices. This book would certainly
not have been possible without the active encouragement and support of In-
ternational Business Machines Corporation, the help of my colleagues, and the
influence of the environment at Thomas J. Watson Research Center.

As the book has evolved, its many rough edges have worn away, but many
remain. I welcome comments and suggestions on the latter.

Sandip Tiwari



Chapter 1

Introduction

Compound semiconductors have been a subject of semiconductor research for
nearly as long as elemental semiconductors. Initial discoveries of the late 1940’s
and early 1950’s, discoveries that began the use of semiconductors in our every-
day life, were in germanium. With time, it has been supplanted by silicon—a
more robust, reliable, and technologically well-behaved material with a stable
oxide. Compound semiconductors, whose merit of superior transport was rec-
ognized as early as 1952 by Welker, have continued to be of interest since these
early days although their success has been narrower in scope. The areas of sig-
nificant applications include light sources (light emitting diodes and light ampli-
fication by stimulated emission of radiation), microwave sources (Gunn diodes,
Impatt diodes, etc.), microwave detectors (metal–semiconductor diodes, etc.),
and infrared detectors. All of these applications have been areas of the semicon-
ductor endeavor to which compound semiconductors are uniquely suited. The
success in optical, infrared, and microwave applications resulted from the direct
bandgap of most compound semiconductors for the first, the small bandgap of
some compound semiconductors for the second, and the hot carrier properties,
superior electron transport characteristics, and unique band-structure effects for
the last.

With the increasing demand placed on voice and data communications,
transmitting, receiving, and processing information at high frequencies and
high speeds using both microwave and optical means has become another area
where compound semiconductor transistors (the field effect transistors and bipo-
lar transistors) have also become increasingly important. This increased usage
stems from their higher operating frequencies and speeds as well as from the
functional appeal of integration of optical and electronic devices. This expansion
in the use of compound semiconductors, in applications requiring the highest
performance, is expected to continue even though they still remain difficult
materials for electronic manufacturing.

1



2 1 Introduction

1.1 Outline of the Book

The emphasis of the text is on the operating principles of compound semicon-
ductor transistors: both field effect and bipolar devices. However, a rigorous
treatment of the quasi-static, high frequency, and off-equilibrium behavior of
small-sized devices requires a careful understanding of the underlying physics of
transport and the mathematical methods used in the analysis of devices. While
this is better handled as a separate course on semiconductor physics, quite often
these courses are not aimed specifically towards understanding of device physics,
and hence are difficult to unite with device physics. Additionally, students—the
intended audience of this text,—arrive at an advanced course on devices with a
very varied training and with one or more of the many diverse ways of analyzing
semiconductor devices.

Compound semiconductors bring with them their own peculiarities. Effects
related to high surface state density that manifest themselves in the form of
Fermi level pinning and high surface recombination, negative differential mo-
bility, etc., have been treated to varied levels of sophistication in the older
texts. However, the use of compositional changes and heterostructures, and
the emphasis on off-equilibrium behavior of small sized device structures, are
relatively new developments and have lacked the attention to detail exemplified
in the earlier texts. Thus, advanced semiconductor device courses, generally
geared towards silicon, leave an insufficient grasp of the techniques and tools
needed to understand small-dimension high frequency compound semiconductor
devices. A book emphasizing the operation of compound semiconductor devices,
however, does still have relevance to silicon devices. The operating principles
are similar; the parameters and relative magnitude of effects is different. The
examples here are largely chosen from compound semiconductors although the
underlying discussion also stresses silicon and germanium.

To coherently develop the theory of device operation, especially because of
the emphasis on small structures, the book breaks with the traditional treatment
of device theory. It begins with a review and general development of semicon-
ductor properties and their general relationship with devices. It then discusses
the mathematical treatments that are either traditional or increasingly being
employed. The stress here is on their underlying assumptions, their limitations,
and how one would employ them in different parts of the device to derive the
device characteristics of interest. A thorough discussion of two-terminal junc-
tions has also been undertaken because they constitute building blocks for the
transistors of interest, and because they are a very convenient means to develop
and emphasize the methodology to be employed in the three-terminal device
treatment. This is followed by a development of the operation of transistors
based on the use of unipolar transport with metal–semiconductor junctions and
heterojunctions and the use of bipolar transport. The second to last chapter of
the book is devoted to a discussion of devices where hot carrier transport and
tunneling is central to the operation. These are two- and three-terminal device
structures using transit of carriers with a limited number of scattering events
or externally tunable tunneling, two unique phenomena not conventionally em-
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ployed in three-terminal device structures. They are compound semiconductor
devices that need non-traditional device physics which ultimately may also be
useful in description of the conventional devices as their sizes continue to shrink.
The last chapter discusses this from a general perspective in order to show how
present understanding of devices may be used to understand both the future
development and the future limitations of devices.

The bulk of the book is devoted to the treatment of the mainstream com-
pound semiconductor transistors: the metal–semiconductor field effect tran-
sistor (MESFET), the heterostructure field effect transistor (HFET), and the
heterostructure bipolar transistor (HBT). Our discussion of these devices in-
cludes quasi-static behavior and development of the corresponding low fre-
quency models, small-signal high frequency behavior and development of cor-
responding models useful to higher frequencies, transient behavior, the role of
off-equilibrium effects in these devices, and various other phenomena important
to the operation and usefulness of the device. Through-out the book, we will use
the term “off-equilibrium” phenomenon to describe the local phenomenon re-
sulting from loss of equilibrium between the carrier energy and the local electric
field, a phenomenon that results in an overshoot effect in the velocity of carriers.
This term should be distinguished from “non-equilibrium” or lack of thermal
equilibrium, which always occurs when a bias is applied and results in the flow
of current. Examples of the various other phenomena include effects such as
sidegating—the effect of a remote terminal other than the three terminals of
the device acting as an additional gate electrode with an effect on the channel
transport; piezoelectric effect—the influence on device characteristics because of
strain-induced piezo-effects; and surface recombination—recombination of elec-
trons and holes at the surfaces of the bipolar transistor—and others.

Among the compound semiconductors, the discussion frequently takes GaAs
as an example. This is largely because our understanding of GaAs and the tech-
nology of GaAs-based devices is more mature than that of the other compound
semiconductors. However, many examples are cited from Ga.47In.53As (the lat-
tice matched composition with InP), InP itself, and InAs. Other compound
semiconductors are cited when particular properties are specifically of interest.
The discussion has largely been kept general even if referring to GaAs.

1.2 Suggested Usage

The text is best suited for a two semester course with the first covering through
MESFETs. The development of a feel for a subject is best achieved by a simulta-
neous development of healthy skepticism. This requires a good understanding of
the underlying assumptions and the methods of attack on the problem being an-
alyzed, and an appreciation of the relevant general properties. Chapters 2 and 3
are an untraditional attempt at meeting these requirements, and the discussion
of two-terminal diode structures and one example of a three-terminal transistor
structure brings these concepts together coherently. The second course, consti-
tuting the rest of the book, then builds on this by analyzing HFETs and HBTs
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and then dwells on the new developments that are of considerable intellectual in-
terest. The last chapter on scaling and operational limitations serves to continue
a discussion begun in the previous chapter of the conventional development of
devices with time and how one may look at the subject very broadly by going
to the roots in electromagnetic and other classical equations.

The text could be used for a one semester course with the subject ranging
from the treatment of MESFETs through the hot carrier and tunneling struc-
tures. I also recommend that small-signal treatment based on the small-signal
drift-diffusion equation be excluded from such a course. This treatment is pe-
ripheral to the objectives that a one semester course would usually have.

The references occur in two places. General references, long articles and
books that have extensive breadth and scope, have been placed at the end of
chapters. The reader will find these advanced, complementary, and supplemen-
tary reading, and the vast reference lists in them useful for further perusal.
References have also been placed in figures and footnotes, as part of the main
text. These references are more specific; they supplement comments made in
the text and are also in many instances sources for the material developed or
reproduced in the text.

The problems need to be treated with caution. They range from questions
that can be answered in one line to questions that require extensive use of
computation facilities. The author believes in a balance of the two; success
with both is indicative of a systematic and detailed understanding of the subject
and of using the knowledge in uncharted regions. The reader should exercise
appropriate restraint in what he or she attempts, keeping in mind the available
facilities.

1.3 Comments on Nomenclature

We will generally use only MESFET, HFET, and HBT as the acronyms for
metal–semiconductor field effect transistor, heterostructure field effect transis-
tor, and heterostructure bipolar transistor. These are meant to define a general
class of devices which have sufficiently different operational basis. These devices,
however, can be implemented in many ways, largely because compound semi-
conductors can be grown in a variety of heterostructures with many variations
in control of the bandgap and doping in the structures.

MESFETs, e.g., can be grown with a thin heterostructure underneath the
gate or a thick heterostructure underneath the channel—one suppresses gate
current while the other suppresses substrate injection current. They, however,
all use a doped channel where quantization effects are unimportant and the op-
erational basis is largely unchanged. HFETs similarly can be grown in a variety
of ways. In such transistors a large bandgap material abuts a small bandgap
material with an abrupt hetero-interface. HFETs exist with a gate made of
metal, a gate made of a semiconductor1 , a doped large bandgap semiconductor,

1A close compound semiconductor analog of the poly-silicon gate silicon MOSFET (metal–
oxide–semiconductor field effect transistor) may, more generically, be called a semiconductor–
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an undoped large bandgap semiconductor, and various heterostructures at the
channel-substrate interface. These are all generically HFETs where the abrupt-
ness of the hetero-interface between the channel region and the control region
is important to the operational basis of the device. HBTs, similarly, also have
many variations—two examples being use of one heterostructure (in the emitter)
and two heterostructures (in both emitter and collector) in the structure.

insulator–semiconductor field effect transistor (SISFET). HFET is a superset of such devices.



6 1 Introduction



Chapter 2

Review of Semiconductor
Physics, Properties, and
Device Implications

2.1 Introduction

An adequate description of different semiconductor devices requires an under-
standing of the physics of the semiconductor ranging all the way from the semi-
classical description to the quantum-mechanical description. The nearly-free
electron model of a carrier in a semiconductor is a semi-classical description.
Along with other semi-classical phenomenology this description has been quite
adequate in describing the functioning of several important devices—both the
silicon bipolar transistor and the silicon MOSFET. However, this same car-
rier, when confined in a short space between two ideal abrupt heterostructure
interfaces,1 exhibits behavior in which the quantum-mechanical effects are of
paramount importance and central to explaining many of the observations on
the structure. In this, a particle in a box problem, the momentum of the carrier
in the direction orthogonal to the heterostructure interface is no longer contin-
uous. The particle exhibits a behavior in which quantum-mechanical effects are
important. The applicability of these descriptions is not mutually exclusive. The
quantum-mechanical description can be shown to reduce to the semi-classical
in the proper limits. It just so happens that the sophistication and depth of
the quantum-mechanical description is not necessary in what we view as the
functioning of the devices cited. If we probe deeper, e.g., the silicon MOSFET
operating at 77 K or the compound semiconductor HFET operating at 300 K,
we find that we need to incorporate the increased sophistication to explain many
of the observations, and the rigorous quantum-mechanical treatment also has

1An abrupt interface between two dissimilar materials that exhibit long range lattice peri-
odicity.

7
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the beauty of reducing to the classical description in the classical limits.
The HFET provides quite an interesting example of the relationship between

the accuracy of results sought and the necessary rigorousness in the description
of the problem. This is a device in which a channel is formed for conduction in
a small bandgap material by using a large bandgap material for the insulator
and/or for providing the carriers. It may be viewed as one of the MOSFET-like
implementations of compound semiconductor FETs. If the potential variation
in the small bandgap material is rapid, and this rapid potential variation occurs
at high carrier concentrations following Gauss’s law, then one would expect
quantum-mechanical effects resulting from confinement similar to that for a
particle in a box. However, if carrier concentration is small, then the potential
variation is slow and the sophisticated description is unnecessary. The device,
in different bias regions, requires different levels of description, to explain ob-
servations. In fact, different regions of the device at the same bias may require
different levels of sophistication. There are more carriers under normal operat-
ing conditions at the source end of the device where they are injected than at
the drain end where they are collected. So, while quantum-mechanical effects
may be necessary in the description of the device at the source end, they may
not be at the drain end. Temperature is also important in the evaluation of
the acceptable methodology of handling this problem. At room temperature,
thermal energy is 25.9 meV; clearly if the confinement leads to energy effects
much smaller than this energy, then the inclusion of confinement effects is not
necessary. Silicon MOSFET, which also has a large discontinuity at the oxide-
semiconductor interface, has a much smaller predicted effect for both electrons
and holes at 300 K where the effect is ignored, but at 77 K, thermal energy
and energy discretization is comparable, and at least for some problems, the
discretization may not be ignored. So for conventional bipolar and field effect
transistors, we need to make a judicious choice of the level of description needed.
In devices, where the wave nature of the electron is central to their function-
ing (tunneling, e.g., in tunnel diodes) the quantum-mechanical description is
unavoidable.

This chapter is a review that connects the basis of semiconductor theory in
classical and quantum mechanics to its implications in devices, with an emphasis
on examples from compound semiconductors. We discuss the particle-wave
duality and the description of electrons in a lattice with the effect of lattice on
the electron folded into the effective mass. We discuss lattice vibrations and
the concept of phonons. This early description is made with respect to a one-
dimensional lattice, which allows us to explore the formation of energy bands,
the concept of holes, the specification the of energy-momentum relationship for
both the electrons and the phonons, and the description of a quasi-continuum of
allowed states via the density of states. Using these one-dimensional examples
as a basis, we then discuss the behavior of the three-dimensional semiconductor
crystals.

Since our primary interest is in devices, our discussion of the properties
of semiconductor crystal is related to specifically those phenomena that influ-
ence electron transport and electron interactions. Transport, e.g., is intimately
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related to the electron’s interaction with its environment, i.e. scattering. We
consider the various mechanisms of scattering and their behavior in the semi-
conductor crystal. The carrier velocities are also related to the band structure.
We discuss this and other band structure-related phenomena as the last part of
this chapter.

This chapter is written as a general review with an emphasis on mathematics
where it has been considered necessary. One example of this emphasis is the
occupation of carriers at discrete energy levels, such as donors and acceptors,
which brings out the importance of degeneracy; and, together with the descrip-
tion of band occupation, establishes the framework for semiconductor statistics
to be developed further in the following chapters.

2.2 Electrons, Holes, and Phonons

Consider a free electron in the absence of any other interactions. The time-
independent Schrödinger’s equation characterizing the behavior of this single
electron consists of only the kinetic energy term and is

h̄2

2m
∇2ψ(r) = Eψ(r). (2.1)

Including the time-dependent component, the solution is of the form

ψk(r, t) = A exp [j (k.r − ωt)] , (2.2)

where A is a normalization pre-factor. This eigenfunction describes a plane
wave. This plane wave, whose wave vector is k2, is associated with an energy
whose dispersion relation is a parabolic relationship,

E(k) =
h̄2k2

2m
, (2.3)

and whose momentum is given by

p = h̄k. (2.4)

The wavelength and angular frequency associated with this plane wave are

λ =
h

p
, (2.5)

and

ω =
E

h̄
. (2.6)

This wavelength is the de Broglie wavelength characterizing the wave particle
duality.

2Throughout the book, we employ bold fonts to indicate vectors. The magnitude of these
vectors is indicated using the normal font. Readers should refer to the Glossary for the
definition of symbols.
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For a single plane wave, the probability of finding the electron ψψ∗ is a
constant in real space; the electron can be found anywhere with an identical
likelihood. To describe a more localized electron, one may construct a wave
packet by considering a group of plane waves with a finite amplitude in a narrow
range of the wave vector. The function

φ(r, t) =

∫ ∞

−∞

A(k) exp [j(kr − ωt)] dk, (2.7)

which is a superposition of plane waves, or equivalently a Fourier expansion in
the k-space, describes a wave packet if A(k) is non-zero for a range δ of wave
vector k about k0 such that δ � k0. This function now allows us to determine
the probability of finding an electron; it is now higher in certain ranges of r and
k.

Using a Taylor series expansion of the angular frequency ω about k0, i.e.,

ω = ω0 + (k − k0)
dω

dk

∣∣∣∣
k0

+ · · · , (2.8)

we can write

φ(r, t) ≈ exp [j(k0r − ω0t)]

∫ ∞

−∞

A(k) exp

[
j(k − k0)

(
r − dω

dk
t

)]
dk

= B
(
r − dω

dk
t

)
exp [j(k0r − ω0t)] , (2.9)

where B(r − (dω/dk)t) is the envelope function of the resultant plane wave.
The group velocity of this wave packet, the velocity of the electron, is given by

vg =
dω

dk
, (2.10)

and the phase velocity, the velocity of the plane wave, is

vp =
ω0

k0
. (2.11)

In doing this we have shown that superposition of plane waves can be used to
characterize localization of electrons and hence have related some of the conse-
quences of the quantum-mechanical description with the classical description.

We have, until now, considered the free electron as possessing no potential
energy, and solved the single body problem whose Hamiltonian contained only
the kinetic energy term. In studying semiconductor devices, we are interested
in electrons in semiconductors. This is a many-body problem. Even if the be-
havior of electrons is treated as a single electron problem unaffected by other
electrons in the crystal (the one-electron approximation), we must consider sev-
eral other factors. The Hamiltonian must now include several additional energy
terms such as the kinetic energy of nuclei and core electrons (the ion core) that
oscillate around a mean position, a movement whose effect is characterized by
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phonons; the potential energy of these ion cores; and the potential energy of
the electrons due to influence of other electrons and the cores. In addition,
the crystal is finite sized, albeit of a large size. There are explicit quantization
effects associated with this confinement; there is a large but finite set of allowed
values of the wave vector k which are characterized by a finite density of states
for the electron. The crystal is also a periodic structure where the ion cores,
on average, occupy a lattice with a specific lattice constant. Since the ions
are considerably heavier than the electrons, the electron eigenfunction may be
treated as being instantly responsive to the ion movement. This is the adiabatic
approximation and it allows the decoupling of the Schrödinger equation into an
ionic and an electronic equation. The one-electron approximation provides a
reasonable description for this problem because both the core electrons and the
valence electrons exist in close proximity to the cores and hence screen the in-
teraction, since both the exclusion principle and repulsion cause separation of
electrons and because electrons spend very little time near a core due to the
large accelerations resulting from large forces.

Let V (r) represent the potential energy term for the electron Hamiltonian.
It has the periodicity of the lattice R—the direct lattice vector—and

V (r) = V (r + R). (2.12)

Bloch’s theorem states that for such a periodic potential, the eigenfunction
solution of the Hamiltonian for the one-electron problem has a solution of the
form

ψk(r) = exp(jk.r)uk(r), (2.13)

and
uk(r) = uk(r + R). (2.14)

The consequence of this is that

ψk(r + R) = exp(jk.R)ψk(r), (2.15)

and it brings us to the concept of reciprocal lattice. The wave vector k has the
units of reciprocal length. For values of k = G, such that

G.R = 2nπ, (2.16)

where n is an integer, the eigenfunction ψG is periodic in R. If the magnitude
of the wave vector was equal to the reciprocal lattice vector G, then the eigen-
function would be periodic in real space. That is the important consequence of
Equation 2.15. The translating of the wave vector k by the reciprocal lattice
vector, i.e.,

k = G + k′, (2.17)

results in
ψk(r + R) = exp(jk′.R)ψk(r). (2.18)

This is a restatement of Bloch’s theorem with a new wave vector k′, i.e., all
wave vectors differing from k by integer multiples of the reciprocal lattice vector
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Figure 2.1: The cubic unit cell of the zinc blende structure is shown in the part
(a). The open and closed circles denote the sites for the group III and group
V atoms. Part (b) shows the corresponding first Brillouin zone—a truncated
octahedron.

satisfy the requirements of the eigenfunction. We make the wave vector unique
by translating all the wave vectors to the first Brillouin zone, the primitive or
Wigner–Seitz unit cell in reciprocal space.

This brings us to the definition of the reciprocal lattice. In general, the direct
lattice vector may be expressed in terms of primitive unit cell vectors ai which
are not necessarily orthogonal to each other.3 The primitive unit cell vectors of
the reciprocal lattice bi, defining the Brillouin zone, are then given by

b1 = 2π
a2 × a3

a1.(a2 × a3)
, (2.19)

b2 = 2π
a3 × a1

a1.(a2 × a3)
, (2.20)

and

b3 = 2π
a1 × a2

a1.(a2 × a3)
. (2.21)

Figure 2.1 shows the primitive cell of the zinc blende structure (the common
form of occurrence for most compound semiconductors) and the first Brillouin
zone of this face-centered cubic crystal.

3A common method of notation, to describe various planes in the unit cell, is to use the
reciprocal of the intercepts in units of the primitive vectors. As an example, if a1/h, a2/k,
and a3/l are the three intercepts, then the Miller indices (hkl) identify the plane. The vector
perpendicular to this plane 〈hkl〉 is the direction.
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The first Brillouin zone is a truncated octahedron. The importance of this
first Brillouin zone for the present discussion is that all wave vectors beyond the
first Brillouin zone may be folded into the first Brillouin zone using a translation
of the reciprocal lattice vector G, which is composed of integer multiples of the
primitive vectors of the reciprocal cell. Certain positions in the Brillouin zone
are of particular importance because of their symmetry, and the relation to other
characteristics that this entails. We will return to a discussion of the significance
of the Brillouin zone and of these symmetry points during our discussion of
semiconductor properties.

We have now considered the form the eigenfunction solution may take for the
one-electron approximation in periodic potential. Determination of the actual
eigenfunction and the eigenenergy can be considerably more complex. If the
kinetic energy of the electrons is much larger than the periodic potential energy
resulting from the lattice, then the behavior of the electron can be modelled
approximately by a nearly free electron eigenfunction. The effect of the lattice
potential is to make the electron respond to externally applied forces as if it has
a differing effective mass (m∗) instead of the free electron mass. Note that the
mass of the electron itself has not changed. To determine the response of the
electron in the crystal to an externally applied stimulus such as an electric field,
one need not consider the internal forces such as those due to lattice—their
influence has already been folded into the effective mass which can be either
smaller or larger than the free electron mass. Thus, the behavior of the nearly
free electron is similar to that of the free electron discussed earlier; the difference
is the change in effective mass.

The periodicity of the lattice potential has another significant effect. Stand-
ing waves formed due to this periodicity cause a shifting in energy because of
the resultant charge movement. This leads to bands of energy that are allowed
energies for an electron and an energy gap of disallowed energies.

A good example of this that can be solved explicitly is the Kronig–Penney
model. Consider Figure 2.2, which shows the periodic potential in a hypothetical
one-dimensional crystal. The spatial periodicity is a for a potential barrier whose
height and width are V0 and b respectively.

We are interested in finding the energies and wave vectors allowed in this
periodic structure. Schrödinger equation for the barrier region (a − b < z < a,
etc.) is

− h̄2

2m

∂2ψ

∂z2
+ V0 = Eψ, (2.22)

whose solution should be of the form

ψ1(z) = A exp(αz) + B exp(−αz), (2.23)

where

α =

[
2m(V0 −E)

h̄2

]1/2
. (2.24)
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Figure 2.2: The periodic potential used in Kronig–Penney model. It consists of
periodic potential wells in a hypothetical one-dimensional crystal. The spatial
periodicity is a, the barrier width is b, and potential barrier height is V0.

The Schrödinger equation for the well region (0 < z < a− b, etc.) is

− h̄2

2m

∂2ψ

∂z2
= Eψ, (2.25)

whose solution should be of the form

ψ2(z) = C exp(jβz) +D exp(−jβz), (2.26)

where

β =

(
2mE

h̄2

)1/2

. (2.27)

The constants can be evaluated based on continuity at z = 0 and consequences
of Bloch’s theorem. The consequence of the latter is that, for any k,

ψk(z + a) = exp(−jka)ψk(z), (2.28)

and one could use this to establish continuity at z = −b. Thus the four boundary
conditions that are periodic in nature are:

ψ1(0) = ψ2(0),

∂ψ1

∂z

∣∣∣∣
z=0

=
∂ψ2

∂z

∣∣∣∣
z=0

,

ψ1(−b) = exp(−jka)ψ2(a− b),

and
∂ψ1

∂z

∣∣∣∣
z=−b

= exp(−jka) ∂ψ2

∂z

∣∣∣∣
z=0

. (2.29)

This is a set of four equations, with four unknowns A, B, C, and D. A solution
exists when the determinant of the coefficients of these unknowns vanishes, a
condition that can be written as

cos(ka) =
α2 − β2

2αβ
sinh(αb) sin (β(a − b)) + cosh(αb) cos (β(a − b)) . (2.30)
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Figure 2.3: A plot representing Equation 2.32 as a function of the parameter
βa for P = 1 (solid line) and P = 10 (dot-dashed line). Allowed bands occur
where the function lies in between −1 and +1.

For real k, allowing for travelling waves, the left hand side will have a value
between −1 and +1. The right hand side is an oscillating function with increas-
ing energy, i.e., also β. Only those values of E that limit the magnitude of the
right hand side between −1 and +1 allow for a wave solution or a pass-band in
energy. Outside this range lie the values of E that are forbidden; these form the
energy gap regions. We will consider the solution using a parameter P which is
proportional to the area under the barrier,

P =
mabV0

h̄2 . (2.31)

We now consider, for constant P , barriers of infinitely small thickness, i.e., the
condition where b → 0 and the barriers are replaced by delta functions. Since
sinh(αb) → αb and cosh(αb) → 1, the constraint of Equation 2.30 reduces to

cos(ka) =
P

βa
sin(βa) + cos(βa). (2.32)

The constant P representing the area under the potential barrier represents
the strength of electron binding in the crystal. A large value of P is the tight
binding limit while P = 0 is the free electron limit. Figure 2.3 shows the right
hand side of Equation 2.32 plotted as a function of βa for a small and a large
value of P . The transition between the allowed and forbidden bands occurs at
β = nπ/a where n is an integer. For a one-dimensional crystal, these are the
Bragg reflection conditions. At this transition, k = nπ/a and the electron wave
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Figure 2.4: Schematic of extended (a) and reduced zone (b) plot of energy E
versus wave vector k for the Kronig–Penney model.

function is a standing wave. Since β has a direct square-root dependence on
the energy of the electron, Figure 2.3 also shows that for small P , the allowed
energy bands are larger, together with smaller bandgaps, compared to large
values of P . For any P , at higher energies, the allowed bands get broader and
bandgaps smaller. So, for tight binding of an electron represented by a large
P , the allowed energy bands are smaller, but for high energies in either of the
limits, the passband approaches that of a free electron.

The energy versus wave vector relationship resulting from this analysis is
shown in Figure 2.4. The figure shows, in both extended and reduced zone rep-
resentation, the formation of allowed bands and their respective energies versus
wave vector relationship. The reduced zone, also called folded zone representa-
tion, is the more popular form because it completely and succinctly describes
the relationship of interest. It can be seen that near the band edge the E versus
k relationship is close to parabolic (the second term of a Taylor series expan-
sion). In the case of a free electron, it is exactly parabolic over the whole energy
range.

The Kronig–Penney is a highly idealized model limited to a one-dimensional
crystal; arbitrary potential forms can only be treated via sums of a Fourier
series. In a real crystal one would therefore resort to rather intensive numeri-
cal techniques using complicated wave functions to determine the energy-band
diagram.

Some examples of such approaches4 are the plane wave approach suitable for

4W. A. Harrison, Solid State Theory, Dover, N.Y. (1979) has a rigorous treatment of these
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nearly-free electrons, the tightly bound electron approach, the orthogonalized
plane wave approach and its specialized application using the pseudopotential
approach. Nearly free electron models are quite approximate representations of
the real crystals. One problem, e.g., is that near the ion core, the eigenfunction
must differ substantially from a plane wave and hence several terms of the
Fourier expansion of uk(r) with reciprocal lattice vectors are necessary to obtain
any accuracy. The tightly bound electron model takes the opposite approach
by assuming that the lattice potential energy is much larger than the kinetic
energy. The tighter binding is particularly true for the electrons that are largely
bound to the ion cores. The result is that one would expect the wave functions
to be closer to the wave functions of the electrons when the atoms are separated
from each other. The Bloch electron wave function can then be constructed
using a linear combination of atomic orbitals to determine the energy-band
structure. In the same vein, one may construct the electron wave functions
using a linear combination of molecular orbitals. The necessity of using several
terms of the Fourier expansion of uk(r) with reciprocal lattice vector in the plane
wave approach is addressed by a suitable modification of the wave function in
the orthogonalized plane wave method. This method allows development of a
wave function which behaves approximately like a plane wave between ion cores
and approximately like an atomic wave function near ion cores with the atomic
wave function part orthogonal to the plane wave part. A development from the
orthogonalized plane wave method is the use of pseudopotentials, which takes
advantage of the reduction in effective potential for a valence electron due to
the opposite effect of the real potential V (r) and the atomic orbital effect.

The result of these complex calculations is the development of the energy-
band diagram of the three-dimensional lattice—a description of the relationship
between the energy and crystal momentum associated with the electron. While
we will discuss these specifically for the semiconductors later in this chapter, it
should come as no surprise that they are considerably different from that seen
for the Kronig–Penney model. They are different in different directions in the
k-space, and the energy minima or maxima of various bands do not have to
occur at zone center, i.e., k = 0. The highest normally filled band at absolute
zero temperature is the valence band and the lowest normally empty band at
absolute zero temperature is the conduction band.

We return now for further discussion to the highly idealized Kronig–Penney
model whose E–k relationship is shown in Figure 2.4. Let the second band be
a valence band and the third band a conduction band. If we expand, for the
conduction band, the E–k relationship via a Taylor series expansion, i.e.,

E = E0 + ak2 + bk4 + · · · , (2.33)

at small values of k, the relationship is parabolic. So, at small values of k, this
is like the free electron case, but has a differing mass m∗ given by

m∗ = h̄2

(
∂2E

∂k2

)−1

, (2.34)

approaches.
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with the energy relationship given by

E −E0 =
h̄2k2

2m∗ . (2.35)

The electron, in the periodic potential, behaves as if it is moving in a uniform
potential whose magnitude is E0/q and as if it has an effective mass m∗. The
equation for effective mass has a much more general validity than implied above.
Mass has the significance of being the proportionality factor between force and
acceleration. Thus, for a force F , and a group velocity vg,5

F = m∗ dvg

dt
. (2.36)

In addition, since
Fdt = dp = h̄dk, (2.37)

F = h̄
dk

dt
. (2.38)

Since the group velocity is given as

vg =
∂ω

∂k
, (2.39)

from the E–k relationship, it follows in one dimension as

vg =
1

h̄

∂E

∂k
, (2.40)

or more generally in the n-dimension case as

vg =
1

h̄
∇kE(k). (2.41)

For one dimension, the time rate of change of the group velocity because of the
application of the force F , is

dvg
dt

=
1

h̄

d

dt

(
dE

dk

)
=

1

h̄

d

dk

(
dk

dt

dE

dk

)
, (2.42)

and hence, using Equation 2.38 and 2.42, the force is related as

F = h̄2

(
d2E

dk2

)−1
dvg
dt
, (2.43)

and therefore the effective mass is given by

1

m∗ =
1

h̄2

(
d2E

dk2

)
. (2.44)

5Effective mass and momentum will be discussed again when we consider real three-
dimensional crystal structures. We have not yet stressed the distinction between crystal
and electron momentum. Here, p = h̄k is, of course, the electron momentum.
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For a general three-dimensional situation where it may be different in different
directions, it is related, by extension, as

1

m∗
ij

=
1

h̄2

∂2E

∂ki∂kj
. (2.45)

The second and the fourth band of our Kronig–Penney example have maxi-
mum in energy at zone center. The energy near these maxima is also expandable
in a Taylor series form, and should have a parabolic relationship between E and
k at the maximum. However, here, similar arguments as before yield a negative
effective mass. An electron occupying one of the states near the band maximum
would accelerate in the opposite direction. At normal temperatures the bands
are partially occupied or filled, thus allowing movement of an electron from
a filled state to an empty state and hence causing the flow of current. If we
consider an electric field applied in the negative direction, an electron near the
bottom of the conduction band, which has a positive m∗ and a negative charge,
feels a force in the positive direction and hence has an associated velocity, the
group velocity, given by

vg =
∂E

∂k
, (2.46)

which is also positive. The electron at the bottom of the partially filled conduc-
tion band moves in the positive direction. Now, consider the valence band which
is only partially empty. Since the current in a filled band is zero, the current in
a band with a single unoccupied state is the negative of the current in a band
with a single occupied state. Therefore, we may interpret the conduction in
the partially empty band in terms of holes, “particles” representing absence of
electrons and possessing a positive elementary charge as well as positive mass.
Now, we may treat these particles, electrons in the conduction band and holes
in the valence band, as having a positive mass but opposite charge.

The energy band diagrams describe the relationship between the energy and
crystal momentum for electrons in the crystal. If an electron did not undergo
scattering, then the effect of an applied field E, assuming −q as the electronic
charge,6 is to cause a change in momentum following

−qE = h̄
dk

dt
, (2.47)

and the electron, in the reduced-zone approach, would be expected to transit the
Brillouin zone, reach the Brillouin zone boundary, re-enter and transit again, an
oscillatory phenomenon in k-space, and hence real space, a phenomenon termed
Zener–Bloch oscillations. The angular frequency of such an oscillation would be

ω =
qEa
h̄
, (2.48)

where a is the unit cell dimension. In reality, there are several phenomena
that reduce the likelihood of this happening. We have considered the lattice to

6We use the notation q to represent the magnitude of elementary charge. The sign of the
charge will be included explicitly.
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be perfectly periodic with no imperfections. Any disturbance from the ideal-
ized picture leads to a perturbation, which can cause the electron to change its
state—a process that may or may not conserve energy and momentum. Impu-
rities, defects in crystallinity, etc., can all cause changes in energy and momen-
tum. So can the vibration of ion cores around their mean positions. All these
processes, that we call scattering, dampen an unlimited change of momentum
because any perturbation introduced by these processes can cause a change in
the state of the electron and hence its momentum, and even in the most perfect
of crystals, scattering due to lattice vibrations are always present.

Our discussion of electrons was based on idealized grounds in a one-dimensional
framework. On the basis of this we made comments on how one may go about
developing accurate three-dimensional models that mimic real crystals. The re-
sults of these will be the subject of discussion in the latter part of this chapter
from a device perspective. In a similar vein, we will consider the lattice vibra-
tion in one dimension, to understand the behavior of phonons—“particles” that
characterize these vibrations. This will establish the conceptual framework for
us to discuss phonon dispersion in three dimensions in the latter part of this
chapter.

Consider Figure 2.5, which shows a one-dimensional lattice consisting of two
atoms of differing atomic mass m and M . Since the amplitude of the vibrations
of the atoms tends to be small, the force on the atoms can be characterized by
the first term of the functional expansion with position. This is the restoring
force similar to that of spring models. Denoting the force constant as β, the
position as z, we may write the force F for the two species as:

F2n = m
d2z2n
dt2

= β (z2n+1 + z2n−1 − 2z2n) , (2.49)

and

F2n+1 = M
d2z2n+1

dt2
= β (z2n+2 + z2n − 2z2n+1) . (2.50)

The wave solution is of the form

z2n = A exp [j(ω1t− 2nqa)] , (2.51)

and

z2n+1 = B exp [j (ω2t − (2n+ 1)qa)] , (2.52)

where q, like k for electrons, is the symbol for wave vector. Substituting, and
solving for the displacement relationship between z2n+1 and z2n, we get

z2n+1 =
β [1 + exp (−2jqa)]

2β −Mω2
2

z2n. (2.53)

Since this can only be satisfied if the time dependence of z2n+1 is the same as that
of z2n, the angular frequencies must be the same, i.e., ω1 = ω2 = ωq. Following a
procedure similar to that for derivation of coefficients for Kronig–Penney model,
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Figure 2.5: Mean and instantaneous position of atoms in a diatomic linear lattice
is shown in the top part of the figure. The vibration shown corresponds to the
acoustic branch. The lower part of the figure shows the dispersion relationship
for this problem with m < M as discussed in the text.
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we have a unique solution for the constants only if the determinant of coefficients
in A and B is zero, i.e.,

(2β −Mω2
q)(2β −mω2

q) − 4β2 cos2(qa) = 0. (2.54)

The dispersion relation for phonons that characterize these vibrations, then, is:

(
E

h̄

)2

= ω2
q = β

(
1

m
+

1

M

)
± β

[(
1

m
+

1

M

)2

− 4 sin2(qa)

mM

]1/2

. (2.55)

This dispersion relationship is shown in Figure 2.5. As with the energy-band
behavior in Kronig–Penney model, there exists a forbidden zone of energy, or
angular frequency, that the vibrations may not have. The vibrations in this
periodic structure have been treated as for harmonic oscillators; they have more
fundamental foundation in quantum mechanics akin to the treatment of pho-
tons. It is therefore quite useful to introduce the concept of phonons, as indis-
tinguishable “particles” which characterize these vibrations. In many ways, this
wave aspect of lattice vibrations in a periodic structure is also similar to that of
the wave nature of electrons in the periodic structure. The modes of vibrations
are discrete just as the states of the electrons are discrete. Phonons are par-
ticles that obey principles of conservation of energy and momentum; however,
phonons themselves need not be conserved, since a change in temperature can
increase or reduce the number of vibrations, unlike electrons in conduction or
valence bands. These phonons, representing vibrations occurring at a frequency
ωq , have an energy h̄ωq where h̄ is the reduced Planck’s constant, and have a
momentum h̄q. The occupancy probability of the state (nq) of energy h̄ωq at a
temperature T is given by Bose–Einstein statistics:

nq =
1

exp (h̄ωq/kT ) − 1
. (2.56)

Returning now to the dispersion relationship of phonon modes in the simple
one-dimensional diatomic model, Figure 2.5 shows that there are two bands—
the higher energy branch is called optical branch, and the lower energy branch
is called acoustic branch. Acoustic branch results from in-phase vibration of
neighboring atoms, while optical branch results from out-of-phase vibration of
neighboring atoms. At the zone edge, however, they show a similar character.
Figure 2.6 shows a schematic of the displacement of the atoms at the zone center
and at the zone edge for the acoustic and optical branches for the diatomic lat-
tice. Since the acoustic mode has in-phase vibration, it has a smaller frequency
and hence smaller energy. The optical branch has a higher frequency and en-
ergy because of the out-of-phase vibration. The acoustic phonon is similar to
a propagating acoustic wave; hence the use of the adjective. The term opti-
cal phonon originates from the excitation of these vibrations by photons in the
infrared part of the spectrum. At the Brillouin zone boundary, the frequency
of the optical branch reduces to

√
2β/m, i.e., that due to the lower mass ions,

and, as Figure 2.6 shows the, heavier atoms remain stationary. Similarly, the
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Figure 2.6: An instantaneous snap-shot of displacement of atoms during acoustic
and optical mode vibrations for the diatomic one-dimensional lattice. Part (a)
shows the zone center schematic for the optical branch, part (b) shows the same
for the acoustic branch, part (c) shows the zone edge schematic for the optical
branch, and part (d) shows the same for the acoustic branch.
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frequency of the acoustic branch reduces to
√

2β/M , i.e., that due to the higher
mass ion with the smaller mass ion stationary.

Interaction between phonons and electrons, alluded to in our comments re-
garding Zener–Bloch oscillations, is among the stronger scattering mechanisms
and is crucial to understanding the transport of carriers in semiconductors. We
will review this later in the chapter. Interactions can also occur between phonons
and other phonons. Since phonons, with their basis in lattice vibrations, are one
of the major means for heat transport in the lattice, phonon-phonon interac-
tions are of a large interest in that subject. In semiconductors, this is of interest
because heat dissipation has to be transported; however, it is not of primary
importance. When two phonons interact with the sum of the momentum still
within the first Brillouin zone, then the process, called a normal process, leaves
the heat transport unaffected. However, if the resultant phonon wave vector
is outside the first Brillouin zone, then the translation by the reciprocal lattice
vector G results in a wave vector which is opposite in sign to the sum of the
the wave vectors of the two incident phonons. This process is known as the
umklapp7 process, and since the equivalent wave vector is negative, it produces
a thermal resistance.

2.3 Occupation Statistics

The occupation of carriers in the energy bands, as well as the behavior of im-
purities in the semiconductor, are all related to the statistics of occupation of
energy levels by electrons. Electrons are fermions and hence the statistics are
non-classical. Limitations placed by Pauli’s exclusion principle should cause a
behavior that is dependent on doping. Occupation of bands and discrete impu-
rity energy levels is related to many effects of importance in semiconductor de-
vices, most prominent among which is the behavior of degenerate material due
to Fermi–Dirac statistics of occupation. The subject of occupation statistics
arises not just in calculating this doping dependence, but also in generation-
recombination effects, etc., This section is a review of the general principles of
the approach as applied to both energy band states and impurity states.

2.3.1 Occupation of Bands and Discrete Levels

Electrons are independent and indistinguishable particles with a spin of ±1/2.
Pauli’s exclusion principle restricts the occupation of any state by only one
electron. The statistics for this situation are commonly referred to as Fermi–
Dirac statistics. Consider a closed system of energy E consisting of n particles
that can occupy energy levels · · ·Ej · · · each of which has a degeneracy · · ·gj · · ·.
The number of distinguishable arrangements by which nj particles can occupy
a jth state is given by the permutation term Pj :

Pj =
gj!

nj! (gj − nj)!
. (2.57)

7To turn over; from the German word umklappen.
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For the closed system, the total number of such arrangements is the product
over all the states of the system. This is given by the permutation term P given
by

P =
∏

j

Pj =
∏

j

gj!

nj! (gj − nj)!
. (2.58)

This permutation term is very large, since, in a usual problem such as electrons
in the semiconductor, the number of states and carriers is large. We may use
Sterling’s approximation for the natural logarithm of a factorial, given by

ln(x!) = x ln(x) − x. (2.59)

The system is in thermodynamic equilibrium, i.e., has time-independent macro-
scopic properties when the P is a maximum. This can be found by setting the
derivative of P or equivalently of ln(P ) to zero, with the condition that the
number of particles n and the total energy E remain a constant. The total
number of particles and the total energy of the system are therefore constrained
by

n =
∑

j

nj (2.60)

and

E =
∑

j

njEj. (2.61)

Therefore, the maximum, using Lagrangian multipliers,8 occurs when

0 = d ln(P ) =
∑

j

[
−1 − ln(nj) + ln (gj − nj) +

(
gj

gj − nj
−

nj
gj − nj

)
+ A + BEj

]
dnj

=
∑

j

[
ln

(
gj − nj
nj

)
+ A + BEj

]
dnj. (2.62)

Therefore,

nj =
gj

exp (−A − BEj) + 1
. (2.63)

The ratio of particles to states of this specific problem is referred to as the
Fermi–Dirac distribution function, and is given by

f(E) =
nj
gj

=
1

exp (Ej/kT ) + 1
=

1

exp [(E − ξf ) /kT ] + 1
, (2.64)

8The method of Lagrangian multipliers allows us to maximize and minimize a dependent
variable when the maximization and minimization is performed under the constraint that
another set of dependent variables, which are also a function of the same independent variables,
remain constant. Let f be the former, and let φ and ψ be the latter; then, df+Adφ+Bdψ = 0.
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where we have made the appropriate substitutions for constants A and B from
the definition of macroscopic properties of the system. Ej = E− ξf , where E is
the energy of the level of interest, and ξf is known as the Fermi energy. Fermi
energy, based on the above relationship, has the following meaning: at absolute
zero temperature, all the states above the Fermi energy are empty and all the
states below it are filled. At any finite temperature the states at the Fermi
energy are half filled.

Similar to the Fermi–Dirac statistics, the Maxwell–Boltzmann statistics ap-
ply to a system of independent particles, but unlike Fermi–Dirac statistics,
these are distinguishable particles which are non-interacting. One may employ
mathematics similar to the above with the distinction that now the number of
arrangements of the jth particle state are g

nj

j /nj!, and hence the total number
of permutations of the system are:

P = n!
∏

j

(
g
nj

j

nj!

)
. (2.65)

Since gn1

1 × · · · gnj

j × · · · is a constant, a similar procedure to the above (see
Problem 1) leads the ratio of particles to states for the Maxwell–Boltzmann
distribution function as

f(E) =
nj
gj

= exp

(
−Ej
kT

)
= exp

(
−E − ξf

kT

)
. (2.66)

This is the probability of the occupation of the state j; the exponential factor
is the Maxwell–Boltzmann factor.

Both of these statistics are useful in describing the occupation of states in
the energy bands. When the number of carriers is small, the number of avail-
able states is so much larger than the number of carriers that the Fermi–Dirac
distribution reduces to the Maxwell–Boltzmann distribution. This conclusion
also follows from the above relationships. If the energy level of interest is higher
than the Fermi energy by 3kT , then the exponential term is greater than 20,
and use of the much simpler Maxwell–Boltzmann statistics leads to an error of
less than 5%.

We now consider the statistics of donors, acceptors and traps. Donor and
acceptor statistics become considerably important in the limits of degeneracy.
Degeneracy implies a Fermi level above the donor level or below the acceptor
level since the carrier densities are now close to or higher than the number of
states available in the bands. This implies that only a fraction of the donors
or acceptors contribute the carriers. The occupation of the donor energy levels
is therefore central to the determination of the carrier density given a donor
or acceptor impurity density in the high carrier density limit. This problem is
actually quite complex. We are implicitly arguing that electrons at the donor
levels, or lack of them at the acceptor levels, does not contribute to conduction
and hence can not be included in the count of nearly free electrons or holes.
In the limit of very high doping, impurity bands form because of energy level



2.3 Occupation Statistics 27

splitting caused by impurity–impurity interactions. Such impurity bands may
coalesce with the conduction or valence bands. States are now available for
change of momentum and hence conduction may take place through these levels.
This is the reason that carrier freeze-out, the removal of carriers from conduction
processes, does not occur as easily in highly doped material. Here, we will ignore
such band formation. Thus, the derivation is strictly useful only in the limits of
low degeneracy.

Let ND be the total number of donor centers, N+
D the ionized donors and

N0
D the neutral donor centers. N+

D electrons contributed by the ionized donors
are distributed among energy levels · · · j · · · of energy · · ·Ej · · · and degeneracy
· · · gj · · ·; let these be occupied by · · ·nj · · · electrons. In addition to occupying
these energy levels in the conduction band, electrons also occupy N0

D sites at the
donor energy level ED. The number of ways that the jth level in the conduction
band can be occupied is

Qj = Cgj
nj

=
gj!

nj ! (gj − nj)!
, (2.67)

and hence the total number of such arrangements is

R =
∏

j

gj!

nj! (gj − nj)!
. (2.68)

Since a neutral donor center results from the addition of an electron to an
ionized donor, we have N0

D electrons to be distributed among ND donor centers
at an energy ED. In the lattice, the donor usually exists at a substitutional
site, and ionizes by giving away an excess electron from its outer shell (see
Figure 2.7). Since spin degeneracy is two, this excess electron can have a spin
in one of two orientations. So,

Q = CND

N0
D

= 2N
0
D

ND!

N0
D ! (ND −N0

D)!
(2.69)

gives the number of arrangements of N0
D electrons on ND sites. The total

number of electrons in the system is

n = N0
D +

∑

j

nj, (2.70)

and the total energy is

E = N0
DED +

∑

j

njEj. (2.71)

The total number of arrangements for the electrons, both in the bands and at
the discrete levels, is

P = Q× R = 2N
0
D

ND!

N0
D! (ND −N0

D)!

∏

j

gj!

nj! (gj − nj)!
. (2.72)
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Figure 2.7: A schematic describing processes that occur during the change in
ionization state for most common donors and acceptors in a semiconductor.

Our procedure, as before, follows with the use of Lagrangian multipliers and
Sterling’s approximation to maximize P . We need to evaluate the differential:

d[ln(P ) + A(n−N0
D −

∑

j

nj) + B(E −N0
DED −

∑

j

njEj)]

= d
{
N0
D ln(2) + ln(ND!) − ln(N0

D !) − ln[(ND −N0
D)!]+

∑

j

[ln(gj!) − ln(nj !)− ln[(gj − nj)!]]+

An−AN0
D −A

∑

j

nj + BE −BN0
DED − B

∑

j

nj Ej} . (2.73)

Maximizing with respect to (w.r.t.) N0
D leads to

ln2 − lnN0
D + ln

(
ND −N0

D

)
− (A + BED) = 0, (2.74)

and
N0
D

ND
=

1

1 + 1
2 exp (A + BED)

. (2.75)

Similarly, maximizing w.r.t. to nj leads to

nj
gj

=
1

1 + exp (A + BEj)
, (2.76)

for the occupation of conduction band states. This we had derived before, but
the distribution function for occupation of electrons at the donor levels is the
new result. Substituting for the thermodynamic variables as before, we may
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write the distribution function for electron occupation at the donor level as

f (ED) =
N0
D

ND
=

1

1 + 1
2 exp [(ED − ξf ) /kT ]

, (2.77)

and since the total number of donors are divided between those that are neutral
and those that are ionized, i.e., ND = N0

D +N+
D , we obtain

N+
D

ND
=

1

1 + 2 exp [(ξf −ED) /kT ]
. (2.78)

Occupation statistics for acceptors can be found in a similar manner. Most
common acceptors occupy substitutional sites in the lattice and are deficient
by one electron in their outer shell. The electron can go in the outer shell of a
neutral acceptor in only one way without violating Pauli’s exclusion principle.
This electron may, however, come out with either spin and go to one of the
two degenerate valence bands that commonly occur for most semiconductors of
interest. This leads to (see Problem 3):

f (EA) =
N−
A

NA
=

1

1 + 4 exp [(EA − ξf) /kT ]
, (2.79)

and
N0
A

NA
=

1

1 + 1
4 exp [(ξf −EA) /kT ]

. (2.80)

Most trap or deep levels can be treated in a similar manner as above. The
degeneracy of the levels, a term associated with the factors 2 and 4 above
(strictly speaking, 2 and 1/4), may be different for a trap level because these
need not be from the adjacent columns of the periodic table. An additional
feature of the deep level, as a result, is that they may have more than one
ionized state within the bandgap. The impurity can be in any of these states,
and the equilibrium statistics depend on all the other possible states of the
system. Problem 23 of Chapter 3 is an advanced exercise related to this subject.

2.3.2 Band Occupation in Semiconductors

We have now discussed the occupation probabilities of carriers in states that
arise from many different causes. In a device, the parameter that is of more
interest is the number of carriers that are available for conduction. To determine
this, in addition to the probability of occupation of a state, we need to know the
number of such states. In a three-dimensional crystal, there is a distribution of
such states, a quasi-continuum, since the number of states is large. This may
be lumped together in a density of state function D(E) which is the number of
states in a unit energy range at any energy E. Thus in an energy range dE at
the energy E, the total number of states is D(E)dE. The number of carriers,
knowing the density of states as a function of energy, can now be determined
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as a function of the Fermi energy. If Ec represents the energy of the bottom of
the conduction band, then, at thermal equilibrium,

n =

∫ Emax

Ec
f(E)D(E)dE, (2.81)

where D(E) is the density of states available for occupation, and Emax is the
maximum energy available in the conduction band. Since the distribution func-
tion decreases exponentially, we can replace Emax by ∞ without any significant
error.

Consider only the simplest approximation of bands, the parabolic band. The
density of states (D(E)), i.e., the number of states per unit volume of the crystal
per unit energy, can be found by considering arguments based on allowed wave
vectors of the crystal. For a one-dimensional crystal, the permitted values of the
wave vector k of the wave function exp(jkr) in the periodic lattice are ±2πl/L,
where l is an integer and L is the linear dimension. This follows from the
requirement that the ends of the crystal be electron nodes. By extension, for
a cube of dimension L, the permitted values of the wave vector are ±2πlx/L,
±2πly/L, and ±2πlz/L, corresponding to the three independent directions and
with lx, ly , and lz as positive integers. Thus, the magnitude of wave vector k

follows as

k2 =
4π2

(
l2x + l2y + l2z

)

L2
=

4π2l2

L2
=

4π2l2

V 2/3
. (2.82)

Each permitted value of k corresponds to various combinations of lx, ly, and lz
which result in the same l given by

l =
L

2π
k =

V 1/3

2π
k. (2.83)

All states on a sphere, whose radius is l, result in identical energy, although the
carrier may be moving in different directions. For energy varying from 0 to E,
or the wave vector varying from 0 to k, the total number of modes allowed is
the volume of sphere, i.e., 4πl3/3 or V k3/6π2. Thus, the density of states per
unit volume and unit energy, taking into account two possible spin orientations,
is given as

D(E) = 2
d

dE

(
k3

6π2

)
=

1

π2
k2 dk

dE
=

1

2π2

(
2m∗

h̄2

)3/2

(E −Ec)
1/2
. (2.84)

In general, there may be more than one equivalent valley and the masses along
the three axes may be unequal. The effective mass in the expression above, by
convention, is the density of states effective mass that corresponds to the real
density of states. Thus, for unequal, longitudinal (m∗

l ) and transverse (m∗
t1 and

m∗
t2) masses, and a degeneracy gv of the valleys, the density of states function

D(E) is given by the expression

D(E) =
1

2π2

(
2m∗

d

h̄2

)3/2

(E −Ec)
1/2
, (2.85)
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where
m∗
d =

(
g2
vm

∗
lm

∗
t1m

∗
t2

)1/3
. (2.86)

Note the differences between the conduction effective mass and density of states
effective mass. Given this density of states, the integral relationship for electron
density now becomes

n =
1

2π2

(
2m∗

d

h̄2

)3/2 ∫ ∞

Ec

(E − Ec)
1/2dE

1 + exp [(E − ξf) /kT ]
. (2.87)

Changing to variable η = (E − Ec)/kT , and denoting ηfc = (ξf −Ec)/kT , the
integral relationship takes the form

n =
1

2π2

(
2m∗

d

h̄2

)3/2

(kT )
3/2
∫ ∞

0

η1/2dη

1 + exp (η − ηfc)
≡ NCF1/2 (ηfc) , (2.88)

where F1/2 is the Fermi integral of the order one-half.9

The parameter NC thus has the value

NC =
1

2π2

(
2m∗

d

h̄2

)3/2

(kT )
3/2π

1/2

2
= 2

(
m∗
dkT

2πh̄2

)3/2

. (2.93)

NC is an “effective” conduction band density of states. It may be viewed as an
energy integrated density of state which approximates the effect of total density
of states in the conduction band, but which appears at the edge of the conduction
band. For values of of ηfc smaller than −3, i.e., with non-degenerate statistics
dominating, the Fermi integral takes an exponential form, and the expression
for electron density reduces to

n = NC exp (ηfc) = NC exp

(
ξf − Ec
kT

)
, (2.94)

which is the classical Maxwell–Boltzmann relationship.

9Fermi integrals are related to Γ functions by

Fν

(
ηf

)
=

1

Γ (ν + 1)

∫
∞

0

ηνdη

1 + exp
(
η − ηf

) , (2.89)

where ηf is the function ηfc in this instance. It can also be the corresponding valence band
function ηfv for the calculations of hole density. Elsewhere, we have also used ηfn and ηfp

synonymously for these for convenience. The derivative of F1/2 function w.r.t. ηf is the F
−1/2

Fermi function. The Γ functions have the characteristics:

Γ (ν + 1) =

∫
∞

0

ην exp(−η)dη, Γ (ν + 1) = νΓ (ν) , (2.90)

Γ

(
1

2

)
= π1/2, and Γ (1) = 1. (2.91)

For integer variables,
Γ (ν + 1) = ν!. (2.92)
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Figure 2.8: The Fermi integral (F1/2(ηf)) as a function of the parameter ηf .

A derivation similar to the above leads to the relationship for holes (see
Problem 2) as

p = NV F1/2 (ηfv) , (2.95)

where ηfv = (Ev − ξf )/kT , and the effective density of states for the valence
band is

NV =
1

2π2

(
2m∗

d

h̄2

)3/2

(kT )
3/2 π

1/2

2
= 2

(
m∗
dkT

2πh̄2

)3/2

, (2.96)

with m∗
d as the effective density of states mass for the valence band. A plot of

the Fermi integral as a function of the parameter ηf (ηfc or ηfv) is shown in
Figure 2.8. The product of carrier concentrations in the Maxwell–Boltzmann
limit is

np = n2
i = NCNV exp

(
−Ec − Ev

kT

)
= NCNV exp

(
−Eg
kT

)
, (2.97)

where ni is the intrinsic carrier density.

2.4 Band Structure

Our discussion, so far, has already dealt with the central role of band structure in
the occupation of carriers in a band and hence their behavior in thermal equilib-
rium. Band structure is also central to determining the transport characteristics
of carriers and many other phenomena because it determines the relationship
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Table 2.1: Symmetry points in the first Brillouin zone of face-centered cubic
lattice.

Symmetry Wave Vector Degeneracy
Point k =

Γ 0 1
L ±(π/a)〈111〉, ±(π/a)〈1̄11〉,

±(π/a)〈11̄1〉, and ±(π/a)〈111̄〉 8
X ±(2π/a)〈100〉, ±(2π/a)〈010〉,

and ±(2π/a)〈001〉 6
K ±(3π/2a)〈110〉, ±(3π/2a)〈1̄10〉,

±(3π/2a)〈011〉, ±(3π/2a)〈01̄1〉,
±(3π/2a)〈101〉, and ±(3π/2a)〈101̄〉 12

W ±(π/a)〈210〉, ±(π/a)〈021〉, ±(π/a)〈102〉 6

between the energy and the momentum of the carrier. In this section, we will
review the band structure relationships in compound semiconductors. The con-
sequences of the band structure in some major and general phenomena will be
the subject of subsequent sections.

We have noted that the reciprocal space, also called phase space, k-space,
Fourier space, and momentum space, is a convenient tool to describe the be-
havior of both electronic states and vibrational states. The coordinate axes of
the reciprocal lattice are the wave vectors of the plane waves corresponding to
the Bloch states or the vibration modes. The Wigner–Seitz unit cell in the
reciprocal space is the first Brillouin zone. This was shown in Figure 2.1. This
is also the first Brillouin zone for single element semiconductors Si and Ge, i.e.,
for diamond lattice. Let us consider the conventional definitions of the coordi-
nate system and the important points of symmetry in the first Brillouin zone.
These positions in the Brillouin zone are of particular importance because of
their symmetry, and hence the relation to other characteristics that this entails.
Table 2.1 summarizes the wave vectors of some of these symmetry points. Since
there is symmetry of rotation around the three axes, and of mirror reflection in
the three planes, the irreducible part of this first Brillouin zone is only 1/48th
in size. This irreducible part is shown in Figure 2.9. The reduced part shown
in Figure 2.9 is the minimum description of wave vectors of carriers and vibra-
tional modes in the zinc blende crystal in order to characterize their effect. In
numerical calculations, it is quite often convenient to use the description of band
structure only in this irreducible zone and then perform symmetry operations
to generate the information as it becomes necessary during the calculations.

The task of determining the energy–momentum relationship for a three-
dimensional lattice is of course a difficult one. It involves the determination of
the solutions to Schrödinger equation using the crystal Hamiltonian. This crys-
tal Hamiltonian contains energy terms due to kinetic, potential, and magnetic
contributions arising from electrons in a lattice structure of the nuclei. The



34 2 Review

Figure 2.9: The irreducible part of the first Brillouin zone of zinc blende crystals
is shown as the 1/48th part of the truncated octahedron. The major symmetry
points are identified in this irreducible part.

solution can be accomplished in a number of ways using perturbation theory:
using tight binding approximation, i.e., using functions that are linear combina-
tions of either atomic or molecular orbitals; using pseudopotentials; and using
various other functional approaches such as Green’s functions techniques. Per-
turbation theory allows the determination of final energy solution, by using the
smaller Hamiltonian terms as perturbing functions. The basis states for using
this perturbation are determined from the major term associated with Coulom-
bic interactions with the nuclei. Since the basis functions, involving calculations
based on using atomic orbitals near the cores, are |s > and |p > like, the re-
sulting functions are combinations of these at various important points of the
Brillouin zone.

Figures 2.10–2.13 show the band structures10 of Si, Ge, GaAs, InP, InAs,
AlAs and Ga.47In.53As, over a large energy range, and Figure 2.14 shows the
band structure of both conduction and valence band for GaAs in larger detail.

We can make some general observations regarding these band structures.
GaAs is a direct bandgap semiconductor with the ordering of minima from
low to high energies in the conduction band as Γ, L, and X. All compound
semiconductors exhibit a universal feature of a degenerate light and heavy hole

10These are based on the band structure calculations of M. Fischetti. Some of this infor-
mation is published in M. Fischetti, “Monte Carlo Simulation of Transport in Technologically
Significant Semiconductors of the Diamond and Zinc Blende Structures, Part I: Homogeneous
Transport,” IEEE Trans. on Electron Devices, ED-38, No. 3, p. 634, c©Mar. 1991 IEEE.
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Figure 2.10: Conduction band structure of silicon (a) and germanium (b) over
major points and directions in the first Brillouin zone. After M. Fischetti,
“Monte Carlo Simulation of Transport in Technologically Significant Semicon-
ductors of the Diamond and Zinc Blende Structures, Part I: Homogeneous
Transport,” IEEE Trans. on Electron Devices, ED-38, No. 3, p. 634, c©Mar.
1991 IEEE.
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Figure 2.11: Conduction band structure of GaAs (a) and InP (b) over major
points and directions in the first Brillouin zone. After M. Fischetti, “Monte
Carlo Simulation of Transport in Technologically Significant Semiconductors of
the Diamond and Zinc Blende Structures, Part I: Homogeneous Transport,”
IEEE Trans. on Electron Devices, ED-38, No. 3, p. 634, c©Mar. 1991 IEEE.
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Figure 2.12: Conduction band structure of InAs (a) and AlAs (b) over major
points and directions in the first Brillouin zone. After M. Fischetti, “Monte
Carlo Simulation of Transport in Technologically Significant Semiconductors of
the Diamond and Zinc Blende Structures, Part I: Homogeneous Transport,”
IEEE Trans. on Electron Devices, ED-38, No. 3, p. 634, c©Mar. 1991 IEEE.
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Figure 2.13: Conduction band structure of Ga.47In.53As over major points and
directions in the first Brillouin zone. After S. Tiwari, M. Fischetti, and S. E.
Laux, “Transient and Steady-State Overshoot in GaAs, InP, Ga1−xInxAs, and
InAs Bipolar Transistors,” Tech. Dig. of International Electron Devices Meeting,
p. 435, Dec. 9–12, c©1990 IEEE.

Figure 2.14: Details in medium energy region of the band structure of GaAs
over major points and directions of the Brillouin zone.
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band at zone center, and a split-off band. The split-off band comes about
because of the perturbation from the magnetic energy associated with the spin
and orbit of the electron. This coupling is generally referred to as spin-orbit
coupling or L.S coupling, and the split-off band arising from it is 0.34 eV below
the valence band maxima in GaAs. The bandgap of intrinsic GaAs, at 300 K,
is 1.42 eV, the L valley is 0.29 eV, and the X valley about 0.48 eV above the Γ
minimum.

Referring to the earlier band structure figure of silicon (Figure 2.10), Si
is an indirect bandgap semiconductor with an intrinsic bandgap of 1.10 eV;
the minimum in conduction band energy occurs ≈ 85% of the way to the X
point from the Γ point. Constant low energy surfaces around this valley, loosely
referred to as the X valley, are 6-fold degenerate and aligned along the Cartesian
coordinates. The next lower valley is between the line joining X with the U
point, followed by the L point. Again there is the degenerate light and heavy
hole band at zone center which is the valence band maximum. Unlike compound
semiconductors, silicon does not exhibit a large separation of the split-off band.
The origin of this smaller separation is in the spin-orbit energy that gives rise
to the formation of the split-off band. Light atoms exhibit small spin-orbit
interaction. In silicon, spin-orbit splitting is only 0.044 eV. Spin-orbit energy,
however, rises rapidly with atomic mass. Germanium has a spin-orbit splitting of
0.29 eV. Germanium is also an indirect bandgap semiconductor with a bandgap
of 0.72 eV for intrinsic material at 300 K. The ordering of the conduction band
minima is L, X, and Γ. The constant energy surfaces in the lowest conduction
valley, the L valley, are ellipsoids aligned along the 〈111〉 direction. These are
eight-fold degenerate while the ones in silicon were six-fold degenerate. Both
in silicon and germanium, the lowest conduction bands have multiple valleys
associated with them. A consequence of this is the availability of a large number
of states to scatter into. A large change in momentum is required for this
process, and is available through zone edge phonons. The result of this is that,
at low energies, both silicon and germanium experience higher scattering than
direct bandgap compound semiconductors. Another interesting feature from
the band structures is the observation of the lower effective mass for holes of
germanium. This gives rise to nearly identical electron and hole mobilities in
germanium.

InP is a direct bandgap compound semiconductor with similar ordering of
conduction band minima as GaAs. Like GaAs, the light and heavy hole bands
are degenerate and a split-off band occurs ≈ 0.78 eV below, at the zone center.
The bandgap of intrinsic InP is 1.35 eV at 300 K. InAs is a direct bandgap
compound semiconductor with a small energy gap of ≈ 0.36 eV at 300 K.
Its ordering of conduction band minima is also Γ, L and X. Most compound
semiconductor are direct bandgap materials. AlAs and GaP are two of the few
compound semiconductors with indirect energy bandgap. In AlAs, the X valley
is the minimum conduction energy valley followed by the L valley. It exhibits a
behavior similar to silicon, and some of these characteristics may be traced to
aluminum, which is a light atom like silicon.



40 Properties of Semiconductors for Devices

2.5 Phonon Dispersion in Semiconductors

We have considered the conceptual basis for treatment of phonons as part of
our discussion of one-dimensional models. To recapitulate, the Bloch function
formalism considers the electron in a periodic lattice whose host atoms are sta-
tionary. At finite temperatures, atoms vibrate around this mean position. The
periodic vibration leads to perturbation of the stationary periodic potential and
causes the changes in the electron wave function in time. The lattice vibrations
can be described in a framework that is analogous to the description of elec-
trons. Phonons, representing these vibrations occurring at a frequency ωq, have
an energy h̄ωq, where h̄ is the reduced Planck’s constant, and have a momen-
tum h̄q. Phonons describe vibrations just as photons describe electromagnetic
waves. Two phonon branches result in this idealized one-dimensional system, a
high energy branch for optical phonons, and a lower energy branch for acoustic
phonons. Scattering resulting from optical and acoustic phonons are commonly
referred to as optical phonon scattering and acoustic phonon scattering. Since
the energy of the acoustic phonon mode is smaller it produces less perturbation
than the optical phonons.

Three-dimensional crystals bring with them additional complexity in phonon
dispersion. In the diatomic one-dimensional crystal, the atoms could vibrate
only along one axis, i.e., along the longitudinal direction. In a three-dimensional
crystal, they may have longitudinal oscillations, as well as transverse oscillations
in two orthogonal directions. In the primitive cell, if there are N different types
of atoms either of differing mass or ordering in space, 3N vibration modes will
result. In general, three of these branches, the acoustic branches, will disappear
at zone center. The remaining 3N − 3 branches will be optical branches. For
the cubic crystals, GaAs or Si, e.g., N = 2, and hence there are three acoustic
and three optical branches, each three comprising of one longitudinal and two
transverse modes. However, along 〈100〉, 〈110〉, and 〈111〉 directions, the two
transverse directions are indistinguishable. So, here, in the cubic crystal, the
two transverse oscillations are degenerate .

Examples of phonon dispersion curves that describe the energy or frequency
dependence as a function of wave vector are shown in Figure 2.15 and 2.16 for
Si, Ge, GaAs, and InAs.

The order of magnitude of the optical phonon energy is between 25 and
50 meV for most semiconductors of interest, in the same order of magnitude as
the thermal energy. Heavier ions should be more sluggish; the acoustic branch
then should have a lower peak energy. This is reflected in the ascending ordering
of peak acoustic energies of InAs, Ge, GaAs, and Si in inverse proportion to the
weight of the heaviest element. A similar trend holds for the lowest optical
branch energy for these materials. An additional interesting feature of these
figures is that, for compound semiconductors, the longitudinal optical phonon
is slightly more energetic than the transverse optical phonon at low momenta
because of the presence of ionic charge. At high momenta, in certain directions,
the optical branches may even cross over because the higher momenta results in a
larger reduction in energy of the longitudinal mode due to the effect of the dipole.
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Figure 2.15: Phonon dispersion curves for Si (a) and Ge (b) as a function of the
wave vector in the first Brillouin zone. After Landolt-Börnstein; O. Madelung,
M. Schulz, and H. Weiss, Eds., Semiconductors, V 17, Springer-Verlag, Berlin
(1982).
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Figure 2.16: Phonon dispersion curves for GaAs (a) and InAs (b) as a function
of the wave vector in the first Brillouin zone. After Landolt-Börnstein; O.
Madelung, M. Schulz, and H. Weiss, Eds., Semiconductors, V 17, Springer-
Verlag, Berlin (1982).
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These figures also show that at specific large momenta, in directions differing
from the major crystal axis direction 〈100〉, 〈110〉, or 〈111〉, the degenerate
transverse modes split because of the breakdown of symmetry. This occurs for
both optical and acoustic modes.

2.6 Scattering of Carriers

The carrier transport in a medium occurs under the influence of applied forces
which accelerate the carriers in the preferred direction, and the carrier interacts
with its environment whose general effect is to render the motion random. Scat-
tering is a general term for the interaction of the carrier with the surroundings.
Our discussion of scattering is a review, short on detail, but with a view of
understanding its general consequences for compound semiconductors.

An electron in the crystal, under the influence of an external force, such as
due to the electric field, picks up its energy during its acceleration, but changes
energy and/or momentum by various scattering mechanisms that come about
because of lattice vibrations or other carriers in its surrounding, as well as defects
of the lattice. A broad classification of these scattering mechanisms is considered
in Figure 2.17 based on their origin. These various scattering mechanisms are
events of interaction between the carrier and its surroundings which cause it
to change its momentum and/or energy. It therefore represents the individual
and aggregate effect of the carrier’s surroundings which influences the carrier’s
individual and aggregate transport behavior. The behavior of electrons in a
perfect crystal can be described by a wave function. This is the Bloch function,
which is the solution of the time independent Schrödinger equation. If the
scattering processes were not to occur, the application of an electric field would
increase the velocity linearly with time, an occurrence generally described as
ballistic motion. In reality, for long sample lengths, it reaches a limiting value.
This limiting value is proportional to the field at low fields (v = µE , where
v is the velocity, µ the mobility, and E the electric field, a constant mobility
region), and saturates to the value vs at high fields (the saturation velocity
limit). The electron wave function can be described by the same Bloch function
until it scatters, i.e., it interacts with an imperfection. When it interacts with
the imperfection, the wave function is affected because of perturbation in the
periodic potential. The electron has a new wave function at the end of the
interaction, i.e., at the end of interaction the electron has a new wave vector and
a new energy (in some scattering processes energy may remain unchanged; such
scatterings are called elastic scatterings, an example is scattering by impurities).
This new wave function describes the behavior of the electron until another
interaction. If the perturbation is small, the effect of this interaction can be
analyzed by perturbation theory. Our division of these scattering mechanisms
is in three general classes: (a) scatterings that come about due to imperfections
in the periodicity of the lattice, which we call defect scattering, (b) carrier-
related scattering due to interactions in between the carriers, a process that
becomes important at high carrier concentrations, and that can couple with
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Figure 2.17: A schematic of classification of various scattering mechanisms based
on their origin.
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other modes of scattering, and (c) scattering due to interaction of carriers with
the perturbing potential produced by lattice vibrations.

2.6.1 Defect Scattering

Imperfections in the periodic potential of a crystal come about due to crys-
tal defects such as vacancies, dislocations, interstitials, etc. However, this is
quite uncommon because, except in highly lattice mismatched structures, de-
vices of interest employ material where the density of these is less than unin-
tentional substitutional impurities. Defect scattering also arises from impurity
atoms themselves that are used to dope the crystal—this is generally referred
to as impurity scattering—and originates in the deviation of the local potential
around an impurity from the local and periodic potential of the atoms of the
host crystal. If the impurity atom is ionized (as is almost always the case) it
is called ionized impurity scattering and this particular scattering is strong. If
the impurity atom is not ionized, i.e., it is neutral, it is referred to as neutral
impurity scattering. Neutral impurity scattering is quite weak because of the
small perturbation in potential from a neutral atom on a lattice site. Consider
the scattering due to impurity atoms in a crystal as a function of temperature.
We assume that impurity density is not so large so as to cause formation of an
impurity band and its coalescence with the conduction band. Such a material,
therefore, shows freeze-out of carriers, i.e., at low temperatures, the carriers
do not have sufficient thermal energy to make the transition to the conduc-
tion or valence bands. At temperatures below the freeze-out temperature, the
impurities are largely neutral, and hence there is a weak impurity scattering.
As the temperature is raised, impurities ionize and impurity scattering becomes
stronger and hence the carrier mobility decreases. As the temperature is contin-
ued to be raised, the thermal energy of the carriers continues to increase, their
velocities are larger, and the impurity scattering process becomes weak again.
An analogy may be drawn between this and the Rutherford scattering used to
analyze the scattering of light atoms by heavier nuclei. A high velocity, and
energy of particle, causes both a smaller time of interaction and smaller effect
on the velocity of the carrier. Because of the large disparity in masses between
the atoms and the moving carriers, this scattering conserves energy and is an
example of elastic scattering. At high temperatures, other scattering processes
become important and impurity scattering plays an increasingly smaller role.
It is generally important in the 77 K (liquid nitrogen temperature) to 300 K
(room temperature) range.

The third defect scattering that is important occurs in mixed crystals such
as Ga.47In.53As and Ga.7Al.3As. Due to the random variation of the atoms
either on the cation or the anion sites of the lattice, a non-periodic perturba-
tion occurs naturally in such material even when no defect has been added.
The perturbations are sufficiently small that alloy scattering generally becomes
important only below 300 K.

The last of the defect scattering processes important to devices is related to
interactions at the surfaces and interfaces of the lattice. This is generally referred
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Figure 2.18: A schematic of interface scattering resulting from steps on the
crystal surface.

Figure 2.19: Steady-state velocity–field characteristics of electrons, in lightly
doped bulk Si at the SiO2/Si interface, in lightly doped GaAs, and at the
Ga.7Al.3As/GaAs interface at 300 K.

to as interface scattering (see Figure 2.18). This crystal defect scattering process
is certainly very important at insulator–semiconductor interfaces. It can be
important if interfaces are rough and have steps such as mis-oriented compound
semiconductor growth. Since carriers in two-dimensional systems are confined
very close to the interface, any surface potential perturbation, e.g., through
surface atomic steps leads to a decrease in the mobility. In the velocity–field
curves shown in Figure 2.19, e.g., the silicon surface mobility is almost half as
much as the corresponding bulk mobility.

Steps are not the only way this scattering can cause a net energy or mo-
mentum change of the carriers. If there are a number of surface states,11 they
may cause perturbation effects of their own even for a perfectly smooth surface.
For an ideal interface, an incident carrier goes through a reflection without los-

11Surface states result from a number of causes, primarily surface reconstruction and non-
terminated bonds at the surface.
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ing its energy. Its momentum parallel to the interface is maintained while its
momentum perpendicular to the interface is reversed. An example of this is
the Ga1−xAlxAs/GaAs interface which can be made atomically smooth with
negligible interface state density. A low energy electron that can not penetrate
the Ga1−xAlxAs/GaAs barrier loses no energy and maintains the momentum
parallel to the interface. From the scattering perspective, a non-ideal interface
is the SiO2/Si interface. Quite a large fraction of incident carriers lose energy
and momentum at the interface because of interface states and atomic rough-
ness. The result of such scattering, called diffuse scattering, is a thermalization
of carrier energy distribution and decrease of mobility.

2.6.2 Carrier–Carrier Scattering

Carrier-carrier scattering conserves the total energy and momentum of the in-
teracting particles. This scattering, also sometimes referred to as plasma scat-
tering, does cause redistribution of the energy and momentum among the in-
teracting particles, and hence its primary effect is in influencing the carrier
distribution as a function of energy and momentum. Thus, the scattering influ-
ences those parameters that depend on the shape of the distribution of carriers
with energy and momentum. Relaxation rate of energy and transfers to other
valleys or bands that depend strongly on energy tails do therefore get influenced
directly by carrier–carrier interactions.

An additional important way that carrier–carrier scattering influences trans-
port is through its coupling with other scattering mechanisms—the coupling of
plasma scattering together with phonons, referred to as plasmon scattering, is
an important scattering mechanism in hot electron devices.

2.6.3 Lattice Scattering

Lattice scattering is a broad term used for those scattering mechanisms that
arise from the existence of the lattice itself. The lattice is a periodic structure,
whose periodicity of the perturbation is incorporated in the nearly-free electron
model being employed throughout this text. In this periodic lattice, at any
finite temperature, the nuclei vibrate around their central positions, a behavior
embodied in the dispersion behavior of the semiconductor. Lattice vibration
modes that occur at high frequencies and have associated with them a relatively
higher energy of 10s of meV are referred to as optical phonon modes. Those
occurring at lower frequency over a wider spectrum of frequencies are known as
acoustic modes. Optical modes arise from atoms vibrating out of phase with
each other, resulting in their higher frequency. Acoustic modes are long range
vibrations where the atoms move in phase. These vibrational modes interact
with the free electron in a variety of ways, giving rise to the scattering that we
call optical and acoustic phonon scattering.

Before reviewing further the phonon scattering processes, we summarize a
few other terms that are often employed in the description of scattering. These
terms arise from the location of the carrier in the reciprocal space as a result
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of the scattering process. Referring to the phonon scattering, an electron that
scatters via optical phonon scattering is likely to have a significant change in
momentum since optical phonons can have large momentum. Large momentum
changes most often occur with changes in the valleys or bands that the carriers
occupy. Holes, with their degenerate bands, can easily change bands, e.g., be-
tween light hole and heavy hole bands; thus corresponding scattering processes,
termed inter-band scattering processes, can occur even at low energies. These
inter-band scattering processes are unlikely for electrons at low energies. High
energy electrons, such as during an avalanche process, may change bands. All
such processes involving changes in bands are called inter-band scattering pro-
cesses, while if a process occurs within a band it is called intra-band scattering
process. Inter-band scattering may occur so that the carrier such as an electron
scatters within the same valley, e.g., within the Γ valley for electrons. This is
referred to as intra-valley scattering. Scattering may occur between different
valleys, e.g., using an optical phonon for the large momentum change; this scat-
tering is then referred to as inter-valley scattering. This discussion becomes se-
mantically more elusive, because many valleys can be degenerate. The L valleys
are eight-fold degenerate and the X valleys are six-fold degenerate. These are
all examples of inter-valley scattering occurring with a large momentum change
and hence quite likely involving optical phonons. These valleys are degenerate
in energy; however, the amount of momentum change required to transfer to
the different valley locations is different. This leads to a further sub-division of
intra-valley scattering to f-scattering and g-scattering. f-scattering is the scat-
tering occurring with the nearest degenerate valley locations, and g-scattering
is the farthest.

2.6.4 Phonon Scattering Behavior

The optical phonon energy is considerably larger in Si than in Ge or GaAs. This
may be traced to the larger average weight of the nuclei in Ge and GaAs and
smaller bonding forces. Electrons need approximately this energy ≈ 37 meV in
Ge, ≈ 36 meV in GaAs, and ≈ 63 meV in Si before they can emit an optical
phonon, i.e., lose energy in an optical scattering process. Also, with lowering of
temperature, there is a decrease in the occupation probability as described by
Equation 2.56. This is referred to as freeze-out of optical phonons. Correspond-
ing to this smaller likelihood of occurrence of optical phonons, there is a smaller
likelihood of absorption of an optical phonon. Hence, at low temperatures there
is a reduction in optical phonon scattering. Emission process can still occur,
and continues to be leading cause for loss of energy at high electric fields. Both
of these factors are important to the observed velocity–field behavior and oper-
ation of high mobility and hot electron structures as a function of temperature
and bias.

Now consider the nature of the perturbing potential in acoustic mode. A
change in atomic spacing, i.e., deformation of the lattice, leads to a disturbance
in the potential called the deformation potential. The magnitude of the defor-
mation potential is proportional to the strain induced by vibrations, and the
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corresponding scattering is called deformation potential scattering. In addition
to this spacing effect, if the atoms are slightly ionic (as in all of the compound
semiconductors), then the displacement of the atoms leads to a potential pertur-
bation due to the charge on the ions. This is called the piezoelectric potential,
and the resulting scattering process is called piezoelectric scattering. It is im-
portant in compound semiconductors at low temperatures in relatively pure
materials. Recall that optical scattering is weak at low temperatures and low
fields due to optical phonon freeze-out, etc., and impurity scattering is weak
because of purity and carrier freeze-out, leaving acoustic phonon scattering as
the dominant process. The deformation potential scattering is weaker than the
piezoelectric scattering, and hence piezoelectric scattering dominates.

Optical vibrations also lead to potential perturbation in two ways similar
to the case of acoustic vibrations. The first, a non-polar perturbation effect of
strain, leads to a scattering referred to as as non-polar optical scattering. The
second, due to the polarization from the ionic charge, is referred to as polar
optical scattering. In GaAs, AlAs, etc., both these scattering processes are
important. In general, for compound semiconductors, the polar optical phonon
scattering is the dominant optical scattering mechanism.

2.7 Carrier Transport

We will now discuss the relationship of the various scattering mechanisms re-
viewed above with the steady-state transport behavior of carriers. The operation
of a device is interlinked with the transport behavior of carriers. The velocity–
field curves for carriers in a semiconductor describe the steady-state behavior
of the carriers for both low fields, where perhaps an equally useful parameter
is the mobility, and of high fields. The transport of the carrier is related to
the scattering of the carriers. In the discussion above, we implicitly assumed a
majority carrier. Minority carrier transport is important in the base of a bipo-
lar transistor. It can be significantly different from a majority carrier device at
comparable background doping and identical temperatures. This comes about
because of changes in scattering behavior that result from changes in screening
effects of the perturbations. Scattering can also change when the band occu-
pation behavior is changed, such as through the quantum-mechanical effects of
two-dimensional carrier gas systems. Since scattering involves transition from
one state to another, it involves a transition probability embodied in a coupling
coefficient that describes the likelihood of such a change taking place—a mea-
sure of the overlap function of the two states, and the number of such states
that are available. It is proportional to both of these.

Consider some examples. The overlap function between valence and conduc-
tion bands is small in indirect bandgap semiconductors. There is therefore a very
small likelihood of band to band transitions at low and moderate fields. Life-
times of such materials are therefore large. In direct semiconductors, the overlap
is larger, so the lifetime is generally worse. Overlap functions can of course be
made large in certain device situations and are the reason for tunneling such as
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Figure 2.20: Steady-state phonon scattering rates as a function of energy, at
low energies, in GaAs, InP, Ga.47In.53As, and InAs at 300 K. After S. Tiwari,
M. Fischetti, and S. E. Laux, “Transient and Steady-State Overshoot in GaAs,
InP, Ga1−xInxAs, and InAs Bipolar Transistors,” Tech. Dig. of International

Electron Devices Meeting, p. 435, Dec. 9–12, c©1990 IEEE.

in the Zener effect. Zener tunneling is as likely in indirect semiconductors as in
direct semiconductors. The number of available states is also directly related
to the scattering. More available states increases the likelihood of the scatter-
ing event. Two-dimensional effects change the density of state distribution as
well as screening and hence may influence the scattering behavior. This section
reviews the relationship of the scattering with the transport properties of the
carriers.

2.7.1 Majority Carrier Transport

We now consider scattering rates of some common compound semiconductors
in order to relate them to the transport characteristics of interest in the oper-
ation of devices. Figure 2.20 shows some of the scattering rates due to phonon
processes, at 300 K and low energies, for GaAs, InP, Ga.47In.53As, and InAs.
The minimum in the scattering rates, occurring at very low energies, is due to
acoustic scattering. At the low energy threshold for the optical phonon modes,
scattering rises rapidly due to the large rate of optical phonon scattering at 300
K. At 77 K and lower temperatures this rate would be lower. At low energies
the scatterings are intra-valley events. At higher energies, comparable to or
higher than the secondary valley separation, a large density of states is avail-
able for inter-valley scattering. So, these scattering rates show another threshold
where the secondary valley occurs in GaAs, InP, and Ga.47In.53As. InAs has
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a secondary valley at higher than 1 eV and does not, therefore, show such a
threshold. Note that InP has the highest low energy scattering; it has both a
higher effective mass that leads to higher density of states to scatter into, and
a stronger coupling coefficient for scattering. Both Ga.47In.53As and InAs show
favorable low scattering rate characteristics over the energy range, a behavior
partly due to the larger secondary valley separation which inhibits inter-valley
scattering over a significant energy range.

The two divisions of lattice scattering that we have considered are inter-
valley and intra-valley scattering. In intra-valley scattering, low momentum
phonons are involved. At low fields, this intra-valley scattering is important in
materials where the conduction band minima occurs at the Γ point, e.g., GaAs,
InP and most other compound semiconductors. Inter-valley scattering involves
large momentum phonons and is important at low fields in materials with con-
duction band minimum at non-zero crystal momentum, i.e., non-Γ minimum
semiconductors. Examples are Ge, which exhibits a minimum at 〈111〉 (i.e., the
L point), and Si where it occurs close to 〈100〉 i.e., the X point).

The phonons that take part in inter-valley scattering are sometimes referred
to as inter-valley phonons even though they may be of either the acoustic or
optic type. When fields are high, electrons pick up enough energy in between
scattering events, and hence even where the central valley is the minimum energy
valley inter-valley scattering becomes important. The negative differential mo-
bility of GaAs, e.g., arises from inter-valley scattering from Γ to L and X valleys.
Figure 2.21 shows the velocity–field characteristics for GaAs (≈ mid-1016 cm−3

doping) for various temperatures. This figure serves to compare the temperature
dependence of the most dominant scattering processes in GaAs.

The decrease in mobility at low fields is due to intra-valley scattering, the
decrease in velocity at higher fields is due to inter-valley scattering, and the
saturation in velocity at very high fields is due to a balance between the energy
gain in between scattering events and the energy loss due to high inter-valley
scattering. Both of these processes and the corresponding energy and momen-
tum loss rate are shown as a function of the field at room temperature for GaAs
in Figure 2.22.

In thermal equilibrium, the energy and momentum exchange in between
electrons and the lattice is balanced out by phonon absorption and emission.
With an applied electric field, the energy and momentum are lost at a higher rate
to the lattice, and at moderate fields the inter-valley optical phonon scattering
processes dominate. The momentum loss rate 〈dp/dt〉, where p is the magnitude
of the momentum, causes randomization of the electron velocity distribution in
momentum space and consequently results in a finite mobility. Note that the
momentum loss rate is higher than the energy loss rate (also recall that optical
phonons involve a loss of ≈ 36 meV of energy per emission event). We will
discuss subsequently the fitting of both these loss rates, phenomenologically, by
a time constant called the relaxation time. The relaxation times for momentum
(τp) and energy (τw) are in general approximations—phenomenological fitting
parameters. These time constants characterize the driving force of return to
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Figure 2.21: Velocity–field characteristics for electrons in lightly doped GaAs
as a function of electric field for various temperatures.

Figure 2.22: Momentum and energy loss rate in steady-state as a function of
electric field for GaAs at 300 K due to inter-valley and intra-valley scattering
involving polar optical phonons.
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equilibrium.

−
〈
dp

dt

〉∣∣∣∣
loss

=
〈p〉
τp
,

and −
〈
dW

dt

〉∣∣∣∣
loss

=
〈W 〉
τw

. (2.98)

Here, W is the energy of mean energy of the carriers and the angled brackets
indicate an averaging over all the carriers.12

We may now describe some general features of the relative importance of dif-
ferent scattering mechanisms in the transport of carriers. Since ionized impurity
scattering is inefficient at higher carrier energies, it becomes important in the
77 K to 300 K temperature range. Alloy scattering is important for transport in
mixed crystals, in the temperature range below 300 K. Carrier–carrier scatter-
ing preserves both the energy and the momentum if it is between carriers of the
same type. It therefore causes a substantial difference in between the transport
of a majority carrier and a minority carrier. Lattice scattering becomes domi-
nant at high temperatures and high carrier energies. Optical phonons, with their
large momentum and energy compared to acoustic phonons, are dominant when
carriers have large energies and are dominant in inter-valley transfers. Acous-
tic phonons establish a lower limit in scattering since they can exchange very
low energies also. At very low temperatures, therefore, while optical phonon
absorption can be frozen out because of their reduced density, acoustic phonons
continue to be important. At low temperatures and low fields, both acoustic
phonons and the impurity scattering are important. At high fields and very
low temperatures, impurity scattering becomes weak because of the higher car-
rier energy, but optical phonon emission becomes important. Acoustic phonon
scattering should also be considered. At high temperatures phonon scattering
prevails, and both absorption and emission processes become dominant.

Now, let us consider the temperature dependence of the low field and high
field behavior in the velocity–field curves of Figure 2.21. At high fields, as we
have already discussed, this velocity is dominated by inter-valley scattering pro-
cesses occurring largely through optical phonons, which are polar in compound
semiconductors and non-polar in silicon and germanium. At low fields, other
mostly inter-valley scattering processes dominate. The low field behavior is
equally well characterized by the mobility or the drift mobility, which relates
the velocity with the low electric field. While drift mobility is the real mobility
of interest in most electronic devices, one quite often also uses Hall mobility
which is a far easier transport parameter to measure accurately.

12The energy relaxation time τw can not be exact for any scattering process. The exactness
requires the final states of the scattering process to yield a Maxwell–Boltzmann distribution.
So, this equation needs to be used with great caution and critical reservations. More on the
relaxation time approximation and the appropriateness of the approach in Chapter 3.
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Figure 2.23: Theoretical drift and Hall mobility for a compensation ratio of two
as a function of background electron density at 300 K and 77 K for GaAs.

Drift Mobility

At room temperature, ionized impurity scattering and polar phonon scattering
dominate the scattering processes in doped samples. As the temperature is
lowered, phonon scattering becomes less efficient and the mobility is limited
more by ionized impurity and deformation potential acoustic scattering. As
temperature is decreased further, the ionized impurity scattering dominates.
Thus, for low field regions in doped GaAs, both the ionized impurity scattering
and phonon scattering are important over a broad temperature range. The
dependence of mobility on carrier and impurity density in GaAs, for 300 K and
77 K, is shown in Figure 2.23.

For pure material, impurity scattering is reduced, but most of the other
processes remain. Figure 2.24 shows the contribution of the various scattering
processes to limiting the mobility of lightly doped GaAs, and their temperature
dependence.

Drift mobility, as discussed thus far, depends on the carrier scattering em-
bodied in the phenomenological carrier relaxation time. To calculate the mobil-
ity, we need to determine this relaxation time, including its functional depen-
dence on energy. The average value of this relaxation time then is obtained by
averaging over the energy states that the carrier occupies. For electrons, using
a parabolic band approximation, we obtain

τµ = τ . (2.99)

The averaging is over energy, which is related to the momentum in the parabolic
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Figure 2.24: Electron mobility in n-type lightly doped GaAs as a function of
temperature together with contributions from the various sources of scattering.
Curve (a) is for mid-1013 cm−3 doping, curve (b) is for ≈ 1015 cm−3 doping, and
curve (c) is for mid-1015 cm−3 doping. After J. S. Blakemore, “Semiconducting
and Other Major Properties of Gallium Arsenide,” J. of Appl. Phys., 53, p.
R123, Oct., 1982.
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approximation through a square law. The relaxation time, therefore, is also
often written as

τµ =
〈(E − Ec) τ 〉
〈E −Ec〉

=
〈v2τ 〉
〈v2〉 . (2.100)

The time constant for mobility can be calculated knowing what scattering pro-
cess is dominant. Alternately, if more than one is important, they all have to be
evaluated and resultant determined as a geometric mean. The geometric mean
comes about because scattering rates add, and the time constant is inversely
proportional to this rate. Thus, the time constant τµ is related to the time
relating the inverse of scattering rates τ1, τ2 · · ·

1

τµ
=

1

τ1
+

1

τ2
+ · · · , (2.101)

and the drift mobility is related to this time constant through13

µd =
qτµ
m∗ =

q

m∗

〈v2τ 〉
〈v2〉 . (2.102)

If one associates µ1, µ2, · · · as the mobilities with the various scattering processes
corresponding to τ1, τ2, · · ·, then

1

µ
=

1

µ1
+

1

µ2
+ · · · (2.103)

For a given momentum, the velocity of carriers is inversely related to the
effective mass. A larger effective mass results in smaller velocity for identical
forces on the carrier. Since the velocity of carriers and their mobility is inti-
mately related to the effective mass, we also need to consider the band structure
of the crystal. The conduction band minima in both silicon and germanium do
not occur at a crystal momentum of zero, i.e., the materials have an indirect
bandgap. The group velocity at the minima, which are either near the X-point
(about 15 percent away from it) in silicon, or the L-point in germanium, is
zero, but the crystal momentum is non-zero. Crystal momentum and particle
momentum are two different quantities. Perhaps we should always refer to the
reduced wave vector corresponding to the crystal momentum as kc. Usually
though, the same notation is used for both reduced wave vectors—k.14

Since in general the effective mass is a tensor, it has a directional dependence.
This dependence is quite clear in the differing curvature in different directions of

13This relationship, Mathiessen’s rule, has limited, not universal, validity since it is based
on relaxation time approximation.

14i.e., we use p = h̄k where the k is the particle reduced wave vector corresponding to the
particle momentum. This is related to the band structure and the crystal reduced wave vector
through the relationship

p = m∗v = m∗
1

h̄

dE

dkc

, (2.104)

where kc is the crystal momentum. In this text, we use k to denote the reduced wave vector
for both the particle and the crystal. The effective mass m∗ is in general a tensor. The m∗
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Figure 2.25: Constant low energy surfaces commonly encountered in cubic crys-
tals. Part (a) shows a spherical surface encountered for Γ valley minima in the
conduction band, part (b) shows an ellipsoidal surface encountered for L and
X valley minima in the conduction band, and part (c) shows a warped surface
encountered for the two degenerate valence bands. After C. Jacobani and L.
Reggiani, “The Monte Carlo Method for the Solution of Charge Transport in
Semiconductors with Applications to Covalent Materials,” Review of Modern

Physics, 55, No. 3, July 1983.

Figure 2.10 for Si and Ge. Let us now consider how the occupation of the bands,
the motion of carriers due to anisotropy of masses, and the occupation of more
than one degenerate bands are related. In thermal equilibrium, the carriers
occupy bands following Pauli’s exclusion principle. Constant energy surfaces
are used to show those momentum values that have constant energy and hence
an equal likelihood of occupation in thermal equilibrium. The shapes of such
surfaces are dependent on the band anisotropy. In cubic crystals, at thermal
equilibrium, three types of constant energy surfaces are usually encountered.
These are shown in Figure 2.25 with arbitrary origins of the momentum. A
parabolic band has an isotropic mass; its constant energy surface is spherical.
The L and X valley minima, however, have a rotational symmetry around the
crystallographic directions and show a differing effective mass in the transverse
direction to it than in the longitudinal direction. The constant energy surface

tensor is not direction dependent while the E(k) relationship is. The form

1

m∗
=

1

h̄2

∂2E

∂ki∂kj

=

(
1/m∗

xx 1/m∗

xy 1/m∗

xz

1/m∗

yx 1/m∗

yy 1/m∗

yz

1/m∗

zx 1/m∗

zy 1/m∗

zz

)
(2.105)

is suitable at the band minima where it can be directly related to the first expansion term of
the E(k) relationship. During a gradual change in k as the carrier travels, its effective mass
undergoes a change.
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is an ellipsoid. Valence bands are usually double degenerate at zone center. For
any energy in excess of this zone center energy, the constant energy surface is
warped.

Thus, even for moderate doping, in cases where the band structure is not
a simple parabola, where the band minima do not occur at the zone center,
and where degenerate bands exist, the effective mass for use in conduction
calculations has to be derived as a suitable average that reflects the net effect.
We first consider the conduction band. For the lowest conduction band minima
in the Γ band, the bands are quite isotropic and we may use the usual mass.
At higher energy, however, e.g., when a large field is applied and inter-valley
transfer occurs, we may not use this constant isotropic effective mass. Transfer
of carriers in GaAs occurs first to the L-valley and then to the X-valley with
increasing energy. An L-valley has eight equivalent minima in the eight different
directions. However, since the minima always occur at the Brillouin zone edge,
only four equivalent complete valleys need to be considered. For X-valleys, the
minima occur slightly inside the Brillouin zone, and hence all six equivalent
minima and six equivalent valleys should be considered. The L and X minima
are ellipsoidal surfaces of constant energy, i.e., a cut along the axis leads to an
ellipse represented by

E − Ec =
h̄2

2m∗
l

(kl − kol)
2 +

h̄2

2m∗
t

(kt − kot)
2, (2.106)

where the subscripts l and t denote longitudinal and transverse directions. This
is simply a translation of the axes from our original Cartesian coordinate in the
reciprocal space to a new Cartesian coordinate that is aligned along the longi-
tudinal axis, and because of symmetry the transverse variations are identical.
In terms of the effective mass, if the transformed x-axis is now aligned with the
longitudinal axis, then the new effective mass tensor is

1

m∗ =




1/m∗

l 0 0
0 1/m∗

t 0
0 0 1/m∗

t



 . (2.107)

If the electric field is applied in the 〈100〉 direction, as in Figure 2.26, there
are four ellipsoid surfaces for the X minima for whom the transverse effective
mass is the relevant mass in the determination of the response of the carrier to
the field. Similarly, there are two ellipsoidal surfaces for which the longitudinal
mass is relevant. Hence, in the process of approximating into the parabolic band
picture, i.e., an expression of E − Ec = h̄2k2/2m∗

c , we must use the mass

m∗
c =

1

6
×
[
2m∗

t + 4(m∗
lm

∗
t )

1/2
]
. (2.108)

For the L-valley minima (Figure 2.27), with a field in 〈100〉 direction, all the
valleys are equivalent, with the effective conduction mass being

m∗
c =

1

4
×
(

1

3
m∗2
t +

2

3
m∗
lm

∗
t

)1/2

. (2.109)
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Figure 2.26: The six equi-energy ellipsoidal surfaces for the X minima shown in
the first Brillouin zone. For a field aligned with one of the axes, four ellipsoid
surfaces form the first equivalent set and the other two ellipsoid surfaces form
the second equivalent set.

Figure 2.27: The eight equi-energy half-ellipsoidal surfaces for the L minima
shown in the first Brillouin zone. For a field aligned with one of the axes all of
these surfaces are equivalent.
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Table 2.2: Effective masses in Silicon and Germanium.
Material Valence Band Conduction Band

Light Hole Heavy Hole Longitudinal Transverse
Effective Effective Effective Effective
Mass Mass Mass Mass

Silicon 0.16m0 0.5m0 0.97m0 0.19m0

Germanium 0.04m0 0.3m0 1.6m0 0.082m0

The valence bands are centered in the Brillouin zone and the light and heavy
hole bands are degenerate. The equivalent mass can be derived as

1

m∗
c

=

(
ghh(E)

m∗
hh

+
glh(E)

m∗
lh

)
1

ghh(E) + glh(E)
. (2.110)

where ghh(E) and glh(E) are the heavy hole and light hole density of states.
The ratio of densities of states in the expression above represents the probability
of finding the hole in a state with that mass. Since the density of states varies
as 3/2 power of the mass, the conduction mass for holes is

1

m∗
c

=
m∗
hh

1/2 +m∗
lh

1/2

m∗
hh

3/2 +m∗
lh

3/2
. (2.111)

The longitudinal and transverse effective masses in silicon and germanium
for some of the bands are given in Table 2.2.

Hall Mobility

Hall mobility is a mobility parameter that results from Hall effect measurement.
It is a simple and hence very common measurement to gauge the low field
transport characteristic of semiconductors. Our objective here is to emphasize
its relationship with the drift mobility which is of more immediate interest from
a device perspective. The Hall effect is a phenomenon that results from the
application of a magnetic field on a sample. Consider the n-type rectangular
semiconductor sample of Figure 2.28 with a magnetic field applied perpendicular
to the sample, a voltage bias applied to force a current to flow in plane of the
sample, and a voltage being measured perpendicular to this flow of current. A
voltage, called the Hall voltage, develops in the perpendicular direction because
of the Lorentzian force acting on the charged particle. For the electron, this
force is given by

F = −q (v × B) . (2.112)

In steady-state, carriers accumulate and deplete in the transverse direction,
causing a transverse electric field which opposes and cancels the field due to
the Lorentzian force, to appear. This allows us to write the electric field in the
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Figure 2.28: A schematic defining directions of current flow, electric field, and
magnetic fields for Hall effect in an n-type sample.

transverse direction, related to the Hall voltage developed across the transverse
direction, in terms of the magnetic field, the current and a parameter called the
Hall coefficient. This field is related as

Ez = RHJxBy, (2.113)

where RH is the Hall constant which is related to the characteristics of the
motion and the carrier density and is given by

RH =
r

q

pµ2
dp − nµ2

dn

(nµdn + pµdp)
2 , (2.114)

for a sample with both electron and hole conduction. The pre-factor r (also
called Hall factor) in the Hall constant usually varies between one and two for
most common scattering processes. This factor is related to the relaxation time
for Hall mobility determination τH (analogous to τµ, the relaxation time for
drift mobility determination) given by

τH =
〈τ2〉
〈τ 〉 . (2.115)

For one carrier conduction, the Hall constant is given by

RH = − 1

qn

〈τ2〉
〈τ 〉2

(2.116)
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for n-type material, and

RH =
1

qp

〈τ2〉
〈τ 〉2

(2.117)

for p-type material. We will consider the physical basis of these relationships
during our discussion of mathematical treatments in Chapter 3.

Note the difference between this and the relaxation time associated with
the drift mobility. If only acoustic deformation potential scattering dominates,
and the conduction and valence bands can be assumed to be parabolic, then
r = 3π/8. The motion of carriers in the transverse direction occurs due to the
applied magnetic field, and is determined by the velocity in the longitudinal
direction. The proportionality constant in the longitudinal direction is the drift
mobility, however the proportionality in the transverse direction is a mobility
term that depends on the same pre-factor term as does the Hall constant. Hence,
the Hall mobility in samples with unipolar conductivity is

µH = rµd. (2.118)

More generally,
µH = |RHσ| (2.119)

where σ, the conductivity, is given by

σ = qnµdn + qpµdp. (2.120)

Because the ratio r varies between one and two, the Hall mobility is always
larger than the drift mobility. Its significance and ubiquity is largely a result of
the ease of its measurement.

The Hall and drift mobility are, of course, related to each other through
the characteristics of the dominant scattering processes, i.e. through the ratio r
above. Figure 2.23 shows the Hall mobility in GaAs as a function of background
electron concentration for 300 K and 77 K. This figure also serves to show the
difference between drift and Hall mobility as a function of electron concentration.

Saturated Velocity

The mobility of carriers decreases as a function of particle energy because the
scattering rate continues to increase as a function of the energy. Thus, drift and
Hall mobilities become negligible at high energies because carriers move short
distances in between scattering events.

It is the velocity of carriers that is of direct interest to us. At high energies,
even though the mobility becomes negligible, the velocity for a high applied
field is still high. At low energies, both the velocity and the mobility are useful
parameters because they are directly related to each other. However, mobility
is used more commonly, both because of the ease of measurement and because
of simplifications in many steady-state drift-diffusion calculations in devices.

The saturation of velocity at high fields occurs for the following reason.
Carriers drift in the high field in between scattering. Any increase in energy
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Figure 2.29: Drift velocity in GaAs as a function of temperature at a field of
50 kV.cm−1.

resulting from this transport in high field causes an increase in the scattering rate
also. An increase in the electric field, therefore, does not result in a significant
additional increase in the velocity, and the mobility becomes negligible. An
alternative way of looking at this behavior in high fields, where the carrier
is in equilibrium with its local conditions, is to note that the mobility is a
function of the carrier energy. In low fields, the average carrier energy increases
proportionally with the electric field, the scattering rate increases proportionally,
and hence the carrier mobility remains constant and independent of the energy
and the electric field. In high fields, however, the carrier energy increase causes
the mobility to decrease inversely with the electric field and hence results in
velocity saturation.

Optical phonon scattering is the principal source of scattering in the high
field region. Since, as shown by Equation 2.56, the occupation of the optical
modes decreases strongly as the temperature decreases, energy relaxation is not
as strong, and hence absorption processes are less likely. The drift velocity at
high fields also shows a temperature dependence. An example of this is shown
in Figure 2.29 where there is nearly a 20% change in the drift velocity at high
fields (approximately the saturated velocity) between 300 K and 77 K.

2.7.2 Two-Dimensional Effects on Transport

Now, compare the mobility behavior to that of two-dimensional electron gases
in GaAs. Here, scattering, due to ionized impurities, occurs through a remote
process because donors and carriers are separated. The perturbation in poten-
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Figure 2.30: Separation of two-dimensional electron gas from the ionized donors
in a two-dimensional electron gas structure. The larger bandgap material
(Ga1−xAlxAs), from which the electron transfer occurs, is shown on the left.
The right hand side shows the smaller bandgap material (GaAs) to which the
transfer occurs. An undoped spacer layer, used to decrease remote Coulombic
scattering, is also shown in the figure.

tial due to ionized donors (sometimes this is referred to as Coulombic scattering
also) is separated from the electron gas as shown in Figure 2.30. Decrease of
the ionized impurity scattering, and increase of the carrier screening of the ion-
ized impurities because of large carrier densities in the two-dimensional channel,
result in a significantly higher mobility. Now, scattering processes such as the
piezoelectric scattering become important, at least in part of the temperature
range, as shown in Figure 2.31. At the lowest of the temperatures, the residual
background doping at the high mobility interface is still important, although
because this is low, the mobility is very high. It is interesting to compare this
figure with Figure 2.24 which shows the mobility versus temperature behavior
for low doped GaAs. Note that over a fairly broad range of temperature, near
and above 77 K, the behavior is very similar. Below that temperature, the im-
provements due to carrier screening make the mobilities of the two-dimensional
electron gas system significantly larger.

The added complication in the two-dimensional electron gas structures is
that one should also consider the quantization and its effects on scattering,
as well as the effect of carrier–carrier interaction, and carrier–dopant interac-
tion. The former leads to a decrease in mobility, the latter tends to screen the
perturbation potential associated with the dopant. Thus, there is actually an
optimum in carrier concentration in the channel where the two balance and
allow the highest mobilities at low temperatures. Note the large increases in
low field mobility that can be achieved by a decrease or removal of the ionized
impurity scattering. At 300 K, since ionized impurity scattering is only one
of the two dominant scattering processes, the increase is not very large. At
77 K, mobilities of greater than 70, 000 cm2.V−1.s−1 are quite common. The
behavior of two-dimensional electron gases is quite complicated; it has increased
carrier–carrier scattering whose effect, as we have discussed, is to change the
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Figure 2.31: Theoretical maximum mobility in a two-dimensional electron gas at
the Ga.7Al.3As/GaAs interface as a function of temperature is shown as curved
marked b. Curve a shows the mobility in very lightly doped GaAs. The figure
also shows components of mobility arising from different scattering mechanisms
in bulk GaAs.

distribution function but to not affect the energy and momentum.

We have not discussed the interaction of carrier–carrier scattering processes
with other processes, which are also important in these structures. An example
of this is given in Figure 2.32, which shows the coupling in between optical
phonons and the carrier plasma, called plasmon, as a function of carrier density
in GaAs. Significant deviation, and large energy effects, begin to occur at
mid-1017 cm−3 carrier density. Carrier densities higher than this exist in two-
dimensional electron gases in device structures and therefore mobility is fairly
sensitive too carrier scattering. Too low a carrier density leads to reduction of
screening of Coulombic scattering from remote and local donors, and too high
a density leads to increased carrier–carrier scattering effects.

2.7.3 Minority Carrier Transport

The examples, until now, have been those of majority carriers. The electron, as a
majority carrier, suffers Coulombic scattering from the donors, other electrons,
and any other residual impurities. Usually, the latter two are small; only at
high carrier densities, such as at high dopings or in two-dimensional electron
gas, do the carrier–carrier interactions also become strong. The electron, as
a minority carrier, suffers Coulombic scattering from the acceptors, the holes,
other electrons, and any other residual impurities. The last two, as in the case
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Figure 2.32: Energy of the phonon modes as a function of square-root of electron
density in GaAs. Carrier–phonon coupling results in behavior shown at high
carrier densities.

of the electron as a majority carrier, are usually small. Holes are the new twist
to the environment of the electron.

The behavior of the electron as a minority carrier depends on the semicon-
ductor and on any residual field in the semiconductor device. It depends on the
semiconductor because any interaction between electron and hole—usually the
heavy hole since it is far more common—involving exchange of momentum and
energy is a function of their relative effective masses. The screening of acceptors
by holes (i.e., reduction of Coulombic perturbation by holes in the vicinity of
the ionized acceptor) may allow for an increase in the carrier mobility. Holes,
if they are considerably heavier than the electron, may cause scattering very
similar to that due to ionized acceptors. A slight residual field in the structure
causes motion of carriers in the opposite direction, which may result in a drag
effect on each carrier by the other. The magnitude of the effect on each carrier
is a function of their effective mass, and the disparity in the effective mass.
Scattering is a strong function of temperature, hence, different considerations
may apply to different temperatures.

Figure 2.33 and Figure 2.34 show plots for minority and majority carrier
mobilities for Si and GaAs as a function of background donor and acceptor
density. These figures are for mobility at 300 K. Silicon has a comparable
mobility for electron as a majority and minority carrier, while GaAs shows a
minority carrier mobility that is nearly half the value of the majority carrier
mobility. In silicon, the effective masses of electron and hole are relatively
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Figure 2.33: Minority and majority carrier electron mobility in silicon as a
function of impurity concentration for negligible electric field at 300 K.

Figure 2.34: Minority and majority carrier electron mobility in GaAs as a func-
tion of impurity concentration for negligible electric field at 300 K. The majority
mobility is at a compensation ratio of two. After S. Tiwari and S. L. Wright,
“Material Properties of p-type GaAs at Large Dopings,” Appl. Phys. Lett., 56,
No. 6, p. 563, 1990.
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similar. Exchanges involving electrons and holes, and screening of impurities by
holes, together contribute to this similarity of mobilities. In GaAs, electrons and
heavy holes have widely differing masses. Heavy holes can be considered static
for scattering purposes, and lead to Coulombic scattering of a magnitude similar
to the ionized acceptor. This behavior may change at a different temperature.
At 77 K, e.g., for GaAs in the 1015 cm−3 doping range, the minority carrier
mobility for electrons is higher than as a majority carrier.

Minority carrier devices usually have fields in regions where the electron
transits. In the base of the bipolar, e.g., a small field exists even for uniformly
doped base structures. This field is the result of the gradient in the hole dis-
tribution established to compensate for the electron distribution. It causes a
rapid decrease in mobility with the electric field, even though the mobility at
zero field is quite comparable to the majority carrier mobility. The major-
ity carrier mobility, of course, does not vary substantially. This difference in
behavior is usually ascribed to the electron-hole drag effects which are quite
significant for Si because of comparable effective masses. The carrier–carrier
scattering conserves momentum. In the absence of an electric field, the average
drift momentum is zero. In the presence of drift field, electrons and holes move
in opposite directions. The interacting electrons and holes that are in the vicin-
ity of each other and are, on an average, moving in opposite directions, exert
a Coulombic attractive force on each other. This reduces the effect of the drift
field, and externally, appears as the lowering of mobility. The effect is strong,
and shows up at a low electric field. At higher fields, the drag effect does not
remain as important because the Coulombic scattering rate decreases and the
electron now has a higher energy.

The consequence of such an effect can be strong in devices such as bipolar
transistors, even if no electric field is built into the structure. In the presence
of current, there exists a gradient of electron density in the base. In order to
maintain charge neutrality, hole density also changes as a function of position to
compensate for the excess charge due to electrons. The excess hole population
is equal to the electron population under quasi-static conditions. The diffusion
current due to the gradient in hole density is nearly compensated by the drift
current resulting from a small electric field that is established in the base. The
magnitude of this electric field can be found approximately, by setting the hole
transport current to zero (it is substantially smaller than the electron current
for the n–p–n bipolar transistor). The current density equation in the drift-
diffusion approximation can be used to model this condition. Here we use the
current density equation without proof; it will be the subject of discussion in
Chapter 3. Thus,

Jp = qµnEp− qDp
dp

dz
≈ 0, (2.121)

implying

E ≈ kT

q

1

p

dp

dz
. (2.122)

Electric field is pointed in the direction of increasing p. To maintain charge neu-
trality, the hole concentration is higher towards the electron injecting electrode.
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Hence the electric field is pointed towards the electron injecting electrode.

This is a very substantial simplification of a considerably complex many-
body problem. It has been argued that under certain conditions, this drag effect
should be balanced by the effect of majority carrier distribution. Hole current
being small, the holes are nearly stationary. Thus, they should not transfer
much momentum to electrons. Electrons, however, do transfer momentum to
holes, resulting in the space charge and electric field to prevent the resulting
hole current. This field aids the motion of electrons, just as in the high injection
effect, and hence should compensate.

2.7.4 Diffusion of Carriers

The phenomenon of diffusion is one of the very direct consequences of scattering.
Net diffusion takes place from regions of high carrier concentrations to regions of
low carrier concentrations. Regions of high concentrations have a higher carrier
population resulting in a higher number of scattering events. Some of these lead
to carrier motion towards the low carrier concentration region. However, it is
not completely compensated for by scattering events that lead to the motion
of carriers from the low concentration region to the high concentration region.
The net result is a flow, or diffusion, of carriers determined by the gradient of
the carrier concentration, and characterized by the diffusion coefficient (Dn for
electrons and Dp for holes).

Diffusion coefficients are related to mobilities because their underlying basis
is in scattering. This relationship, the Einstein relationship, was derived for
Brownian motion in the Maxwell–Boltzmann distribution limit of classical gases.
We will show it in the Fermi–Dirac distribution limit using the drift-diffusion
equation. Consider thermal equilibrium in an n-type sample, thus

Jn = qnµnE + qDn
dn

dz
= 0. (2.123)

Since the carrier concentration is given by

n = NCF1/2 (ηfc) , (2.124)

dn

dz
= NCF−1/2 (ηfc)

dηfc
dz

. (2.125)

In thermal equilibrium (ξf = constant) we have

dηfc
dz

= − 1

kT

dEc
dz

= − qE
kT

. (2.126)

Therefore, we may relate the diffusion coefficient and the mobility as

Dn
µn

=
kT

q

F1/2(ηfc)

F−1/2(ηfc)
, (2.127)
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Figure 2.35: Diffusion coefficient in the longitudinal and transverse direction as
a function of electric field for low-doped GaAs at 300 K.

the Einstein relationship for electrons; and, following similar arguments,

Dp
µp

=
kT

q

F1/2(ηfv)

F−1/2(ηfv)
, (2.128)

the Einstein relationship for holes. In the Maxwell–Boltzmann limit, these can
be simplified to

Dn
µn

=
Dp
µp

=
kT

q
. (2.129)

The diffusion coefficients of electrons in GaAs and other compound semicon-
ductors are larger than in silicon for the same reason as for mobility—largely
due to a smaller effective mass. The high diffusion coefficient leads to a shorter
base transit time in bipolar transistors in GaAs and other compound semicon-
ductors for comparable base widths. It also has implications for noise behavior:
a larger diffusion coefficient usually results in smaller magnitude of noise. Since,
in general, conduction band structure can be anisotropic, scattering processes
are anisotropic, and since fields exist along specific directions, the diffusion co-
efficient shows anisotropy. Examples of magnitude of diffusion coefficient with
field are given in Figure 2.35 for the longitudinal and transverse directions of
GaAs. The anisotropic nature of polar scattering is a particularly strong con-
tributor to this anisotropy. Since polar scattering occurs across the field range
so long as it leads to carrier energies above the optical phonon threshold, the
diffusion coefficient also exhibits similar behavior. Anisotropy exists both at low
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and high fields. At high fields, the L and X valleys are mostly occupied, the lon-
gitudinal effective mass is large, and hence the longitudinal diffusion coefficient
is suppressed. It decreases to very low values compared to the zero field value,
just as in the case of mobility. The pinch-off regions of a field effect transistor
are regions of high fields where the carrier gradient can become large for large
gate length devices. The low diffusion coefficient reduces the diffusive current
in such regions even if carriers move with finite velocity (the saturated velocity)
due to drift effects.

2.8 Some Effects Related to Energy Bands

There are a number of device related phenomena that can be intuitively related
to the band structures. One example, that we briefly alluded to is the relation-
ship between scattering rate and density of states. Scattering is proportional to
the coupling between the two states connected by a scattering process, and the
number of states available for scattering into. Thus, at the onset of secondary
valley transfer, i.e., when carriers have kinetic energy approximately equal to
the inter-valley separation, a rapid rise in the scattering rate occurs, as seen in
Figure 2.20 for GaAs, InP, and Ga.47In.53As. Also note that at low energies, InP
has the highest scattering rate. InP has the highest effective mass of the four
semiconductors in the figure, and therefore has the highest density of states.

Effective mass, which is inversely proportional to the second derivative of
the energy with respect to the wave vector, i.e., related to the band structure,
is central to a lot of transport parameters of interest. Mobility is inversely pro-
portional to the effective mass—a lower effective mass usually implies faster low
field transport characteristics. A lower effective mass also results in improve-
ment in the diffusion coefficient and higher tunneling probability. A smaller
effective mass means lower density of states, carriers have a higher velocity for
the same energy, and so long as the scattering rate is lower, the off-equilibrium
effects are stronger. The highest velocity that the carriers can attain under the
most ideal of circumstances (the maximum group velocity) is also limited by
the band structure.

Another good example of a strong band structure relationship exists in the
phenomenon of avalanche breakdown due to impact ionization. This is a process
in which a carrier picks up enough energy in between scattering events to cause
an electron to jump from the valence band into the conduction band during a
scattering event. The process is both band structure- and scattering process-
dependent.

In this section we will describe some of these relationships in more detail, and
develop a comparative understanding of some of these parameters for compound
semiconductors.
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Figure 2.36: Examples of possible impact ionization processes for electron and
hole initiated processes for GaAs. The ionization process initiated by a hot
electron is shown using solid lines; it results in the transfer of an electron from
the heavy hole band to the conduction band. The ionization process initiated
by a hot hole from the split-off band is shown using dashed lines. After T. P.
Pearsall, F. Capasso, R. E. Nahory, M. A. Pollack, and J. R. Chelikowsky, “The
Band Structure Dependence of Impact Ionization by Hot Carriers in Semicon-
ductors: GaAs,” Solid-State Electronics, 21, p. 297, c©1978 Pergamon Press
plc.

2.8.1 Avalanche Breakdown

The breakdown phenomenon of most interest occurs in depletion regions of
devices. In bipolar transistors, it is the breakdown in the base-collector junction
region. In field effect transistors, it is the breakdown in the drain to substrate
depletion region. These occur because a high field exists, due to the reverse
bias at the junction, and this high electric field is capable of accelerating the
carrier and imparting to it a large kinetic energy. Indeed, this kinetic energy can
become sufficiently large to cause an electron, or even more than one electron
under the right conditions, to be removed from the valence band and transferred
to the conduction band. Take the case of GaAs, where examples of the possible
electron and hole initiated transitions are described in the Figure 2.36. The
process, involving a single electron–hole pair generation, consists of transfer of
energy from the hot carrier to an electron in the valence band, which jumps into
the conduction band leaving a hole behind. For small bandgap semiconductors,
even multiple such pairs may be generated.

With the complicated band structure, electrons can be from different bands,
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holes can be from different bands, phonons (particularly optical phonons with
their large momentum) may be involved, etc. Indeed, since the band structure
is orientation dependent, and impact ionization occurs due to large energy of
the carrier from rapid acceleration in a field, in the event of insufficient random-
ization, it may even be orientation dependent.15

We will discuss, briefly, a very simplified model, to see how the role of band
structure enters in the impact ionization process. We consider a parabolic model
for the conduction band with effective mass m∗

e , and a parabolic model for the
valence band with effective mass m∗

h. Under thermal equilibrium conditions,
there may exist carriers that have sufficient energy for impact ionization. These
carriers are in the tail of the carrier distribution function with energy, and by
detailed balance, impact ionization is balanced by its reverse process—Auger
recombination. With an increase in electric field, carriers pick more energy, and
hence there may now exist carriers with sufficient energy for electron–hole pair
or pairs generation. We consider only one electron–hole pair, one band each
for the electrons and holes, no phonon involvement, and a process initiated by
electrons. The minimum energy that an electron must have is the bandgap Eg
to cause the transfer. If i and f signify initial and final state subscripts for the
electron causing the impact ionization, the creation of an electron-hole pair of
momentum pe and ph in an electron initiated process (see Figure 2.37) requires,
by conservation of energy and momentum,

p2
i

2m∗
e

= Eg +
p2
f

2m∗
e

+
p2
e

2m∗
e

+
p2
h

2m∗
h

, (2.130)

and
pi = pf + pe + ph. (2.131)

Using the method of the Lagrangian multiplier to minimize the carrier energy
under the constraint of momentum conservation,

d

(
Eg +

p2
f

2m∗
e

+
p2
e

2m∗
e

+
p2
h

2m∗
h

)
+ Ad (pf + pe + ph) = 0. (2.132)

Using partial derivatives with respect to pe, ph, and pf gives

pe
m∗
e

=
ph
m∗
h

=
pf
m∗
e

= −A, (2.133)

giving for the initial momentum

pi =

(
2 +

m∗
h

m∗
e

)
pf , (2.134)

15Impact ionization has continued to be the subject of research in semiconductors since
1960s, since it is a very complicated subject involving hot carriers. Orientation dependence is
only one of many examples of this. See, e.g., T. P. Pearsall, F. Capasso, R. E. Nahory, M. A.
Pollack, and J. R. Chelikowsky, “The Band Structure Dependence of Impact Ionization by Hot
Carriers in Semiconductors: GaAs,” Solid-State Electronics, 21, p. 297, 1978, and H. Shichijo
and K. Hess, “Band-Structure-Dependent Transport and Impact Ionization in GaAs,” Phys.

Rev. B, 23, No. 8, p. 4197, 15 Apr. 1981.
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Figure 2.37: A simple one dimensional parabolic band schematic of electron-hole
pair generation by impact ionization involving a hot electron.

and for the threshold energy of the initial electron ET

ET =
p2
i

2m∗
e

=

(
1 +

m∗
e

m∗
e +m∗

h

)
Eg. (2.135)

If m∗
e = m∗

h, this relationship gives the threshold energy for impact ionization as
ET = (3/2)Eg. This threshold energy is the minimum energy that an electron
must possess to initiate impact ionization in our model that assumes single
parabolic bands and no involvement of phonons.

We can see the tremendous simplification in applying this relationship to real
band structures. GaAs has m∗

e = 0.067m0 and m∗
hh = 0.5m0, and hence ET =

Eg. However, the bands are not parabolic an energy Eg into the conduction
band as can be seen from Figure 2.11. So, the situation in real crystals is
considerably more complicated; this threshold relationship may overestimate
because it ignores phonons in momentum conservation, and the processes may
even be orientation dependent.

This ionization process is characterized in a semiconductor by the parameter
ionization rate. The ionization rate is the relative increase in carrier density per
unit length of carrier travel. Thus, the electron ionization rate (αn) is the rate
of increase in electrons per unit length of the travel of an electron:

αn =
1

n

dn

dz
. (2.136)

For holes, the equivalent expression is

αp =
1

p

dp

dz
. (2.137)

For GaAs, the impact ionization occurs largely from carriers that are not
in the lowest bands. Electrons cause ionization from higher bands, and holes
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generally cause it from the split-off band. At low fields, the ionization rate
is also orientation dependent because of lack of randomization. Examples of
ionization rates as a function of electric field are given in Figures 2.38 and 2.39.

For most compound semiconductors with greater than an eV of bandgap,
the hole ionization rate is larger than the electron ionization rate. Hole effective
mass being larger, for similar velocities in the high field regions it has signifi-
cantly higher kinetic energy. At lower fields, electrons are more likely to have a
higher energy since they usually have a smaller scattering rate than holes. Thus
at low fields the electron ionization rate tends to be larger. For smaller bandgap
semiconductors, e.g., InAs and Ga.47In.53As, the hole ionization rate is always
low because the threshold energy for ionization is lower.

Impact ionization does not necessarily need an electric field to show a large
generation rate for electrons and holes. In compound semiconductor heterostruc-
tures, there exist many smaller bandgap compounds that can be lattice matched
to other semiconductors with a bandgap discontinuity for a conduction or va-
lence band that is larger than the bandgap. Even in the absence of an electric
field, high energy carriers injected into the smaller bandgap semiconductor can
cause impact ionization. This process is often referred to as Auger generation.

When impact ionization occurs in the presence of an electric field, such as in
a p–n junction, both electrons and holes get accelerated in opposite directions,
and both cause further impact ionization. The process of electron–hole pair
creation, acceleration of carriers, and creation of more electron–hole pairs sets
up an avalanche, and hence the generation of electron-hole pairs in an electric
field is also known as an avalanche process, and the related breakdown of a p-n
junction an avalanche breakdown. This is an important limiting phenomenon
in the usefulness of the device and hence we will investigate it further.

The increase in electron current resulting from the ionization caused by this
electron and hole current flow is

dJn
dz

= αnJn + αpJp, (2.138)

where Jn is the electron current density and Jp is the hole current density.
Similarly,

dJp
dz

= − (αnJn + αpJp) , (2.139)

and the total current is

J = Jn + Jp. (2.140)

Excess current flows due to the presence of electron-hole pair generation.
The electron carries the current to one part of the device while the hole carries
the current to another part of the device. We may derive the multiplication
factor in the terminal currents, due to electron-hole pair generation, as follows.

We will consider an electron initiated avalanche process. Let Jn(−wp) be
the electron current at the p-edge and let Jn(wn) be the current at the n-edge
of the depletion region. The hole current is predominant at the p-edge and the
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Figure 2.38: Impact ionization coefficient for electrons and holes for GaAs, InP,
and Ga.47In.53As as a function of the inverse of the electric field.
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Figure 2.39: Impact ionization coefficient for electrons and holes for Si, Ge,
Al.48In.52As, and InAs.
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electron current is predominant at the n-edge, i.e. J ≈ Jn(wn) ≈ Jp(−wp). In
steady-state,

dn

dt
= Gn −Rn +

1

q

dJn
dz

= 0. (2.141)

We will ignore recombination since generation processes dominate in the avalanche
region. As a result, excess current due to avalanche process dominates any re-
combination current, and can be ignored, thus simplifying our analysis. De-
noting the ratio of electron current at z = wn and z = −wp by the electron
multiplication factor Mn, we obtain

J = Jn(wn) = MnJn(−wp). (2.142)

We also have
dJn
dz

= αnJn + αpJp = (αn − αp)Jn + αpJ. (2.143)

The solution of the linear differential equation in Jn as a function of position
z is

Jn(z) =

∫ z
0
αpJ exp

[∫ ζ
0

(αp − αn) dη
]
dζ + A

exp
[∫ z

0
(αp − αn) dζ

] , (2.144)

where η and ζ are dummy variables for the spatial coordinates.
The constant A can be determined from our expression for current continuity

as

A = J

{
1

Mn
exp

[∫ −wp

0

(αp − αn) dζ

]
−

∫ −wp

0

αp exp

[∫ ζ

0

(αn − αp) dη

]
dζ

}
. (2.145)

And hence, the electron current is given by

Jn(z) = J
(1/Mn) +

∫ z
−wp

αp exp
[∫ ζ

−wp
(αp − αn) dη

]
dζ

exp
[∫ z

−wp
(αp − αn) dζ

] . (2.146)

Evaluating this relationship at z = wn allows us to write the equality:

exp

[∫ wn

−wp

(αp − αn) dζ

]
=

1

Mn
+

∫ wn

−wp

αp exp

[∫ ζ

−wp

(αp − αn) dη

]
dζ.

(2.147)
Although this expression appears to be complicated, it actually can be sim-

plified considerably. Introducing I as the magnitude of the integral on the right
hand side, we show

I =

∫ wn

−wp

αp exp

[∫ ζ

−wp

(αp − αn) dη

]
dζ
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=

∫ wn

−wp

αn exp
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(αp − αn) dη

]
dζ −
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−wp

(αn − αp) exp
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(αp − αn) dη
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− 1. (2.148)

A simple expression for the multiplication factor results from this in the form

1 − 1

Mn
=

∫ wn

−wp

αn exp

[
−
∫ ζ

−wp

(αn − αp) dη

]
dζ. (2.149)

The condition for breakdown caused by electron initiated avalanche is the
condition where Mn goes to infinity. This occurs when the integral in this
equality goes to unity. Avalanche breakdown, therefore, occurs when

∫ wn

−wp

αn exp

[
−
∫ ζ

−wp

(αn − αp) dη

]
dζ = 1. (2.150)

The condition for breakdown with a hole initiated process can be found
following a similar treatment (see Problem 4). The expression for the hole
multiplication factor Mp is given as

1 − 1

Mp
=

∫ wn

−wp

αp exp

[
−
∫ wn

ζ

(αp − αn) dη

]
dζ, (2.151)

and hence breakdown is said to have occured when

∫ wn

−wp

αp exp

[
−
∫ wn

ζ

(αp − αn) dη

]
dζ = 1. (2.152)

Figure 2.40 shows the avalanche breakdown voltages as a function of doping
for some of the common semiconductors for an abrupt p+–n junction using
the above criterion and the ionization rates described previously in Figure 2.38
and 2.39. While generally, at the high fields that dominate avalanche process,
the hole ionization coefficient dominates, this is not true for small bandgap
semiconductors such as Ga.47In.53As and InAs. Here, hole initiated processes are
less likely, so even though they are more likely to avalanche by virtue of a smaller
bandgap, due to suppression of hole avalanching, the decrease in breakdown
voltage is not as pronounced.



80 2 Review

Figure 2.40: Breakdown voltages limited by avalanche process for some of the
common compound and elemental semiconductors.

Quite often, the integral on the right of the previous equations for multipli-
cation factors is approximated by the relationship (V/BV )

ν
where BV is the

breakdown voltage, i.e.,

M =
1

1 − (V/BV )ν
. (2.153)

This relationship, depending on the magnitude of the power ν , shows a soft
breakdown or a hard breakdown. Soft breakdown is meant to imply a slow
and gradual increase in the multiplication factor with increasing bias. It occurs
when the ionization rates are slowly varying functions of the electric field. A
hard breakdown, with ν ≥ 4, leads to a rapid change in the multiplication factor
and comes about when the ionization rate changes rapidly with electric field.
Small bandgap materials usually have a higher magnitude of the ionization rate,
and the ionization rate changes slowly with the electric field. They therefore
exhibit relatively softer breakdown characteristics.

A relative comparison of breakdown voltage due to avalanche processes and
its relationship with the bandgap is shown in Table 2.3. These breakdown volt-
ages are at a donor doping of 1 × 1017 cm−3 in a p+–n abrupt junction. This
doping is quite typical of the dopings encountered in the collector region of bipo-
lar transistors at the base-collector junction. The doping of the small bandgap
semiconductors is too small to be useful at this doping or this temperature.
Small bandgap semiconductors can be safely used only at low temperatures, or
if the device allows a sufficiently low doping to employed to have an acceptable
breakdown voltage.



2.8 Energy Band Effects 81

Table 2.3: Bandgap and the breakdown voltage of a one-sided junction at a
doping of 1 × 1017 cm−3 for some semiconductors.

Material Bandgap Breakdown Voltage
(eV) (V)

InAs 0.36 2.0
Ge 0.66 5.0
Ga.47In.53As 0.75 6.0
Si 1.12 11.0
InP 1.35 14.5
GaAs 1.42 15.8
GaP 2.27 31.4
SiC 2.99 47.8

The length scale over which the carriers accelerate to pick up the energy from
the electric field is a few mean free path (λ). The carrier can usually continue to
pick up a substantial amount of energy at these high fields because polar optical
phonon scattering—the dominant scattering process—leads to only a small loss
of the energy (Ep), and because it causes a small angle scattering, thus main-
taining its direction of drift. We have commented that our simplified parabolic
model is quite inadequate for predicting the threshold energy of impact ioniza-
tion. To obtain it more accurately, the complete momentum-energy relationship
and phonon effects should be included. The mean free path, the phonon energy,
and the threshold energy are all important parameters in the avalanche process.
Table 2.4 summarizes some approximate values of these related data. The mean
free path is that for a hot carrier.

2.8.2 Zener Breakdown

In the context of breakdown mechanisms, it is also instructive to discuss Zener
breakdown. Zener breakdown is not really a breakdown in the traditional sense
of breakdown’s meaning. Zener breakdown is a form of internal emission which
takes place by tunneling. We will discuss tunneling and the mechanism by
which the Zener process occurs in the Chapter 4. Here we describe it to show
the relationship between tunneling effects and band structure.

Figure 2.41 shows schematically the band transition involved in Zener tun-
neling and breakdown. Tunneling is a manifestation of the wave nature of elec-
trons. If an overlap between the states in the valence band and the conduction
band is large, then electron can tunnel from the valence band to the conduction
band in the junction. This is simply to state that one may treat the forbidden
gap as a potential barrier of the classical barrier tunneling problem.

Zener tunneling will be substantial whenever the potential barrier height is
small, the potential barrier width is short, or the effective mass is small. Any
of these allow for a large overlap of the electron and hole wave function. For
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Table 2.4: Mean free path of energetic carriers, optical phonon energy, and the
threshold energy for impact ionization for some semiconductors.

Material Mean Free Path Phonon Energy Threshold Energy
λ (Å) Ep (eV) ET (eV)

AlP 71.0 0.0621 3.14
AlAs 54.4 0.0501 2.80
AlSb 45.3 0.0421 2.00
GaP 32.5 0.0500 2.94
GaAs 39.3 0.0354 1.72
GaSb 48.5 0.0242 0.0848
Ge 78.0 0.037 0.67
InP 38.9 0.0428 1.69
InAs 62.9 0.0296 0.392
InSb 100.2 0.0223 0.187
Si 68.0 0.063 1.15

Figure 2.41: Schematic figure representing the emission of a carrier involved in
Zener tunneling in p–n junction. The process results in tunneling between the
conduction and the valence bands.
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Figure 2.42: Schematic representation of the phonon-assisted tunneling process
in real and k-space. This process may, e.g., occur during the Zener tunneling
process discussed in the previous figure. Tunneling occurs between states with
differing wave vectors and involves emission or absorption of a phonon.

a given band structure, the potential barrier height and width, related as the
electric field, are conducive to tunneling at large dopings. Small bandgap semi-
conductors have intrinsically a smaller potential barrier, leading to larger Zener
tunneling probabilities, even at low doping. Thus, the process, has an effect on
breakdown voltages for both highly doped semiconductors and small bandgap
semiconductors. The breakdown voltages can be obtained by determination of
the transmission function and the source function, the two characterizing the
probability of tunneling and the availability of carriers for tunneling.

Like processes leading to avalanche breakdown, Zener processes may involve
phonon processes. In the classical problem of tunneling through a barrier, we
ignore it, i.e., we consider only energy conserving elastic processes. However,
phonon assisted tunneling, an inelastic process, can be quite strong. During such
a process, a longitudinal or transverse optical or acoustic phonon is emitted or
absorbed in order to conserve momentum. In fact, for indirect semiconductors
this is the dominant form of tunneling because it can accommodate the large
differences in momenta at the bottom of conduction band and the top of valence
band. Figure 2.42 shows an example of phonon assisted tunneling process in real
and k-space. Tunneling, as we will see later, is a complex phenomenon. Like
phonons, photons may also assist in tunneling. This phenomenon is usually
referred to as the Franz–Keldysh effect.
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Figure 2.43: Electron concentration as a function of Fermi energy with respect
to the bottom of the conduction band for GaAs at 300 K and 77 K. After M.
Fischetti, “Monte Carlo Simulation of Transport in Technologically Significant
Semiconductors of the Diamond and Zinc Blende Structures, Part I: Homoge-
neous Transport,” IEEE Trans. on Electron Devices, ED-38, No. 3, p. 634,
c©Mar. 1991 IEEE.

2.8.3 Density of States and Related Considerations

We have discussed the role density of states plays in scattering processes. It
also is intimately involved in several other ways, the most important of which is
its effect on occupation of bands, and the role of degeneracy at high doping. A
larger density of states implies larger carrier density before the Boltzmann ap-
proximation breaks down and the conduction electrons begin occupying higher
and higher energy states in the band. Figure 2.43 shows electron density in
GaAs at 300 K and 77 K as a function of the Fermi energy position with re-
spect to the conduction band edge. This includes the changes in the density of
states as a function of energy. Note that at negative Fermi energy with respect
to the conduction band edge energy, the Boltzmann approximation is valid,
i.e., an exponential variation occurs. However, for positive values, considerably
complicated density of states effects occur.

The Fermi energy of the carriers is increased by introducing more donors in
the semiconductor. Large doping implies smaller spacing between the donors. In
the section on occupation statistics, we treated the donor levels as discrete and
degenerate levels whose density was equal to the donor density. Close proximity
of the donors causes overlap interaction between the carriers confined to them,
leading to energy splitting and formation of impurity bands. One may get an
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estimate of the doping condition for this by determining the Bohr radius (a) in
the crystal

a =
εs
ε0

m0

m∗ a0, (2.154)

where εs is the permittivity of the semiconductor, ε0 is the permittivity of
vacuum, and a0 is the free space Bohr radius whose magnitude is .529 Å. For
semiconductors with a large effective mass, such as Si, this occurs at larger
dopings, while for semiconductors with a low effective mass this occurs at a
lower doping (see Problem 6).

If the doping is continued to be increased, impurity bands coalesce with
the conduction band and conduction may now take place through the impu-
rity states. Consequently the semiconductor does not exhibit carrier freeze-out.
The doping at which this transition takes place, leading to metallic conduction
through the impurity levels, is called the Mott transition. Similar to the degen-
eracy condition above, Mott transition is small in GaAs (low-1016 cm−3, and
large in Si (mid-1018 cm−3).

These impurity level effects, related to the band structure, should be con-
sidered in the treatment of occupation statistics. Generally, though, we use the
simple relationship using effective density of states, which is a delta function
of the density of states at the band edge, and in our derivation we assume a
parabolic band. This ad hoc treatment can be extended and we may treat the
effective density of states as a function of carrier density and use the Fermi–
Dirac integral. Figure 2.44 shows the variation of the effective density of states
for the electrons with carrier density as a function of temperature for GaAs.

The effect of heavy doping, or the lack thereof, can be very significant in
device operation at low temperatures. Mott transition and freeze-out effects are
central to the design of field effect transistors and bipolar transistors in silicon
for 77 K operation. Low doping in the substrate, the base, and the collector,
and consequent freeze-out, can lead to large threshold voltage changes and high
resistances. On the other hand, in GaAs this is not usually a consideration since
freeze-out occurs at low dopings.

Increase in density of states, merging of impurity bands, etc., occurs with
a decrease in effective bandgap and an increase in effective intrinsic carrier
concentration. Bandgap shrinkage, e.g., in the base of the heterojunction bipolar
transistor, decreases the barrier to the conducting carrier, e.g., the electron in an
n–p–n device. Devices with heavy doping in the base, thus, have a higher current
density for identical bias. If this bandgap shrinkage takes place in the emitter
because the emitter is higher doped (e.g., in the conventional homojunction
bipolar transistor), then the injection efficiency degrades.

2.8.4 Limiting and Operational Velocities of Transport

The occupation of higher energy states in the conduction band by the electrons
also results in an increase in the magnitude of the average velocity with which
the individual carriers move from the thermal velocity (vθ) to the Fermi velocity
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Figure 2.44: Normalized effective density of states, including heavy doping ef-
fects, as a function of electron density for GaAs at 300 K. The normalization
constant is 3.99×1017 cm−3. After J. S. Blakemore, “Semiconducting and Other
Major Properties of Gallium Arsenide,” J. of Appl. Phys., 53, p. R123, Oct.,
1982.

(vF ). These are really average speeds of the carriers since the average veloci-
ties, at thermal equilibrium, are zero, but the average speeds, which ignore the
directional dependence, are not. But, by convention, we call them velocities.
For low doping conditions, where Maxwell–Boltzmann statistics are valid, the
thermal velocity may be approximately obtained from equal partition of energy,
i.e.,

1

2
m∗v2

θ =
3

2
kT, (2.155)

giving

vθ =
√

3kT/m∗. (2.156)

We can also find it from the distribution of the carrier velocity from the Maxwell–
Boltzmann distribution function. The average velocity is defined from the av-
erage value of the square of velocity as

vθ =
(
〈v2〉

)1/2
=

[∫∞

0
v2 exp

(
−m∗v2/2kT

)
v2dv

∫∞

0
exp (−m∗v2/2kT ) v2dv

]1/2

=

(
8kT

πm∗

)1/2

, (2.157)

slightly different from the value found from arguments based on a non-degenerate
classical gas which assigns equal weight to all particles independent of the prob-
ability of occurrence.



2.8 Energy Band Effects 87

Table 2.5: Thermal and Fermi velocity in GaAs at various temperatures for
non-degenerate and degenerate dopings.

Temperature vθ vF
at n = 1 × 1016 cm−3 at n = 1 × 1018 cm−3

K (cm.s−1) (cm.s−1)

300 4.5× 107 ≈ 5.4× 107

77 2.3× 107 ≈ 5.4× 107

4 5.2× 106 ≈ 5.4× 107

When doping is large, so that the Fermi energy is in the conduction band,
the average energy of the carriers can be larger, and they also move with larger
speed. Now, we need to include the effect of the exclusion principle in deter-
mining the averages.

A consequence of Pauli’s exclusion principle is that the number of indepen-
dent states in a unit volume in the momentum space for a unit volume in real
space is given by 1/(2π)

3
. Let kF be the wave vector at the Fermi energy. Since

n is the electron concentration in real space,

n = 2
1

(2π)
3

∫ kF

0

4πk2dk

=
k3
F

3π2
, (2.158)

where the first factor of 2 is from spin.16 This gives

kF
3 =

(
m∗vF
h̄

)3

= 3π2n, (2.159)

and hence the Fermi velocity vF

vF =
h̄

m∗

(
3π2n

)1/3
. (2.160)

Here, again, m∗ is the density of states effective mass in view of our parabolic
band approximations. This velocity, called the Fermi velocity, characterizes the
average speed with which the carriers move under degenerate conditions. For
the example of GaAs (m∗ = 0.067m0 at the bottom of the conduction band),
Table 2.5 summarizes the relevant velocities for two different doping levels at
various temperatures.

Fermi velocity is relatively insensitive to temperature, and hence diffusion
constants, etc., do not not decrease significantly with temperature, unlike in

16This is exact at T = 0 K. At any other temperature, it is approximate since carriers will
occupy states with k > kF .
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Table 2.6: Maximum group velocities in some semiconductors.

Material Group Velocity
cm.s−1

GaAs 1 × 108

Si 6 × 107

Ge 1.3× 108

InP 9.5× 107

InAs 1.3× 108

AlAs 6.2× 107

non-degenerate semiconductors. So heavy doping and lower density of states
allow some of the devices to function better at lower temperatures.

Another band structure related carrier velocity effect that should be con-
sidered is the highest group velocity that the carrier can have given the band
structure relationship of energy and momentum. The group velocity (vg) can
be found from the energy-momentum relationship,

vg =
1

h̄

∂E

∂k
, (2.161)

as discussed earlier. The maximum group velocities for some semiconductors,
determined from their band structures, are given in Table 2.6.

In this table, the maximum group velocity for Ge occurs in the Γ valley
towards 〈100〉. The Γ valley is very sparsely populated—L valley is the one most
occupied—and hence it is highly unlikely that structures taking advantage of
this could be designed. The maximum group velocities are high in the compound
semiconductors, almost twice those of silicon. AlAs is one of the exceptions in
these compound semiconductors. It band structure is quite similar to that of
silicon. Also, these are theoretically predicted maximum velocities, which could
conceptually occur only in the absence of scattering and without inter-valley
transfer, both of which will occur.

When scattering dominates, we have discussed various velocity–field behav-
iors for different materials. A generalized plot of maximum steady state veloc-
ities, based on simplistic theoretical arguments,17 is shown in Figure 2.45 for
various pure semiconductors. Many of the data in this figure are experimental.
The horizontal scale in this figure is a good approximation for a velocity when it
is limited by non-polar optical phonons (the case with elemental semiconductors
but not with compound semiconductors). Other scattering mechanisms do not
change the functional form substantially and hence the approximate straight
line relationship of this figure.

17See D. K. Ferry, in W. Paul, Ed., Handbook of Semiconductors, Vol. 1, North-Holland,
Amsterdam, p. 584, 1982.
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Figure 2.45: Theoretical maximum velocities, saturated or peak, for various
semiconductors with respect to an energy function involving optical phonons.
After D. K. Ferry, in W. Paul, Ed., Handbook of Semiconductors, Vol. 1, North-
Holland, Amsterdam, p. 584, 1982.

Many of these velocity-related features can be seen to be inversely related
to the effective mass. The larger the mass, smaller the representative velocity.
This is true for group velocity, thermal velocity, Fermi velocity, peak velocity
for GaAs, InP, Ga.47In.53As, InAs, Si, Ge, etc. The effective mass also corre-
lates with the bandgap in compound semiconductors. Lower electron effective
mass occurs with smaller bandgaps in compound semiconductors as shown in
Figure 2.46.

2.8.5 Tunneling Effects

We have discussed tunneling, in a phenomenological way, in our discussion of
Zener breakdown. Tunneling is the important example of the wave-particle
duality. An estimate of the importance of wave aspect can be obtained by com-
paring the de Broglie wavelength with the critical device dimension. At device
dimensions smaller than or comparable to the de Broglie wavelength, it is more
appropriate to discuss electrons in crystals as a wave, and the classical picture
that assumes negligible time scale of scattering, drift and diffusion averaged
from a number of scattering events, etc., is increasingly poor. Tunneling, e.g.,
cannot be explained in the particle description, it requires the wave descrip-
tion. The de Broglie wavelength is related to the effective mass, and is shown
in Figure 2.47. Smaller effective mass leads to large de Broglie wavelength and
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Figure 2.46: The variation of effective mass at Γ minimum and light hole band
maximum as a function of the direct bandgap for some compound semiconduc-
tors. After H. L. Grubin, in H. L. Grubin, D. K. Ferry, and C. Jacobani, Eds.,
“The Physics of Submicron Semiconductor Devices”, NATO ASI Series, B180,
c©1988 Plenum Publishing Corp., New York.
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Figure 2.47: Thermal de Broglie wavelength for an electron at the bottom of
the conduction band for various semiconductors. After H. L. Grubin, in H.
L. Grubin, D. K. Ferry, and C. Jacobani, Eds., “The Physics of Submicron
Semiconductor Devices”, NATO ASI Series, B180, c©1988 Plenum Publishing
Corp., New York.
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increasing wave effects, tunneling being the most prominent of them.

2.9 Summary

In this chapter we have reviewed the underlying concepts of quantum mechan-
ics and considered their implications for semiconductor physics by considering
one-dimensional models. The ideas include the wave–particle duality, the use of
plane waves in describing wave packets representing localized particles, and the
derivation of quantized states in energy and momentum for carriers or phonons
caused by confinement or periodic boundary conditions. We showed that a large
crystal, and therefore confinement in a large box, leads to quasi-continuum of
these states which has a finite density of states. The electrons in a crystal of
periodic potential can, at their simplest, be modelled as having a differing effec-
tive mass. The periodicity, a condition where Bloch’s theorem and the concept
of reciprocal lattice are particularly useful, leads to the formation of forbidden
bands, called the bandgap, and multiple bands; the valence bands are filled and
the conduction bands are empty at absolute zero. At finite temperature valence
bands are partially empty, and conduction of electrons in valence bands can
be modelled by “particles” that we call holes, while conduction in the conduc-
tion band can be modelled by electrons. Electrons and holes obey Fermi–Dirac
statistics, while phonons, the modes of lattice vibrations, obey Bose-Einstein
statistics.

Subsequently, we analyzed the consequences of perturbation from our ide-
alized behavior that leads to scattering. Using the band structure and phonon
dispersion characteristics of the three-dimensional crystals of interest to us, we
discussed some of the band to band processes involving electrons, holes, and
phonons, and studied the general consequences of the behavior of these mate-
rials to the operation of some of the semiconductor devices of interest. The
transport of carriers in the three-dimensional lattice with the constraints of
band structure and scattering processes was considered in a general way to un-
derstand the behavior of carriers at low energies and at high energies. We also
reviewed the behavior of this transport for minority carriers where a gradient
in carrier concentration can lead to large diffusive effects, and compared the be-
havior of minority carriers with majority carriers. Finally, we reviewed effects
that are intimately related to band structure: impact ionization and breakdown,
limiting velocities, and tunneling.
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Problems

1. Consider a system of independent and distinguishable particles. Show
that for this system, the ratio of the number of occupied particles in the
state j to its degeneracy is the Maxwell–Boltzmann distribution function
given by

f(E) =
nj
gj

= exp

(
−Ej
kT

)
= exp

(
−E − ξf

kT

)
. (2.162)

2. Show that, as in the case of electrons, the hole occupation following Fermi–
Dirac statistics leads to

p = NV F1/2 (ηfv) , (2.163)

where ηfv = (Ev− ξf)/kT . For GaAs, draw the electron and hole density,
at 300 K, for the functions ηfc and ηfv within 5kT of the conduction and
valence band.
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3. For the most common type of acceptors in semiconductors, show that the
degeneracy is 4, and also show that

f (EA) =
N−
A

NA
=

1

1 + 4 exp [(EA − ξf) /kT ]
, (2.164)

and
N0
A

NA
=

1

1 + 1
4

exp [(ξf −EA) /kT ]
. (2.165)

4. Show that when holes initiate and dominate the avalanche process, the
avalanche integral of interest is related by

1 − 1

Mp
=

∫ wn

−wp

αp exp

[
−
∫ wn

ζ

(αp − αn) dη

]
dζ, (2.166)

following arguments based on hole generation.

5. For bipolar transport, i.e., with both electrons and holes contributing to
conduction, show that the Hall coefficient RH is related to the carrier
densities and drift mobilities by

RH =
r

q

[
pµ2

dp − nµ2
dn

(nµdn + pµdp)
2

]
. (2.167)

6. Estimate the Bohr radius, and the impurity density corresponding to an
average distance between impurities equal to the Bohr radius, for n-type
GaAs, Si, Ge, InP, Ga.47In.53As, InAs, GaSb, and InAs. The Bohr radius
also gives an indication of the binding energy of the donor, assuming a
hydrogenic model for binding of the electron to the donor. Estimate this
for these semiconductors, and compare with the observed energies.

7. What is the shape of the constant-energy surface for a semiconductor
whose conduction band edge energy changes as the fourth power of the
reduced wave vector? Also find the density of states with energy and
the effective mass with energy assuming that the coefficient of the E–k
relationship is α.

8. What is the relationship, in the previous problem, between the carrier
concentration and the Fermi energy?

9. Plot the Maxwell–Boltzmann distribution function and Fermi–Dirac dis-
tribution function (assuming ξf − Ec = 3kT ) at 300 K and 77 K as a
function of the square of the velocity of carriers assuming m∗ = 0.067m0

for the effective mass of GaAs. What is the width in energy at half of the
maximum for the two distributions? At what velocity do the distributions
drop to 10% of the magnitude at zero velocity?
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10. We will consider, simplistically, how one may obtain the phonon behavior
in a three-dimensional lattice such as that of GaAs—a zinc blende lattice.
To keep the problem tractable, we will consider the oscillations in 〈111〉
direction for (111) planes. Alternating planes contain atoms of Ga and
As. If a is the linear dimension of the unit cell, the planes alternate with
a spacing of a/4 and a/12. One bond to the atoms extends perpendicular
to these planes and three bonds extend at an angle of 70.53 degrees in the
opposite half. The resulting strength of either is the same.

(a) Derive and plot the longitudinal energy-momentum relationship by
considering the differential equation that governs the displacement
and the force for the two species of atoms.

(b) Now consider the same problem for a diamond lattice, i.e., with only
one type of atom. How is this result different from the previous?
What is its significance?

11. Why are there differences in the variation with wave vector, including a
reversal of order, for the energies of the LO and TO phonons?

12. For a semiconductor with isotropic spherical constant energy surfaces in
conduction, and two valence bands, find the Hall coefficient. Let τn, τp1,
and τp2 be the momentum relaxation times for the carrier whose densities
are n, p1, and p2 in the respective bands.
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Chapter 3

Mathematical Treatments

3.1 Introduction

In using semiconductor devices, our principal interest is in knowing the behavior
of currents and voltages at the device terminals due to an applied stimulus, a
voltage, or a current, as a function of time. To obtain this knowledge, we need
to describe the behavior of the carriers in the device. We need information
related to how the carriers move and how they stay stationary. The ensemble
of carriers moves in most semiconductor devices as a result of an electric field
(we are not considering any magnetic field-based devices in this text), and it
stays stationary because there exists no net external force on the ensemble.
A stationary ensemble has carriers moving randomly as a result of scattering,
a Brownian motion, while a moving ensemble exhibits a net response to the
applied force. Both of these are important in studying device behavior. Another
important aspect, interrelated with these in the device, is the effect of a rapidly
changing electric field during a time transient.

The current in the device, at any cross-section, results from moving charged
particles (the particle current) and from changing displacement field (the dis-
placement current, d(εsE)/dt). These currents have to be related to the applied
currents or voltages. We may also use different levels of sophistication in mod-
elling the different regions of the device, depending on how critical they are to
the overall device behavior, and the level of accuracy and hence sophistication
that is acceptable. These sections of the device, their interfacing with each other,
and their interfacing with the device terminals (the contacts that we access) and
device surfaces where there are no contacts, have to be modelled accurately to
reflect the overall behavior. So, to analyze the device, our mathematical models
must include behavior of carriers in semiconductors, boundary conditions be-
tween semiconductor sections, time-dependent and time-independent behavior,
and carrier behavior at semiconductor contacts and surfaces. Our aim in this
chapter is to review and discuss some of the more important general approaches
for the analysis so that we may develop the tools necessary to understand the

97
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operation of devices.
In trying to describe the behavior of transport in semiconductors, the prin-

cipal problem to be tackled is that of determining current in the presence of the
electric field that moves the carriers, and scattering that limits the unlimited
increase in momentum and energy of the particles as a result of the applied
field.

The most common formulations for describing this behavior are classical.
They treat electrons and holes as particles, of certain position, momentum,
and energy. The energy that these carrier can possess can be treated as being
continuous, except in the bandgap, because the energy level separations are
much less than kT for the macroscopic sample sizes employed. We call this
methodology the kinetic approach since it uses the kinetics of an average particle
with a simple treatment of collisions (scattering) to describe its equation of
motion. The approach is quite successful in describing macroscopic properties
of the semiconductors in which off-equilibrium effects are not important.

A more common approach than the kinetic approach is the use of the Boltz-
mann Transport Equation (BTE) for describing carrier kinetics. The formula-
tion considers the equation of motion for the distribution function of the parti-
cles f(r,p; t). This distribution function f is the probability of finding a particle
with the momentum p at the position r at the time t. We will discuss this and
simplifications resulting from it (drift-diffusion follows from the the BTE fol-
lowing many approximations) since they have become increasingly popular in
describing the hot carrier phenomenon. One additional advantage of BTE is
that it leads to a methodology which is not very computationally intensive.

Instead of considering the distribution function, we may consider individual
particles themselves, selected at random, and collect enough information about
them to determine the average ensemble behavior. So, one follows individual
particles under the influence of the governing equations and allows them to scat-
ter with probability of scattering determined by the randomness and the relative
frequency of occurrence of the specific scattering event. By calculating over sev-
eral scattering events and/or over behavior of several particles (usually many
thousands), one can determine the statistical average behavior of the transport.
The Monte Carlo approach is not restricted to many of the assumptions inher-
ent in the simplified BTE approaches, such as simplified treatments of the band
structure and distribution functions, in order to obtain the solution. However,
these advantages may be offset by a lack of information or simplifications in im-
plementations. An example of the former are the impact ionization processes,
whose microscopic features and hence means of implementation are still open to
debate. An example of the latter are coupling coefficients for scattering where
not enough may be known of the underlying characteristics of the semiconduc-
tor itself. The Monte Carlo approach, in spite of these inadequacies, has been
highly successful. The reason for this has been that the simplifying assumptions
of BTE become questionable well before the inadequacies of a well-implemented
Monte Carlo code become suspect. Examples of these successes include descrip-
tion of high field transport and transport involving situations where simplified
distribution functions do not exist, such as in very short dimension structures.
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The next level in sophistication has been broadly covered in the Quantum
Transport approach, which describes behavior in situations where the quantum
nature of states and kinetics is included. This becomes necessary in problems
where spatial and temporal extents are similar to the de Broglie wavelength
and the duration of scattering events, etc. The kinetic, BTE, and Monte Carlo
approaches now become unacceptably inaccurate. Examples of problems where
this is true are those involving size quantization, e.g., calculations related to
tunneling in coupled barrier structures where the momentum is quantized along
one direction. A common Quantum Transport approach is the density matrix
approach based on the Liouville equation. The Liouville equation employs the
statistical density operator or the density matrix, representing the ensemble of
the states of the system, together with the Hamiltonian to describe the state
of the system. This approach has shown some success in modelling the coupled
barrier problem. All variations of the quantum transport approaches are very
complex, and are presently needed in only some of the devices of interest. Hence,
in the following few sections, we will restrict ourselves to the discussion of the
kinetic approach, the BTE approach, and the Monte Carlo approach. Our
objective is to appreciate the methodology, to understand the limits of these
approaches, and to relate these to the physical meaning of the results derived.

3.2 Kinetic Approach

The simplest of the classical formulations is the particle kinetic approach, which
models the kinetics of the motion of an average particle in the presence of a
force with a simple treatment of collisions. It provides useful insights and is
quite intuitive for many of the standard problems of semiconductor transport.
To describe the behavior of the system we need the equation of motion and
the relationship between this motion and the current. These, following classical
mechanics, can be written as the following for an applied electric field (E),
magnetic field (B), and current density (J):

dp

dt
= q (E + v × B) − p

τ
,

v = g(p),

and J = nq 〈v〉 , (3.1)

where q is the charge of the carriers, n is the carrier density, and 〈v〉 the
average velocity of the carriers. Here, τ is a time constant representing a linear
damping term representing the loss of momentum due to scattering. In this
set of equations, an ad hoc model is employed to describe the effect of applied
fields with an energy dependent time constant τ , but the quantum nature of
the problem is accounted for by an effective mass in the functional relationship
of the second equation. Quite often groups of particles may be encountered.
Some examples of this are different charge of particles such as in ambipolar
transport consisting of both electrons and holes, and two valley transport such
as with light holes and heavy holes in p-type material or electrons in two valleys
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under high field conditions. In these situations, the groups of particles may
be represented by suitable modifications of the previous equations to a set of
equations representing each group of particles.

Let us now consider some simple examples of application of the kinetic ap-
proach, as well as of its limitations. In its simplest form, the semiconductor band
structure can be considered parabolic, leading to a constant effective mass; and
particles can be considered non-interacting at low concentrations, leading to a
Maxwell–Boltzmann distribution of carriers with most particles at the bottom
of the band. This leads to a closed-form solution which is useful in the calcu-
lation of average properties at low concentrations and negligible fields. For this
semiconductor with the spherical constant energy surface, assuming an energy
independent scattering, and only electrons as the carriers, Equation 3.1 reduces
to

dp

dt
= q (E + v × B) − p

τ
,

v =
p

m∗ ,

and J = nqv, (3.2)

giving

τ
dJ

dt
+ J − µJ × B = nqµE, (3.3)

where

µ =
qτ

m∗ (3.4)

is the mobility of the particle. In our discussion of drift mobility in Chapter
2, this relationship was used implicitly. It shows the approximations related to
band structure, and the degeneracy involved. There is an additional approxima-
tion of steady-state implicit in this too. We can estimate the time constant—
consider GaAs with a mobility of 4000 cm2.V−1.s−1, typical for a donor density
of 1×1017 cm−3 at 300 K. The time constant is 0.15 ps. Transient effects related
to the relaxation of momentum take place during a time period extending over
many time constants. This is not included in the description, and hence may
not be expected to be reproduced. Thus, the set of equations should be used for
time-varying parameters whose time variation is parameterized at higher than
this time constant.

Let us consider another example, the response to a sinusoidally varying field
with radial frequency ω in an isotropic material with the field along the coordi-
nate axis. The electric field has a magnitude which is the real part of

E = Ê exp (jωt) , (3.5)

and whose response is a particle current,

J = Ĵ exp (jωt) . (3.6)
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We will discuss the methodology of small-signal analysis later in this chapter.
The phasor Ĵ follows from the earlier analysis as

Ĵ =
nqµ

1 + ω2τ2
Ê − j

nqµωτ

1 + ω2τ2
Ê. (3.7)

The term nqµ is the static conductivity of the material σ. From the Maxwell
equations,1 we can derive the wave equation as

∇2E = −εsω
2

ε0c2
E +

ω

ε0c2
J, (3.8)

where c is the speed of light in free space, and hence 1/ε0c
2 is the permeability

of free space.
Since we are looking at the frequency-dependent response, whose time period

is still larger than the relaxation time, we use the frequency dependence of the
semiconductor permittivity εs:

εs = εs1 − jωεs2, (3.9)

and obtain

∇2Ê =
1

ε0c2

[
−ω2

(
εs1 −

τσ

1 + ω2τ2

)
+ jω

(
ωεs2 +

σ

1 + ω2τ2

)]
Ê . (3.10)

The real part of this response, the response to a sinusoidal signal, goes through
a phase change when the effective permittivity

εeff = εs1 −
τσ

1 + ω2τ2
= 0. (3.11)

The effective permittivity is dependent on the carrier density and the low fre-
quency permittivity, which can be approximated to εs1. We also introduce a
frequency parameter parameter ωp, the plasma radial frequency; the interrela-
tionships of these are:

εeff = εs1 −
qnµτ

1 + ω2τ2
= εs1

(
1 − ω2

pτ
2

1 + ω2τ2

)
, (3.12)

and

ω2
p =

1

ττd
, (3.13)

where τd is the dielectric relaxation time

τd =
εs1
σ
. (3.14)

The significance of the real part of the wave equation going negative is that the
sinusoidal signal is attenuated, and the frequency at which this occurs is defined
by

ω =

(
ω2
p −

1

τ2

)1/2

=

(
1

ττd
− 1

τ2

)1/2

. (3.15)

1Discussed in Chapter 9.
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For our example of GaAs, of mobility 4000 cm2.V−1.s−1, donor density of 1 ×
1017 cm−3, time constant 0.15 ps, and εs1 = 12.9ε0, the plasma frequency ωp/2π
is 3.1 THz, dielectric relaxation time τd is 1.79 fs, and the frequency at which
this reversal occurs is 9.7 THz.

We can extend the mobility relationship from the case of a single carrier and
single time constant to that of two carriers and two time constants (see Prob-
lem 1), and show a similar relationship for current for the ambipolar situation
(see Problem 2). We can also extend it to multiple time constants in the same
general way. Here we give two examples of the calculation of the time constants
for electrons, by relating them to the scattering mechanisms for a density of
states g(E) in the conduction band and an occupation probability related by
the distribution function f . For the average of any transport parameter ϕ(E),
following translation of the energy axis to the bottom of the conduction band,
changing the primary variable from velocity to energy, and using approxima-
tions similar to that employed for occupation statistics in Chapter 2, we obtain
(see Problem 3),

〈ϕ〉 = −2
∫∞

0
ϕ(E)g(E) (∂f(E)/∂E)EdE

3
∫∞

0
g(E)f(E)dE

. (3.16)

For parabolic band density of states, the density of states has a square-root de-
pendence on energy, and for non-degenerate conditions the Maxwell–Boltzmann
relationship gives an exponential energy dependence for the distribution func-
tion, hence,

〈ϕ〉 =
2
∫∞

0
ϕ(E)E3/2 exp (−E/kT ) dE

3kT
∫∞

0
E1/2 exp (−E/kT ) dE

=

∫∞

0
ϕ(E)E3/2 exp (−E/kT ) dE
∫∞

0
E3/2 exp (−E/kT ) dE

. (3.17)

If the variable ϕ(E) has a power law dependence on the energy E, i.e., ϕ(E) =
AEν , then the integral can be related through the Γ functions

〈ϕ〉 = A(kT )
ν Γ (ν + 2.5)

Γ (2.5)
, (3.18)

where the Γ functions satisfy the properties described in our discussion of the
Fermi integrals.

The average for relaxation time for the mobility, with a momentum relax-
ation time τp, is

τµ = 〈τp〉 = −2
∫∞

0
τp(E)g(E) (∂f(E)/∂E)EdE

3
∫∞

0
g(E)f(E)dE

=
〈v2τ 〉
〈v2〉 . (3.19)

Here, the integral was transformed over velocity instead of energy in order to
express it in the previously expressed form of Chapter 2. For speed, the rela-
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tionship of the variable is ϕ = v = (2/m∗)
1/2
E1/2, and hence

vθ =

(
2

m∗

)1/2

(kT )1/2
Γ(3)

Γ(2.5)
=

(
2kT

m∗

)1/2
2 × 1

1.5 × π1/2
=

(
8kT

πm∗

)1/2

. (3.20)

For scattering, by ionized impurity scattering, the Conwell-Weisskopf rela-
tionship is

τII = AE3/2, (3.21)

where A is a coupling constant. Hence, the momentum relaxation time for
ionized impurity scattering follows as

τµ = A(kT )
3/2 Γ(4)

Γ(2.5)
= 4A

(kT )
3/2

π1/2
. (3.22)

For acoustic scattering,
τac = BE−1/2, (3.23)

and hence the momentum relaxation time is given by

τµ = B(kT )
−1/2 Γ(1.5)

Γ(2.5)
=

2B

3(kT )
1/2

. (3.24)

Now let us consider the relaxation time of interest in Hall effect measure-
ments. When a magnetic field B is present, the current, in steady-state may be
derived as (see Problem 4)

J =

〈
q2nτ

m∗ (1 + ω2
cτ

2)

〉
E −

〈
q3nτ2

m∗2 (1 + ω2
cτ

2)

〉
E × B +

〈
q4nτ3

m∗3 (1 + ω2
cτ

2)

〉
(E.B)B, (3.25)

where ωc = qB/m∗ is the cyclotron resonance frequency. If the magnetic field
is small, then

J =

〈
q2nτ

m∗

〉
E −

〈
q3nτ2

m∗2

〉
E × B. (3.26)

Hall effect measurements involve, as discussed before, a magnetic field orthogo-
nal to the plane of the semiconductor, i.e., orthogonal to the electric field. Let
z be the orthogonal direction of the magnetic field, and let x be the direction of
the applied field. In steady-state, no current flows perpendicular to this either
in the y direction or the z direction. Then,

Jx =

〈
q2nτ

m∗

〉
Ex −

〈
q3nτ2

m∗2

〉
EyBz ,

Jy =

〈
q2nτ

m∗

〉
Ey +

〈
q3nτ2

m∗2

〉
ExBz = 0,

and Jz =

〈
q2nτ

m∗

〉
Ez = 0. (3.27)
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The current flow and the the in-plane orthogonal electric fields, ignoring second
order terms, are related by

Ey = −qBz
m∗

〈τ2〉
〈τ 〉 Ex

and Jx = − qnBz
〈τ 〉2
〈τ2〉Ey. (3.28)

This shows that the Hall constant and Hall factors that we applied earlier are
related as:

RH =
Ey
JxBz

= − 1

qn

〈τ2〉
〈τ 〉2

,

and r =
〈τ2〉
〈τ 〉2

Ey. (3.29)

We can now show that the Hall pre-factor r, when acoustic deformation
potential scattering dominates (see Problem 5), is

r =
3π

8
, (3.30)

and that the Hall mobility is associated with the Hall relaxation time

τH =
〈τ2〉
〈τ 〉 . (3.31)

This treatment can thus be extended over several complicated situations,
all leading to complicated mathematical relationships even with the assumption
of the Maxwell–Boltzmann relationship and explicit energy dependence. Many
of the restrictions are violated in practical situations, e.g., degenerate semicon-
ductors, presence of hot carriers, etc. Indeed, the problem rapidly becomes
intractable and more sophisticated approaches have to be utilized.

3.3 Boltzmann Transport Approach

In the kinetic approach, we introduced classical kinetics to describe the motion
of a group of particles with common characteristics described by the relaxation
time, charge, and the relationship between momentum and velocity. The BTE2

describes the kinetics using the equation of motion for the distribution function
of the particles f(r,p; t). The distribution function f is the probability of finding
a particle with a crystal momentum p at a position r at a time t. In thermal

2For an extended discussion of the BTE and its application in semiconductor transport
theory, see E. M. Conwell, “Transport: The Boltzmann Equation,” in W. Paul, Ed., Handbook

on Semiconductors, Vol. 1, North-Holland, Amsterdam (1982).



3.3 Boltzmann Transport Approach 105

equilibrium, the probability of finding a carrier in a state with energy E(p) is
given by the Fermi–Dirac distribution function f0

f0 [E (p)] =
1

1 + exp {[E (p) − ξf ] /kT}
, (3.32)

where ξf is the Fermi energy. When the energy of the electrons is larger than
the Fermi energy by a few kT s, the distribution function can be approximated
by

f0 [E (p)] ≈ exp {[ξf −E (p)] /kT} , (3.33)

the Maxwell–Boltzmann distribution function, or Boltzmann distribution func-
tion in short. For heavy doping, however, the Fermi–Dirac distribution function
should be considered.

The effect of the band structure on the distribution function is included
in the relationship between energy and momentum. For a spherical constant
energy surface with parabolic bands whose minimum is at the zone center, this
relationship takes the form

E =
p2

2m∗ , (3.34)

while for more complex forms of parabolic bands, with different energy-momentum
relationships in different directions, it still has the square dependence on the
momentum but in a more complex form,

E =
p2
x

2m∗
x

+
p2
y

2m∗
y

+
p2
z

2m∗
z

. (3.35)

The constant energy surface is now an ellipsoid. The momentum p has an equiv-
alence with the crystal wave vector k through the reduced Planck’s constant. In
the rest of our discussion of the BTE, we will use the momentum as p, although
using k is just as common and is even employed elsewhere in this book. De-
generate minima, such as for the light hole and heavy hole valence bands, may
be included by using their energy–momentum relationship and their degener-
acy. Close to thermal equilibrium, for many problems, it may be sufficient to
treat these as two independent constant energy surfaces of equal energy (e.g.,
in unstrained materials spheres at very low energies).

The force F on the particle in an electric field and magnetic field causes a
change in drift momentum related by

F =
dp

dt
= q(E + v × B), (3.36)

between scattering events.
Let the distribution in real and phase space at any instant of time under

general conditions be given by f(r,p; t). For the changes that occur between
time instants t and t+∆t, consider the effect of drift. The carriers which had the
momentum p − ∆tdp/dt ∆t time interval earlier, drift to have the momentum
p after the elapsing of time ∆t. Therefore, the effect of drift in time interval ∆t
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is to cause a change in the distribution function of f(r,p−∆tdp/dt)− f(r,p).
Hence, the rate of change of the distribution function with time due to drift is
given by

∂f

∂t

∣∣∣∣
drift

∆t = − ∂f

∂p

∣∣∣∣
r,t
.
dp

dt
∆t, (3.37)

i.e.,
∂f

∂t

∣∣∣∣
drift

= −ṗ.∇pf. (3.38)

The rate of change due to diffusion, e.g., resulting from concentration or
temperature gradients, can be found similarly. The carriers which were at the
position r − ∆tdr/dt ∆t time interval earlier, diffuse to the position r after
the elapsing of time ∆t. Therefore, the effect of diffusion in time interval ∆t is
to cause a change in the distribution function of f(r − ∆tdr/dt,p) − f(r,p).
Hence, in a similar manner as above, the rate of change of the distribution
function with time due to diffusion is given by

∂f

∂t

∣∣∣∣
diff

= −v.∇rf. (3.39)

These are the changes in the distribution function due to drift and diffusion.
Changes in the distribution function also occur due to scattering. Carriers may
be scattered into and out of the elemental volume at (r,p; t). Treating these
as independent processes, the total rate of change in the distribution function
f can be written as

∂f

∂t
=

∂f

∂t

∣∣∣∣
drift

+
∂f

∂t

∣∣∣∣
diff

+
∂f

∂t

∣∣∣∣
scatt

= −ṗ.∇pf − v.∇rf +
∂f

∂t

∣∣∣∣
scatt

. (3.40)

This long argument establishing the change of distribution function in the six-
dimensional (r,p) space can be derived directly by application of Liouville’s
theorem for semi-classical equation of motion. A consequence of this theorem
is the conservation of (r,p)-space volume.3 Thus,

∂f

∂t

∣∣∣∣
scatt

= lim
∆r,∆p;∆t→0

f(r + ∆r,p + ∆p; t+ ∆t) − f(r,p; t)

∆t

= ṗ.∇pf + v.∇rf +
∂f

∂t
, (3.41)

an equivalent result.
The BTE incorporates effects taking place in time. Thus, should it be pos-

sible to make appropriate analytic expressions, the BTE will describe the time

3For arguments leading to this, see N. W. Ashcroft and N. D. Mermin, Solid State Physics,
Holt, Rinehart and Winston, Philadelphia, PA (1976).
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transient effects too if the scattering relationship can be characterized. The ex-
pression is also valid for steady-state; the distribution function does not change
in steady-state, giving

∂f

∂t

∣∣∣∣
scatt

= q(E + v × B).∇pf + v.∇rf. (3.42)

Both of the above are convenient forms for the BTE. For multiple bands
(e.g., two valleys) we have two distribution functions and two equations as a
generalization of the one band treatment. The same is true for degenerate
bands such as those due to holes. The scattering term in these cases must
include effects on the distribution function due to scattering events taking place
within the band, into the band, and out of the band. A similar generalization
procedure could be used for more valleys.

3.3.1 Relaxation Time Approximation

One of the most important parameters to be introduced as part of the discussion
on scattering is the relaxation time. In the kinetic approach, we introduced it
in an ad hoc manner to incorporate the loss term in the momentum. In our fol-
lowing discussion, we will establish it on a firmer basis, and also establish limits
of the validity of using a relaxation time. It is a very justifiable time constant
for certain scattering processes, where it can be established as a single valued
function of momentum or energy. However, scattering processes do exist where
this may be unjustified, e.g., in polar optical scattering. In such cases it is an
engineering approximation, or a fitting parameter, used to allow simplification
of calculation using the distribution function approach. In interpreting results of
such a calculation, these approximations should be considered in understanding
the limits of validity.

Let S(p,p
′

) be the probability per unit time of a transition from an initial
state p to a final state p

′

in unit volume of the momentum space at p
′

. The
term S, thus, incorporates the effect of selection rules of transitions, etc. The
distribution function at p

′

describes the probability of finding the electron in
that momentum state. The probability of a scattering occurring into this state
is proportional to the likelihood of this state being empty, which is given by
1 − f(p

′

). Thus, the number of carriers scattered from p per unit time is∫
f(p)S(p,p

′

)(1 − f(p
′

))d3p
′

with the integral over the entire p
′

volume to
cover all such scattering events. Similarly, the number scattered into p from the
entire p

′

volume is proportional to the distribution function at p
′

, the scattering
probability, and the probability of there being an empty state at p. This is given
by the integral

∫
f(p

′

)S(p
′

,p)(1 − f(p))d3p
′

.

The total rate of change of the distribution function f due to scattering can
be found from the difference of these two integrals as:

∂f

∂t

∣∣∣∣
scatt

=

∫ [
f(p

′

)S(p
′

,p) − f(p)S(p,p
′

)
]
d3p

′

, (3.43)
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provided we assume non-degenerate conditions and hence neglect the effect of
exclusion principle. This condition also implies that f � 1.

The relaxation time approximation implies that this integral can be simpli-
fied, under certain conditions, to the expression

∂f

∂t

∣∣∣∣
scatt

= −f(p) − f0(p)

τ (p)
, (3.44)

where f0(p) is the unperturbed Maxwell–Boltzmann distribution function. We
now consider the conditions and the scattering processes for which this is clearly
justified.

Let us consider the effect of a small perturbation in the thermal equilibrium
distribution function. Such a perturbation may occur from small changes in
field, temperature, or external optical excitation. Let this perturbation cause a
new distribution function

f = f0 + ∆f, (3.45)

where the perturbation ∆f in the distribution function is much smaller than
the thermal distribution function f0. Since the distribution function remains
unchanged in thermal equilibrium, we have

∂f0
∂t

∣∣∣∣
scatt

=

∫ [
f0(p

′

)S(p
′

,p) − f0(p)S(p,p
′

)
]
d3p

′

= 0. (3.46)

Then, in the presence of the perturbation, our scattering equation reduces to

∂f

∂t

∣∣∣∣
scatt

=

∫
∆f(p

′

)S(p
′

,p)d3p
′ − ∆f(p)

∫
S(p,p

′

)d3p
′

. (3.47)

This perturbation causes a current flow because any disturbance in equilibrium
causes motion of the charged particles. Since this current is proportional to the
velocity, it is an odd function of the velocity. Hence, the perturbation in the
distribution function ∆f is also an odd function of the velocity. Clearly, if the
first term in the scattering equation vanishes, then

∂f

∂t

∣∣∣∣
scatt

= −∆f(p)

∫
S(p,p

′

)d3p
′

= −∆f(p)

τ (p)
. (3.48)

where

τ (p) =
1

∫
S(p,p

′

)d3p
′
. (3.49)

Thus, a sufficient condition for the validity of relaxation time approximation is
that the first term in the scattering equation above vanish, i.e.,

∫
∆f(p

′

)S(p
′

,p)d3p
′

= 0. (3.50)
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Figure 3.1: A schematic for the discussion of scattering processes in momentum
space under the influence of a force F for a semiconductor with ellipsoidal
constant energy surfaces. After E. Conwell, in W. Paul, Ed., Handbook of

Semiconductors, Vol. 1, North-Holland, Amsterdam (1982).

We now discuss the conditions and the scattering processes for which this is
true.

If ∆f(p
′

) is an odd function of momentum (or velocity) then this integral
vanishes if S(p

′

,p) is an even function of momentum (or velocity). For the
scattering probability to be an even function, the scattering probability is equal
for all combinations involving the momenta and their conjugates, i.e.,

S
(
p,p

′

)
= S(p,p

′
∗) = S(p∗,p

′

) = S(p∗,p
′
∗). (3.51)

The momentum p∗ is in exactly the opposite direction of the momentum p.
Scattering processes that randomize the momentum (or velocity) fulfill this con-
dition. Intuitively, this makes sense since random processes can not result in
any net scattering into either p or p

′

. Let us consider the ellipsoidal surfaces,
i.e., consider the anisotropic mass of energy E and E

′

as shown in Figure 3.1.
In the presence of the force F , the states at p

′
∗ have an increase in popula-

tion of the carriers, and the ones at p
′

, its complex conjugate, have a decrease
in the population of the carriers. Thus, we have the change in distribution func-
tions, ∆f(p

′
∗) > 0 and ∆f(p

′

) = −∆f(p
′
∗). If the momentum p

′
∗ has more

carriers, it results in an increase in transition of carriers from the momentum
p

′
∗ to the momentum p, with an equal decrease in transition from momen-

tum p
′

and momentum p. This occurs because the scattering probability to
the momentum p from the momentum p

′

and its conjugate p
′
∗ are equal, i.e.,
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S(p
′

,p) = S(p
′
∗,p). So, the sum of the two transition rates from momentum p

′

and momentum p
′
∗ into p remains unchanged in presence of small applied force

F . In this same manner, we may pair all the states in the same valley. So the
total rate of transition from the momentum p

′

to the momentum p remains the
same as it was before (i.e., when it was in thermal equilibrium with distribution
function f0), and is balanced by the rate of transition from the states of mo-
menta p, again with the distribution function f0. The remaining small change
∆f(p) is caused only by the scattering out of the momentum p, independent of
the momentum p

′

, and hence the change in scattering can be defined in terms
of the initial state in accordance with the relaxation time.

So, for scattering processes that involve randomization of the momenta or
velocity,

∂f

∂t

∣∣∣∣
scatt

= −f(p) − f0(p)

τ (p)
=

∆f(p)

τ (p)
, (3.52)

where
1

τ (p)
=

∫
S(p,p

′

)d3p
′

. (3.53)

In addition to scatterings that randomize the momentum, the relaxation time
is also justified if (a) scattering is elastic (i.e., scattering involves a negligible loss
of energy) and (b) the scattering probability depends on the momentum p and
the momentum p

′

only through the angle θ
′

between them. The consequence
of the first, with no loss of energy, is that SA(p

′

,p) = SA(p,p
′

) where the
additional subscript A refers to the scattering probability normalized to unit
area of the constant energy surface at p

′

. These terms are proportional to the
power crossing the cross-section which should be the same for elastic processes.
If this is the case, then

∂f0
∂t

∣∣∣∣
scatt

= 0 =

∫ [
f0(p

′

)SA(p
′

,p) − f0(p)SA(p,p
′

)
}
d2p

′

, (3.54)

and because this integral is evaluated on a constant energy surface,

f0(p
′

) = f0(p). (3.55)

The appropriateness of the use of relaxation time follows.
Now consider the presence of electric field E. Since the change in distribution

is proportional to the energy supplied by the field,

f = f0 + gE .v, (3.56)

where g is a constant which is a function of the carrier mass, etc. From this, we
can write the rate of change in the distribution function due to scattering as

∂f

∂t

∣∣∣∣
scatt

=

∫ (
gE .v

′ − gE.v
)
SA(θ

′

)d2p
′

. (3.57)

We choose the z-axis in the direction of the velocity v and the cylindrical
coordinate system. The elemental area at the momentum p

′

is given by

d2p
′

= (p
′

dθ
′

).(p
′

sin θ
′

dϕ
′

) = p
′2 sin(θ

′

)dθ
′

dϕ
′

, (3.58)
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and hence
∂f

∂t

∣∣∣∣
scatt

= gE .v

∫ [
1 − cos(θ

′

)
]
SA(θ

′

)d2p
′

. (3.59)

This equation follows from the fact that the only the z-component of the velocity

v
′

contributes to the above integral, i.e., the term
∣∣∣v

′

∣∣∣ cos(θ
′

) represents the

difference contribution. The rest integrate to zero because they are functions of
ϕ

′

. The relaxation time follows, then, as

1

τ (p)
=

∫ [
1 − cos(θ

′

)
]
SA(θ

′

)d2p
′

. (3.60)

Since the mean free time between collisions (τc) is

1

τc
=

∫
SA(θ

′

)d2p
′

, (3.61)

the relaxation time is
τ =

τc〈
1 − cos(θ

′

)
〉 , (3.62)

where the denominator is averaged over all the collisions. If all final directions
are equally likely, i.e., they are random, 〈cos(θ

′

)〉 = 0 and τ = τc. If they involve
small angle scattering, then 〈cos(θ

′

)〉 would be closer to unity and τ � τc, and
the time constant will only be a function of energy.

Consider now if it is meaningful to talk about relaxation time in its strict
sense for various scattering processes. For spherical constant energy surfaces,
relaxation time, which is a function of energy only, exists both for acoustic and
ionized impurity scattering. For non-polar semiconductors, optical scattering
is randomizing, so it also can be treated by a relaxation time which is a func-
tion of energy. Multiple valleys, inter-valley scattering, and optical intra-valley
scattering also allow the relaxation time approximation in non-polar semicon-
ductors; however, acoustic mode relaxation time approximation is justified only
for highly isotropic energy surfaces. For non-polar semiconductors, only for ion-
ized impurity scattering for elliposidal energy surfaces does the use of relaxation
time approximation turn out to be poor.

For polar semiconductors, polar optical scattering is among the more im-
portant scattering mechanisms. The relaxation time approximation is incorrect
in this case. However, in practice, a proper Monte Carlo calculation is per-
formed to generate a relevant engineering fitting parameter for the relaxation
time. This technique allows, then, the use of a simpler and less intensive BTE
approach to analyze a problem, while still maintaining accuracy because it uses
Monte Carlo results for the fitting parameter of relaxation time.

3.3.2 Conservation Equations

We have now discussed procedures that allow us to determine the distribu-
tion function, provided the scattering can be described mathematically either
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through the relaxation time approximation or the transition probability S. The
distribution function, for some problems, can be determined in an analytical
form, and for some by iterative techniques. However, application of these pro-
cedures is still limited to the simplest of the problems of interest. We will
discuss, in the next section, one such problem in order to compare the BTE
approach with the Monte Carlo approach. A more common technique than
these is to use numerical procedures to compute the distribution functions by
methods similar to those used in the Monte Carlo approach. This technique
also removes the restrictions on using the simplest of distribution functions or
simplified dependence on energy alone by restricting the spatial extent of the
analysis. By relaxing these requirements on the distribution function, it also
allows application of the BTE approach to problems with more complex dis-
tribution functions and scattering processes. An example of the latter is the
problem of hot carrier transport.

But, in the study of devices, we are interested in the carrier density, the
current carried by the carriers, the energy of the carriers, etc.; not the proba-
bility of finding a carrier at a certain position, with a certain momentum, at a
certain time. A set of conservation equations can be generated from the BTE
that directly determine these parameters, without having to determine the dis-
tribution function. The principle is very similar to, and a simple extension of,
the method of determining current in the kinetic approach. For a multi-valley
semiconductor, the current, in the kinetic approach, can be written as

J =
∑

valleys

∑

p

qf(p)v(p). (3.63)

To derive the conservation equations, consider the BTE:

∂f

∂t
= −ṗ.∇pf − v.∇rf +

∂f

∂t

∣∣∣∣
scatt

. (3.64)

If we wish to determine the expectation of the variable ϕ, we multiply the BTE
by ϕ and integrate over the momentum space. This allows us to determine the
following conservation equation for ϕ:

∂

∂t
< ϕ >= −〈ṗ.∇pϕ〉 − ∇r. 〈vϕ〉 +

〈
∂

∂t
ϕ

∣∣∣∣
scatt

〉
, (3.65)

where we have used

∇r.v = 0

and v.∇rf = ∇r.(vf), (3.66)

because the velocity v is a function of momentum p alone. We now have an
equation that describes the dependence of 〈ϕ〉 on position and time. Different
choices of ϕ(p) lead to different equations of conservation for the parameter.
These are referred to as moment equations; the method, method of moments;
because of the way they are derived from the BTE.
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The parameters that are of interest to us, such as the carrier concentration
and the current, are related to the distribution function f(r,p; t) and the choice
of the variable ϕ(p). As an example, consider 〈ϕ〉 for ϕ(p) = 1, then

〈ϕ〉 =

∫
f(r,p; t)d3p, (3.67)

which is the carrier concentration n(r, t). If we choose the variable ϕ(p) =
−qp/m∗, i.e., charge times the velocity of a carrier: current due to a carrier,
then

〈ϕ〉 =

∫ (
− qp

m∗

)
f(r,p; t)d3p. (3.68)

This is the equation of charge flux, i.e., the current density J(r, t). If we choose
ϕ(p) = p2/2m∗, i.e., the kinetic energy of the individual particle, then

〈ϕ〉 =

∫ (
p2

2m∗

)
f(r,p; t)d3p, (3.69)

the kinetic energy W (r, t) of the carrier ensemble. When divided by the number
of carriers that this represents, it is the average kinetic energy per carrier (w)
in the specific ensemble. With this as the meaning of the various moments,
Equation 3.65 assumes the conventional meaning of conservation of particle and
conservation of current, and extends it further to energy, etc. Note that if
recombination effects are important, scattering between bands representing the
recombination processes should also be included in the BTE. The meaning of the
various moment equations is now quite explicit. These moment equations are
to be seen as describing the balancing of the averaged quantities they represent.

If one could employ the scattering relationship,

∂f

∂t

∣∣∣∣
scatt

= −f − f0
τ

, (3.70)

an approximation for some of the scattering processes, but exact for others, then
we can write

∂

∂t
〈ϕ〉 = −

〈
ṗ.
∂ϕ

∂p

〉
− 〈ϕ〉 − 〈ϕ〉0

τϕ
− ∂

∂r
. 〈vϕ〉 . (3.71)

This equation is similar in its functional form to the continuity equation.
The left hand side is the rate of change of 〈ϕ〉, the first term is a generation
term of 〈ϕ〉 by forces that cause changes in the particle momentum p, the second
term is a loss term such as a recombination term of 〈ϕ〉 due to scattering, and
the last term is a gradient of the flux of 〈ϕ〉. When ϕ = 1, the last term is
proportional to the gradient of the current carried by particles. For ϕ = 1,
τϕ → ∞ (no particles are lost in scattering, unless we consider the inter-band
scattering term represented by generation and recombination), and

∂

∂r
. 〈vϕ〉 =

1

q

∂

∂r
.J . (3.72)
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So, in the absence of generation and recombination, this yields

∂n

∂t
=

1

q
∇.J . (3.73)

With the interband terms included, it is

∂n

∂t
= G − R +

1

q
∇.J . (3.74)

where G and R are the generation and recombination terms due to interaction
between holes and electrons. This is the first moment equation, the particle
conservation equation, and has the same form as used in drift diffusion analysis.

For ϕ = −qp/m∗, we have

〈ϕ〉 = J ,

〈ϕ〉0 = 0,

∂

∂r
〈ϕ〉 = − 2q

m∗

∂

∂r
W,

and

〈
ṗ.
∂ϕ

∂p

〉
= − qn

m∗ F , (3.75)

giving
∂J

∂t
=
qn

m∗ F − J

〈τp〉
+

2q

m∗ ∇rW. (3.76)

This is the second moment equation, the current conservation equation. In this
equation, on the right hand side, the first term represents the effect of the applied
force, the second represents the effect of scattering, and the third represents the
effect on change in energy of the particles which results in a change in their
velocity.

For ϕ = p2/2m∗, the kinetic energy,

〈ϕ〉 = W,

〈ϕ〉0 = W0,〈
∂ϕ

∂p

〉
=

p

m∗ ,

and

〈
ṗ.
∂ϕ

∂p

〉
=

F

m∗ .
−m∗

q
J = −1

q
F .J , (3.77)

giving
∂W

∂t
=

1

q
F .J − W −W0

τw
− ∇r.

〈
v
p2

2m∗

〉
. (3.78)

This is the third moment equation, the energy conservation equation. In this
equation, on the right hand side, the first term represents energy gain from the
effect of force, the second term represents the energy loss due to scattering, and
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the last term is the equivalent in energy of the last term of the current conser-
vation equation. The equation is based on averages; this term represents the
ensemble effect of carrier energy change due to ensemble motion. For symmetric
distribution functions, such as the displaced Maxwell–Boltzmann distribution,
this last term vanishes. Note that we put in a relaxation time constant ap-
proximation in these relations, and we have not included heat conductivity of
electron gas q.4 In the absence of the time constant approximation, this set of
equations is

∂n

∂t
=

1

q
∇.J +

(
∂n

∂t

)

scatt

,

∂J

∂t
=

q

m∗ nF +
2q

m∗ ∇W +

(
∂J

∂t

)

scatt

,

and
∂W

∂t
=

1

q
F .J − ∇r. (vW ) − ∇r.q +

(
∂W

∂t

)

scatt

. (3.79)

Let us now see how these equations may be extended to a more complex
situation of two valleys, a problem that occurs when considering the effect of
the Γ and L valleys in hot carrier transport in GaAs. We will also consider
additional simplifications to make the problem more tractable. We will have
two sets of equations corresponding to the distribution functions in the two
valleys. Identifying each of the individual valleys by the subscripts j and k, and
the averages by an overline (this was included in the averaging in our earlier
equations), we can write mean momentum and energies as

pj = m∗
jnjvj ,

and W j =
3

2
njkTj +

1

2
m∗
jnjvj

2

(3.80)

for each of the valleys. We introduce the lower case w for the energy of a single
carrier, i.e.,

wj =
W j

nj
. (3.81)

In the Equation 3.80 we have included an additional term of 3njkTj/2, which is
the mean energy in the Boltzmann approximation even in thermal equilibrium
when vj = 0. The temperature of the carriers in the valleys may be different,
and is either Tj or Tk. Writing for the jth valley,

∂nj
∂t

= −∇r. (njvj) + Gj −Rj +
∂nj
∂t

∣∣∣∣
scatt

,

∂vj

∂t
= − F

m∗
j

− vj .∇vj −
2

3

1

m∗
jnj

∇njwj +
1

3

1

nj
∇njvj

2 +

4This should be distinguished from fundamental charge q.
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∂vj

∂t

∣∣∣∣
scatt

,

and
∂wj
∂t

= −vj .F − vj .∇wj −
2

3

1

nj
∇.

{(
njvj −

κj
k

∇

)(
wj −

1

2
m∗
j vj

2

)}
+

∂wj
∂t

∣∣∣∣
scatt

. (3.82)

Here, the terms Gj −Rj represent generation and recombination terms in the
jth valley. Energy can also be transferred in the form of heat, i.e., through
phonons. Such a term due to heat flux, (∇qj) has been included in these
equations using the thermal conductivity κj and the carrier temperature Tj,

qj = κj∇Tj =
2

3

κj
k

∇

(
wj −

1

2
m∗
j vj

2

)
. (3.83)

For two valleys, inter-valley processes may now be included in the scattering
term. Consider with relaxation time approximation, one can write for two
valleys5 (this can be generalized for more than two valleys in a similar way)

∂nj
∂t

∣∣∣∣
scatt

= − nj
τn,jk

+
nk
τn,kj

,

∂vj

∂t

∣∣∣∣
scatt

= −vj

(
1

τp,jj
+

1

τp,jk
− 1

τn,jk
+
nk
nj

1

τn,kj

)
,

∂wj
∂t

∣∣∣∣
scatt

=
wj −wj0
τw,jj

− wj

(
1

τw,jk
− 1

τn,jk

)
+

nk
nj

(
wk
τw′

,kj

− wj
τn,kj

)
. (3.84)

where in the relaxation times, following our earlier notation in the BTE, the n
subscript denotes carrier relaxation, the p subscript denotes momentum relax-
ation (not holes, which are not included here), the w subscript denotes energy
relaxation, and we distinguish the relaxation time constants τw,jk and τw′ ,kj due
to energy exchange with phonons and differences in the references for kinetic
energy in the two valleys. They differ by the potential energy of the conduction
band minima.

The various terms of Equation 3.84 can be given specific meaning in line
with the earlier description. In the particle conservation equation, the two
terms describe the transfer of particles from one valley to the other. In the

5See the discussions in K. Bløtekjær, “Transport Equations for Electrons in Two-Valley
Semiconductors,” IEEE Trans. on Electron Devices, ED -17, No. 1, p. 38, Jan. 1970 and
P. A. Sandborn, A. Rao, and P. A. Blakey, “An Assessment of Approximate Non-Stationary
Charge Transport Models Used for GaAs Device Modelling,” IEEE Trans. on Electron De-

vices, ED-36, p. 1244, Jul., 1989.
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current conservation equation, the four terms describe the transfer of momentum
within a valley and from one valley to the other. In the energy conservation
equation, the first term describes the relaxation towards lattice temperature in
intra-valley and inter-valley scattering, the second term describes the energy
loss from the jth valley to the kth valley by inter-valley scattering, and the last
term describes the energy gained by the jth valley from the kth valley. We
distinguish the relaxation time constants τw,jk and τw′ ,kj due to the differences
described above.

3.3.3 Limitations

In view of the way we derived this formulation, we should recognize some of its
limitations. It assumes Maxwell–Boltzmann or displaced Maxwell–Boltzmann
distribution. By the latter we mean that the distribution in energy of elec-
trons is still of the same form that the Maxwell–Boltzmann distribution has in
thermal equilibrium (i.e., the effect of the exclusion principle is not important),
but that it shifts in energy to have excess mean finite energy and velocity. It
continues to be a symmetric function in momentum. In the process of using the
relaxation times, polar optical scattering is not well modelled because it is nei-
ther elastic nor randomizing nor dependent on the cosine of the angle between
the initial and final momentum. The relaxation time constants are, therefore,
fitting parameters.

Polar optical scattering favors smaller angles as shown in Figure 3.2. This
figure shows the relative probability of scattering of an electron at various an-
gles in GaAs due to polar optical scattering. Since polar scattering favors small
angle scattering, the momentum of electrons is not destroyed. The higher the
energy of the electron, the more favorable is the tendency of the electron to
continue in close to the same direction. While this tendency leads to favoring
of carrier transit at higher velocities in specific situations, this lack of random-
ization and the approximation involved in the use of Maxwell–Boltzmann-like
statistics lead to errors in specific modelling situations. We make an engineer-
ing approximation for the polar-optical scattering by forcing a relaxation time
fitted to a more accurate Monte Carlo calculation, but the use of the displaced
Maxwell–Boltzmann approximation is not correctable because of the way it is
implemented.

Figures 3.3 shows the scattering rate due to phonons and for impact ioniza-
tion in GaAs and Si. The scattering rate variations are somewhat complicated
due to the nature of the band structures. We discuss this for phonon processes
in silicon (see Figure 3.4). Consider the inter-valley scattering rates from an
X valley to another X valley as in silicon. The constant energy surfaces are
ellipsoids with two different degeneracies. There are four equivalent ellipsoids
(see Figure 2.26) for scattering whose major axis is in the plane perpendicular
to the major axis of the ellipsoid that the scattering occurs from, and there is
one ellipsoid along the same major axis. So, inter-valley scattering, in silicon,
is of two different types, one to the four equivalent ellipsoids that are closest
(called f-scattering), and one to the ellipsoid that is farthest away (called g-
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Figure 3.2: Angular scattering probability as a function of scattering angle for
polar optical scattering in GaAs at 300 K. The two curves are for electron
energies of 0.1 eV and 0.3 eV.

scattering). The scattering process requires either the emission or absorption
of a phonon to conserve the large change in the momentum. Note that the
g-emission involving release of a phonon is the strongest. While this distinction
is not of concern for an electron in the Γ band of GaAs, it is related to the
inter-valley scattering effect of a hot electron in the L valley. An electron un-
dergoing a scattering from one ellipsoid to another ellipsoid sees six equivalent
ellipsoids in the perpendicular plane and one ellipsoid along the axis. Like f-
and g-scattering, the probability of absorption of the phonons will be different
since different momentum changes are involved.

The low and moderate energy scatterings are lower in GaAs than in sili-
con. There are specific energies where the scattering rates show the onset of
additional processes, such as the X-L scattering process in silicon, or the Γ-L
or Γ-X processes in GaAs. At the lowest energy, the scattering in GaAs is lim-
ited by the acoustical mode scattering and optical phonon scattering involving
absorption of optical phonons as shown in Figure 3.5. At an energy equal to
the optical phonon energy (≈ 36 meV for GaAs), optical phonon emission also
occurs, resulting in a sudden increase in the scattering rate at this energy.

We commented that at the lowest energies, ionized impurity scattering pro-
cesses are important for useful dopings. Figure 3.6 shows the scattering rate
for GaAs, noting the effect of compensation. The scattering rate is comparable
to the polar optical phonon scattering rate at low energies and decreases with
energy, as expected.
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Figure 3.3: Scattering rate in GaAs and Si at 300 K as a function of electron
energy due to phonon scattering and impact ionization. On the GaAs curve, 1
identifies the onset of optical phonon scattering. The last section of the curves
correspond to impact ionization processes. The rest of the identified points of
rapid changes occur due to effects related to density of states.
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Figure 3.4: Scattering rate at 300 K as a function of energy due to the two
different types of inter-valley scattering in Si from the X valley. For a carrier
in any valley, f-scattering denotes scattering involving the nearest 4 valleys and
g-scattering denotes scattering involving the opposite valley. The total for both
emission and absorption process is also shown.
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Figure 3.5: Scattering rate as a function of energy in GaAs at 300 K showing
the dependence on acoustical processes and optical absorption (marked a), and
optical (marked b) emission. The curve marked c shows the total scattering
rate due to phonons.

Figure 3.6: Ionized impurity scattering rate for GaAs at 300 K, for compen-
sated (marked a) and uncompensated (marked b, compensation ratio of 2)
1 × 1017 cm−3 doping levels.
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Figure 3.7: Electron scattering rate due to optical phonon and coupled mode
scattering in the presence of holes in GaAs at 300 K. The background doping is
5 × 1018 cm−3 typical of bipolar transistors. Note the large effect of screening.

While discussing these scattering mechanisms, we should comment on carrier–
carrier scattering. In bipolar transistors, e.g., the electron is a minority carrier
in the midst of a lot of holes in the base. In the case of a two-dimensional
electron gas there exists a very high local density of electrons. In the former,
electron–hole scattering will be important, while in the latter, electron–electron
scattering will be important. This scattering, which we have also referred to
as plasma scattering, can occur coupled with other scattering modes (e.g., to-
gether with optical phonons), and its effect can be very strong on optical phonon
scattering at high hole density (see Figure 3.7). The phonon scattering rate is
reduced because the holes screen the potential perturbations that are caused
by the optical mode vibrations. However, now electron–hole scattering becomes
important and has to be included in scattering calculations.

We have looked at these various processes to show that one can at least fit
the time constant τw to a scattering process as a function of energy. This time
constant, then, can be used phenomenologically in the moment equations ap-
proach. The last set of equations, Equation 3.84, were non-stationary equations.
So, knowing all the necessary parameters involved (i.e., the τs) and assuming
a displaced Maxwell–Boltzmann distribution, allow us to determine the ns, the
vjs, and the wjs, and hence to characterize the temporal and spatial response
of a semiconductor device. These equations, in spite of the approximations,
are still quite complicated. However, knowing the τs, they are computationally
much less intensive than the Monte Carlo approach. In addition, they can be
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simplified for certain situations even from this form.
An example of this simplification, for the transit in a spatially homogenous

sample under the influence of a force F in a single valley semiconductor, ignoring
recombination effects, is the set of equations

∂nj
∂t

=
∂nj
∂t

∣∣∣∣
scatt

= 0,

∂vj

∂t
= − F

m∗
j

+
∂vj

∂t

∣∣∣∣
scatt

,

and
∂wj
∂t

= −vj .F +
∂wj
∂t

∣∣∣∣
scatt

. (3.85)

Because of the assumption of spatial homogeneity, these equations do not
account for diffusive effects which are included in the spatial gradient terms of
the BTE. For a two-valley problem (e.g., in GaAs considering the Γ and the
L valleys), we may define, with the subscript l for the lower valley and u for
the upper valley, the following for carrier density, average velocity, and average
energy per carrier,

n = nl + nu,

v =
nl

nl + nu
vl +

nu
nl + nu

vu,

w =
nl

nl + nu
wl +

nu
nl + nu

wu,

and m∗ =
nl

nl + nu
m∗
l +

nu
nl + nu

m∗
u, (3.86)

leading to the following equations in relaxation time approximation for a spa-
tially homogenous but two-valley semiconductor:

∂n

∂t
= 0,

∂v

∂t
= − F

m∗ − v

τp
,

and
∂w

∂t
= −v.F − w −w0

τw
, (3.87)

where τp and τw lump the effects of related time constants. These time constants
could be fitted from a steady-state solution of the Monte Carlo calculation of
this same problem of transit in the presence of the force F . The time constants,
from the steady-state solution, could be found as

τp = −m
∗v

F
and τw = −w −w0

v.F
. (3.88)



124 3 Mathematical Treatments

Figure 3.8: The momentum and energy relaxation times (τp and τw) as a func-
tion of energy fitted for undoped GaAs at 300 K and 77 K.

Figure 3.8 shows, for 300 K and 77 K, these relaxation times for undoped GaAs.

The temporal evolution follows as a solution of our control equations. For
example, Figure 3.9 shows the average energy w and the drift velocity v for GaAs
at 300 K due to an electric field of 10 kV/cm applied at t = 0 s. These curves
are from a Monte Carlo solution. The behavior shows a substantial overshoot
in velocity and energy in the first few ps. The response eventually settles to
the steady-state characteristics. The overshoot occurs because the momentum
relaxation time is lower than the energy relaxation time, leading to a rapid
response in the momentum with little initial effect on the energy. It is the non-
randomizing nature of the polar-optical scattering that makes this BTE solution
a large approximation for GaAs. Figure 3.10 shows the angular distribution in
energy associated with the parallel and perpendicular velocity to the field. In
its formulation, the BTE implicitly assumed that the distribution was more
like what it is at 2.5 ps where it is quite well randomized. So, during the
transient, it does not determine the solution accurately. These approximations
can be circumvented quite explicitly with the Monte Carlo approach since all the
transitional probability relationships can be explicitly included as one follows
the response of individual carriers.
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Figure 3.9: Evolution of kinetic energy and velocity as a function of time fol-
lowing a step change of 10 kV/cm in electric field applied at t = 0 in GaAs.

Figure 3.10: Energy associated with parallel and perpendicular components of
velocity following application of an electric field of 10 kV/cm along the abscissa.
Different time snapshots are shown.
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3.4 Monte Carlo Transport Approach

The Monte Carlo approach is a probabilistic approach based on sampling of the
parameter distributions of the semiconductor transport problem using a random
distribution. Parameters of the problem are governed by probability distribu-
tions. Whether a carrier undergoes lattice scattering or defect scattering, and,
extending that, the particular types of these scatterings depends on possible
occurrences of these events as represented by their probability. Therefore, if
a random distribution is used to sample these events in a transport problem
and sufficient statistics are collected, one should obtain realistic distributions
of parameters of interest. Examples of these parameters may be carrier dis-
tribution as a function of energy, momentum, and position in a sample (i.e.,
the function f of the BTE approach). In general, this function need not be a
Maxwell–Boltzmann distribution or displaced Maxwell–Boltzmann distribution
in energy and the Monte Carlo approach can determine what it is. Addition-
ally, the significance of Monte Carlo techniques goes beyond this. Small-signal
analysis as derived from the drift-diffusion equation (itself a simplification of the
BTE) uses superposition in the linear differential equation. This is an additional
approximation for both transient and large analog signal operating conditions.
A representative solution to such conditions is quite unlikely using either of the
previous approaches. Monte Carlo, as a statistical method, is a natural for ob-
taining solutions to such problems. As with any technique, inaccurate solutions
can be obtained if the problem is described incompletely. Our discussion here
is a general introduction of how problems are handled in the Monte Carlo ap-
proach.6 It should become clear that it is highly numerically intensive; requires
extensive computation; a large accumulation of data on energy, momentum,
space, and time; and, as in other approaches, a proper description of boundary
conditions.

The technique involves evaluation of the trajectories of a sufficient number of
carriers inside the semiconductor to evaluate a statistically meaningful descrip-
tion of the transport. These trajectories occur under the influence of applied
and built-in forces in the semiconductor, and due to scattering events; all of
which can lead to a change in energy and momentum of the carrier. Examples
of applied and built-in forces are those due to an applied or built-in electric
field of a p–n junction, and examples of scattering events are the numerous
mechanisms of defect and lattice scattering. The technique evaluates both the
scattering event and the time between scattering events, a period during which
the carrier moves ballistically. These events are accounted for stochastically
according to the relative probability of their occurrence.

Consider what this methodology means to the evaluation of the time be-
tween scattering events. If p(ϕ) is the probability density of the occurrence of
a variable ϕ (e.g., energy of a carrier) and if p(η) is the probability density of

6For an intuitive discussion of the application of Monte Carlo techniques to analyzing semi-
conductor problems, see A. D. Boardman, “Computer Simulation of Hot Electron Behavior
in Semiconductors using Monte Carlo Methods,” in A. D. Boardman, Ed., Physics Programs:

Applied Physics, John Wiley, Chichester (1980).
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the occurrence in a pseudo-random distribution (e.g., a uniform distribution),
then ∫ ϕ

0

p(ϕ
′

)dϕ
′

=

∫ η

0

p(η
′

)dη
′

. (3.89)

For a uniform distribution, this means that

η =

∫ ϕ

0

p(ϕ
′

)dϕ
′

. (3.90)

Inversion of this equation gives a random value of ϕ as a function of the random
distribution function η. As an example, consider scattering with a constant
total scattering rate S = 1/τ . The probability of the scattering event occuring
after time interval t, following a scattering event at t = 0, is the exponential
function p(t) = S exp (−St), and hence, following integration,

η = 1 − exp (−St) , (3.91)

whose inversion gives the corresponding time between scattering as

t = − 1

S
ln (1 − η) ≡ t = − 1

S
ln (η) , (3.92)

since η has a uniform distribution. Thus, physically, in the process of selec-
tion of time for uniform scattering rate, we calculate the cumulative probability
function with respect to time, and then use a uniform random number gener-
ator to select the corresponding time. This calculation and mapping has to be
performed for all the processes to be accounted for. These include further com-
plications, e.g., angle of motion for the carrier following the scattering has to be
included since it determines the new direction of the particle. The selection of
this angle involves an additional procedure involving probability distribution.

Determination of the time during which free flight occurs is actually a fairly
difficult problem for the more general case. For a particle of wave vector k

corresponding to the momentum p, the probability that a scattering occurs in
the time interval dt at time t is p [k (t)]dt. Thus, the probability of no scattering
in the time interval 0 to t following a scattering at t = 0 is

exp

{
−
∫ t

0

p [k (τ )]dτ

}
. (3.93)

Therefore, the probability that this particle, which has not suffered a scattering
in the time interval 0 to t, will suffer a scattering during the time dt at time t is

P (t)dt = p [k(t)] exp

{
−
∫ t

0

p [k (τ )]dτ

}
dt. (3.94)

This is not straightforward in a general problem where p(ϕ) is not a constant. In
such cases, the calculations are greatly simplified by introducing an additional
scattering process, a virtual scattering process, that leaves the particle in the
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Figure 3.11: An example of a carrier motion and scattering as it drifts in an
electric field (−z direction) in momentum (a) and real (b) space.

same state that it was before but which makes p(ϕ) a constant and equal to
its maximum value, thus allowing us to continue the procedure described. This
fictitious process is referred to as “self-scattering.” Now that p(ϕ) is a constant,
the uniform random number generation can be used, and a “self-scattering”
event is treated to leave the particle state unchanged.

To summarize, the procedure at its simplest consists of starting from a ran-
dom position, allowing free flight (also called ballistic flight) of the carrier, until
a scattering process is identified to occur by a Monte Carlo procedure. In ad-
dition to the energy, momentum determination requires an additional Monte
Carlo procedure to evaluate the angle, and then the carrier can proceed in free
flight again. Following several such scattering events the final carrier parameters
lose their dependence on the initial conditions.

For a steady-state homogenous problem, the behavior of the motion of the
particle in this large scattering events limit would be representative of the be-
havior of the particle gas. This conclusion also follows from ergodicity. Let us
clarify by considering the example shown in Figure 3.11. This example is for a
two-dimensional system, and we study the motion of an electron in real space
and k-space (or equivalently momentum space) as it undergoes scattering and
drift in time in an electric field in the −z direction. Free flight is shown as
a solid line and scattering as a dashed line. Corresponding to each scattering
event, a change in momentum is shown via the dashed line in the k-space, and
the particle moves again under the influence of the electric field in the −z di-
rection. If this simulation was continued for many more scattering events and
hence in time, the final z-position of the particle as a function of time would
vary nearly linearly with time for constant effective mass, i.e., the velocity would
be a constant.
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The equation of motion of this particle follows from our description of par-
ticle motion. The momentum of the particle is h̄k and its energy is h̄2k2/2m∗

for the simple free particle. Under the influence of electric field E, the equation
of motion of the particle is

∂ (h̄k)

∂t
= −qE . (3.95)

If its initial momentum corresponds to a wave vector ki, the momentum at an
instant in time t during free flight corresponds to a wave vector k, where

k(t) = ki −
qE

h̄
t. (3.96)

Since the motion is by drift, momentum only changes in the direction of the
electric field, i.e., in the z direction.

For a transient problem, where one is interested in the behavior of a particle
gas on a time scale during which too few scattering events occur, as well as
for a spatially non-homogenous problem such as transport in the channel of a
short gate-length FET or the base-collector space charge region of a bipolar
transistor, many more particles have to be considered under the influence of
the forces that exist in the channel or the base-collector space charge region
in order to obtain meaningful results. The test of the latter is the standard
deviation of the parameter of interest in order to determine its uncertainty.
This test is usually accomplished by dividing the accumulated information into
sufficiently large equal time intervals and determining the parameter of interest
(e.g., the velocity). The average of this information is the mean of interest and
its standard deviation is a measure of the uncertainty.

Real semiconductor problems are usually of significantly higher complexity.
Poisson’s equation, which relates the charge density and the displacement vec-
tor, should be satisfied together with the charged carrier contributions as they
move in a finite sized sample. Additional complexity arises because of chang-
ing effective mass, numerous scattering processes, avalanche processes that cre-
ate additional electrons and holes, momentum quantization in two-dimensional
structures, the multiple bands and valleys of real band structures, and the sig-
nificant deviation of these bands from parabolic approximation. For electrons
in many compound semiconductors, e.g., at the least two valleys—the Γ and the
L valley—should be considered for problems involving any significant heating of
carriers. Quite often, X should be considered too, and neither the X nor the L
valleys can be approximated as being parabolic for more than a few fractions of
eV. One can make some adjustments by introducing the non-parabolicity factor
α which relates the energy and momentum through

E (1 + αE) =
h̄2

k
2

2m∗ , (3.97)

so that the energy E is

E (k) =
1

2α

[
−1 +

(
1 + 4α

h̄2
k

2

2m∗

)1/2
]
, (3.98)



130 3 Mathematical Treatments

the velocity of the particle v (k) is

v (k) =
1

h̄

∂E

∂k
=

h̄k

m∗ (1 + 2αE)
, (3.99)

and the conductivity effective mass mc is

mc = m∗ (1 + 2αE) . (3.100)

These approximations do allow extension of the technique of using equations to
describe some of the parameters of the problem. However, for small bandgap
semiconductors which are both highly non-parabolic and have significant off-
equilibrium effects, this inaccuracy of analytic description becomes a major
limitation. Also, quite often, problems of interest are related to heterostruc-
tures with alloy grading and hence position-dependent band structure. For
such problems, information could be stored as a look-up table. Monte Carlo
methods thus become both numerical and storage intensive.

The boundary influences the behavior of a system. The boundary conditions,
therefore, should ideally represent the true behavior of the boundary, and failing
that should be selected in such a way that the final result of interest is intuitively
independent of it. Thus, the initial position of the particle should be irrelevant
to the final result of interest above, which was the velocity. This is an initial
boundary value problem.

Spatially, the device sizes and regions to be analyzed are limited, and the
boundaries have to be suitably described. In a surface oriented device, carri-
ers incident at the surface either get reflected or recombine. If it is a majority
carrier device, then the second is irrelevant if the population of the minority
carrier is low. It may be irrelevant for a minority carrier device if other ef-
fects in the system are larger. In both devices, however, careful consideration
must be given to what happens at the surface to the carrier as it is reflected
spatially. Electron surface mobility in silicon is nearly half of its bulk value at
similar carrier densities. This lowering of mobility must arise due to the partial
randomization of carrier momentum of particles incident at the surface. This
effect may be included by considering the scattering at the surface as partially
randomizing. In heterostructures, where crystallinity is maintained between
semiconductors (e.g., Ga1−xAlxAs/GaAs), there is a lack of surface states as
well as non-planarity. These, if present, lead to potential perturbations and
hence to scattering. Therefore, in a heterostructure system with low surface
states and a planar interface, mobilities are maintained and true reflections oc-
cur. Thus, carriers, incident from GaAs into Ga1−xAlxAs at the surface, only
go through a sign reversal in the momentum normal to the surface if they go
through a reflection. The carrier does not always have to reflect back. It may
have the requisite momentum and energy to transfer into Ga1−xAlxAs. The
Monte Carlo procedure must check and allow for such an event to take place.

Two boundaries of import that are often encountered are an ohmic contact
and a metal–semiconductor rectifying contact. An ideal ohmic contact, unless it
is intentionally a part of the intrinsic device devised to affect the operation of the
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device, is meant to be only a means for providing carriers to the semiconductor
without a voltage drop across it. Thus, a Monte Carlo procedure may simulate
this process by trying to maintain the particle density at its equilibrium value
at the contact in accord with Fermi–Dirac distribution. A lost carrier may thus
be replaced by a carrier whose momentum is chosen randomly for a Fermi–Dirac
distribution. A metal–semiconductor contact, a rectifying contact, is consider-
ably more complex. Particles that do not have sufficient momentum or energy
to cross into the metal get reflected, and, because of the non-planarity and in-
terface states, may be thermalized. Carriers that have sufficient momentum and
energy will traverse into the metal. Since for rectifying metal–semiconductor
contacts the barrier for injection from the metal to the semiconductor is very
large and scattering lengths very short, very few carriers traverse from the metal
to the semiconductor, and we may ignore them in the procedure. This question
is discussed in further detail in Chapter 4.

Let us now consider areas where the complexities associated with the Monte
Carlo technique are unavoidable if one is to obtain a reasoned understanding.
In our discussion of devices we will look at this question in significantly more
detail. Here, we discuss two examples where the utility of the technique becomes
quite obvious.

When carriers traverse a region where there is a significant gradient in the
electric field, they undergo a velocity overshoot in parts of the region. Velocity
overshoot is a term that implies that the local velocity v at a local field E be-
comes higher than what it would reach for a slowly varying field E of the same
magnitude. A local off-equilibrium occurs. It arises because the carrier energy
and the local electric field are no longer in equilibrium with each other. An
example of this local equilibrium at high fields is the existence of velocity satu-
ration. The mobility of carriers is a function of energy, as our earlier treatment
shows. Because of the parallel between the energy and the electric field, the
mobility can be written as a function of electric field. When the electric field
becomes large, higher carrier energy results. Higher carrier energy causes larger
amount of scattering, which reduces the mobility. Thus, velocity, a product of
mobility and electric field with mobility varying inversely with field, becomes
a constant. When a large gradient of electric field exists, the carrier does not
immediately achieve the energy that corresponds to the local field if the field is
rapidly varying. It actually has a lower energy and hence suffers less scattering,
and yet it is accelerated by the high field. The carrier, therefore, is said to have
a velocity overshoot. This large velocity occurs in spite of the fact that it has a
lower energy. Another way of saying this same thing is that the relaxation rate
for momentum is larger than that for energy.

A second example is related to distributions that can be determined using
the Monte Carlo approach. A very instructive problem in transport is that of
transport across p–n junctions. The drift-diffusion theory incorporates a mobil-
ity, and a diffusion coefficient that is proportional to the mobility, both of which
are a function of the local electric field. In constant mobility approximation,
this electric field dependence is ignored, and a solution such as the triode equa-
tion of the field effect transistor is found. In a p–n junction and many other
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junctions, large built-in fields occur because of their built-in voltages. The local
electric field is high. Should the mobility for such a problem be the mobility
corresponding to the local electric field? We have noted above that mobility is
a parameter that can be directly related to the energy of the particle. So, while
the local electric field, due to built-in considerations, is large, is the energy of the
particles also correspondingly large? It is not. Particles, e.g., holes and electrons
in a p–n junction, diffuse against the local field. The field can not increase the
energy of these particles as it does when the particle is accelerated by the field
during drift. Note that the diffusion that occurs in this problem, as elsewhere,
is due to scattering that favors the direction towards regions of lower carrier
density. Drift, on the other hand, causes the particles to move away from the
junction. Intuition suggests that thermal-equilibrium distributions should exist
everywhere, i.e., the distribution function should be a Fermi–Dirac distribution,
and since this is a non-degenerate case it simplifies to Maxwell–Boltzmann dis-
tribution. Now, if we apply a forward bias to the junction, the local electric field
is perturbed. Electrons and holes in the process of carrying the current receive
excess energy between scatterings from the acceleration in the local field.

Can one predict the electron distribution, its energy, and, if it is a Maxwell–
Boltzmann type distribution, its temperature; and would that tell us what mo-
bility to employ? The Monte Carlo procedure is suitable for analyzing this
problem since it can simulate all the necessary processes that lead to the trans-
port. Figures 3.12 shows at thermal equilibrium and under forward bias, for
a silicon p–n junction, the spatial position of the conduction and valence band
edges and the distribution of carriers as a function of the kinetic energy. The av-
erage energy and the tail for the distribution for both holes and electrons in the
region of quasi-neutrality still show thermal distribution corresponding to the
300 K lattice temperature. However, in the space charge region, electrons show
higher average energies corresponding to a higher temperature, and extended
tails corresponding to a higher temperature hot carrier tail. The distributions
have been normalized to show a proper comparison of energy dependence. This
heating occurred in spite of a decrease in the electric field in the junction. The
distributions can be quite reasonably fitted with the exponential tail, so at least
in this case, a displaced Maxwell–Boltzmann distribution (but with a changed
temperature) is a good approximation to the behavior of the carriers. Since the
carriers do have different temperatures, a different mobility can be argued to
be necessary in the drift-diffusion approach. In this example, the electron tem-
perature rises by approximately 15 K in the space charge region; the mobility
should correspond to that energy. In reality, this mobility is smaller, but much
larger than that corresponding to the high local electric field, which certainly
would give erroneous results. Quite often, what helps in obtaining reasonably
accurate results by the drift-diffusion approach is that errors in mobility and
diffusion, which track each other, give rise to an opposing polarity of errors in
the drift and diffusion currents, and hence the result is significantly more accu-
rate. What this example does point out, however, is that applied and built-in
electric fields must be treated differently.
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Figure 3.12: Part (a) shows the band edges for a 2×1017 cm−3 doped silicon p–n
junction under thermal equilibrium (solid lines) and a forward bias of 0.87 V
(dashed lines) at 300 K. Part (b) shows the electron and hole distribution for the
forward bias as a function of kinetic energy for a spatial position outside (dashed
lines) and inside the space charge region (solid lines) of the p–n junction.
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It is also useful to consider this problem using the BTE approach.7 Consider
a problem with a built-in field of Ebi due to impurity gradient. If f0 is the
distribution function in thermal equilibrium corresponding to this condition,
then from the BTE,

qEbi.∇pf0 + v.∇rf0 = 0. (3.101)

With a field Ebi + ∆E, the distribution function changes to f0 + ∆f , and the
BTE gives

qEbi.∇pf0 + v.∇rf0 + q∆E.∇p∆f + v.∇r∆f+

qEbi.∇p∆f + q∆E.∇pf0 +
∂(f0 + ∆f)

∂t

∣∣∣∣
scatt

= 0. (3.102)

The last term represents the effect of scattering and is the cause of diffusion;
the second to last term is negligible, being the product of two perturbations;
and the first two terms have a vanishing sum according to the BTE at thermal
equilibrium. Current conservation requires that

∇r.

∫
v∆fd3p = 0. (3.103)

We consider only the case when the electric field Ebi +∆E does not change with
position, implying that ∇r∆f does not change with position. Then, the BTE
can be written as

qEbi.∇p∆f +
∂ (f0 + ∆f)

∂t

∣∣∣∣
scatt

= −q∆E.∇pf0. (3.104)

For a built-in field of magnitude E0, this gives

qE0.∇p∆f +
∂ (f0 + ∆f)

∂t

∣∣∣∣
scatt

= −q∆E .∇pf0. (3.105)

To understand the difference between the effects of built-in versus applied
fields, consider the case of the same semiconductor with constant doping and
identical distribution function f0 at any point chosen in the previous situation.
If a field of Eex = Ebi = E0 is applied to it by external means, then the change
in the distribution function ∆f

′

satisfies

qE0.∇p∆f
′

+
∂
(
f0 + ∆f

′

)

∂t

∣∣∣∣∣∣
scatt

= −qE0.∇pf0. (3.106)

If the transition probability is linear and independent of the distribution
function (implying negligible carrier induced scattering effects and perturba-
tions), then using S as the scattering rate, we obtain for the built-in and the

7For detailed arguments on this subject see J. B. Gunn, “Transport of Electrons in a Strong
Built-in Electric Field,” J. of Appl. Phys., 39, No. 10, p. 4602, 1968.
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applied field cases

qE0.∇p∆f + S∆f = −q∆E .∇pf0

and qE0.∇p∆f
′

+ S∆f
′

= −qE0.∇pf0. (3.107)

For a change in electric field ∆E co-directional with E0, the distribution
functions in the two cases are related through

∆f =
∆E
E0

∆f
′

. (3.108)

For bias changes from thermal equilibrium for a non-homogenous semiconductor
with a built-in field, the change in the distribution function is a product of a
fraction equal to the relative perturbation of the field multiplied by what the
distribution function change would have been had the built-in field been an
externally applied field. The influence of fields in the case of a built-in field is
small, and at thermal equilibrium there is no effect. Monte Carlo calculations
confirm this, as follows from the distribution functions in Figure 3.12.

Since the drift velocity is given by

〈v〉 =

∫
vfdp∫
fdp

, (3.109)

we obtain in the presence of the perturbation ∆E velocities in the two cases,
vd and v

′

d, that are related by the same ratios (this follows from the above
integrals, see Problem 9),

vd =
∆E
E0

v
′

d. (3.110)

So, the effective mobility is also scaled by this factor. This derivation made sev-
eral approximations for simplifying our effort. In particular, the semiconductor
was assumed to be non-degenerate and isotropic, and carrier induced pertur-
bation of scattering was neglected. A Monte Carlo procedure can account for
these in a straightforward manner.

We had remarked about the particular utility of the Monte Carlo approach
towards modelling of transient phenomena. We exemplify this by showing how
the transient in the p–n junction takes place when the forward bias is applied.
Figure 3.13 shows the turn-on transient of the junction. Note that upon applica-
tion of the bias, a field is established in the quasi-neutral region. The drift field
in the quasi-neutral region vanishes rapidly as the junction charges. The junc-
tion depletion region edge can only move as rapidly as the carriers can, which
is limited by the maximum group velocity of the carriers. This figure serves
to demonstrate that even a simple problem such as that of a p–n junction is,
in detail, quite complicated, if we are interested in understanding phenomena
that take place on time scales of a few scattering events to a few pico-seconds.
The steady-state result from such a calculation would be quite similar to results
derived from a quasi-static analysis using the drift-diffusion equation, except
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Figure 3.13: The changes in conduction and valence band edges of 2×1017 cm−3

doped silicon p–n junction when forward biased from thermal equilibrium
(dashed lines) at 300 K. The band edges are shown at various instances in
time.

where overshoot occurs due to large gradients in electric fields. The transient
results, if one is only interested in time scales by which time the fields in the
quasi-neutral region have died down, will also be accurate. However, in any
of the cases, very short times, of the order of few pico-seconds, or in situa-
tions where velocity overshoot dominates, erroneous results will occur in the
drift-diffusion approach. We will discuss this further in the chapters on devices.

Analytic formulations are appealing for two reasons: they allow a simple
and rapid understanding of a problem, and they provide an appealing intuitive
understanding of the problem. The drift-diffusion approach, derived from the
BTE, is the most common analytical tool with these characteristics. It will be
used extensively in the rest of the text, and in context we will also discuss its
limitations. Here, we summarize some of its characteristics.

3.5 Drift-Diffusion Transport

The current transport equation, sometimes called the drift-diffusion equation,
can be derived from the BTE equations under several assumptions. This section,
therefore, actually belongs with our discussion of the BTE; it has been separated
for convenience and because it is going to be the principal approach in our
analysis of devices.
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The second moment of the BTE yielded an equation which we may write as

∂J

∂t
=

q

m∗nF − J

〈τ 〉 +
2q

3m∗∇r

3

2
nkT, (3.111)

for electrons and holes. Among the assumptions inherent in this derivation are
all those related to the BTE, an isotropic and parabolic single band, relaxation
time approximation, and the assumption that the energy of carriers is due to
thermal contributions only (non-degeneracy and no hot carrier effects). The
relaxation time, τp = 〈τ 〉, is related to the effective carrier mobility by

µ =
qτp
m∗ . (3.112)

For transport in an electric field E, this gives the transport equation as:

τp
∂J

∂t
= qµnE − J + µ∇rnkT. (3.113)

The scattering time τp is significantly smaller than the time scales of inter-
est. The perturbation term embodied in the left hand side of the equation is
negligible for most of the situations of interest where the time dependent change
of interest occurs over many scattering events. Assuming this, and the Einstein
relationship, we obtain the current transport equation

J = qµnE + qD∇rn, (3.114)

where we now drop the subscript r since only spatial gradients will be considered.
We derived this equation by considering the BTE for electrons; we may do the
same for holes with their opposite charge. The subscripted result for electrons
and holes of the drift-diffusion equations are

Jn = qnµnE + qDn∇n

and Jp = qpµpE − qDp∇p. (3.115)

The major assumptions that allowed the derivation of the above are those re-
lated to relaxation time approximation, single parabolic band structure with ho-
mogenous collision time, non-degenerate material, constant temperature of lat-
tice and carriers, several collision events and hence neglect of any off-equilibrium
effects, and that the length scale for spatial variation of field, collision time, im-
purity concentrations, etc. are longer than the mean free path.

We introduce quasi-Fermi levels, artificial energy and potential levels akin
to the Fermi level used in thermal equilibrium, to define the electron and hole
densities as

n = ni exp (βψ − βφn) = ni exp

(
ξn − Ei
kT

)
(3.116)

and

p = ni exp (βφp − βψ) = ni exp

(
Ei − ξp
kT

)
. (3.117)
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Here, β = q/kT , ψ is the potential of the intrinsic level, and φn is the potential
of the electron quasi-Fermi level. φp is defined as the potential of the hole quasi-
Fermi level. The reference for these can be arbitrary: the intrinsic level, the
vacuum level, etc., at some point in the crystal. The last term in these equalities
is written using energies.8 Hence,

Jn = −qnµn∇φn = nµn∇ξn

and Jp = qpµp∇φp = −pµp∇ξp. (3.118)

We can also extend this equation phenomenologically for a material whose
composition is slowly changing, i.e., a material with a position dependent band
structure.9 Similar treatment implies the existence of an additional force on the
carrier resulting from the varying affinity of the carrier. For a slowly varying
composition, this may be incorporated in quite a straightforward manner. We
can write the carrier concentration as a function of the quasi-Fermi level with
the coordinate system chosen as in Figure 3.14.

n = NC exp (βψ + βφC − βφn) (3.119)

where φC is the conduction band edge potential with respect to the vacuum
level reference and NC is the effective density of states in the conduction band.
Then,

Jn = −qnµn∇φn

= −qnµn∇

{
ψ + φC − 1

β
ln

(
n

NC

)}

= qnµn

{
−∇ψ −∇

[
φC +

1

β
ln(NC)

]}
+ qDn∇n, (3.120)

and similarly,

Jp = qpµp

{
−∇ψ − ∇

[
φV − 1

β
ln(NV )

]}
− qDp∇p. (3.121)

8Our convention is to write potentials and energies w.r.t. electrons. Potential is higher
downwards while energy is higher upwards. The reader should carefully look at these con-
ventions and their reference levels, here and in the rest of the text. The reference levels are
changed depending on the problem being analyzed in order to ease the appearance of the
mathematics.

9Due to heavy doping effects the treatment of position dependent band structure is impor-
tant in homostructure devices also. Early treatment, suitable for both heterostructures and
homostructures, was related to this. See J. E. Sutherland and J. R. Hauser, “A Computer
Analysis of Heterojunction and Graded Composition Solar Cells,” IEEE Trans. on Electron

Devices, ED-24, p. 363, 1972; A. H. Marshak and K. M. Van Vliet, “Carrier Densities and
Emitter Efficiency in Degenerate Materials with Position-Dependent Band Structure,” Solid-

State Electronics, 21, p. 429, 1978; M. S. Lundstrom and R. J. Schuelke, “Numerical Analysis
of Heterostructure Semiconductor Devices,” IEEE Trans. on Electron Devices, ED-30, No.
9, p. 1151, Sep. 1983; and A. H. Marshak and C. M. Van Vliet, “Electrical Current and
Carrier Density in Degenerate Materials with Non-Uniform Band Structure,” Proc. of IEEE,
72, No. 2, p. 148, 1984.
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Figure 3.14: Choice of the reference coordinate system for calculations for an
arbitrary slow grading.

By defining

φCn = φC +
1

β
ln(NC )

and φV p = φV − 1

β
ln(NV ), (3.122)

we account for variations in electron/hole affinity, effective mass, etc. This term
can also include degeneracy effects related to high doping by addition of a term of
(kT/q) ln

[
F1/2(ηfn)/ exp (ηfn)

]
for n-type or a term of (kT/q) ln

[
F1/2(ηfp)/ exp (ηfp)

]

for p-type, the terms following directly from the differences in band occupation
statistics in Fermi–Dirac and Maxwell–Boltzmann distribution functions. So,
for degenerate conditions

φCn = φC +
1

β
ln(NC) +

1

β
ln
[
F1/2(ηfn)/ exp (ηfn)

]

and φV p = φV − 1

β
ln(NV ) − 1

β
ln
[
F1/2(ηfp)/ exp (ηfp)

]
.

(3.123)

From this, the current transport equation for slowly graded heterostructures
is

Jn = qnµn {−∇ψ − ∇φCn} + qDn∇n

and Jp = qpµp {−∇ψ − ∇φV p} − qDp∇p, (3.124)
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which, along with Poisson’s equation and the current continuity equation, allows
us to solve many interesting problems. Quite often, we actually ignore the ∇NC
and the ∇NV terms of ∇φCn and ∇φV p because they tend to be small.

3.5.1 Quasi-Static Analysis

To gain physical understanding of a device, we are initially interested in the
behavior of the device and its response in near-static conditions. We are in-
terested in how the device behaves given a certain bias applied at the device
terminals. What we want to know is how the current, e.g., in the device changes
if we change the bias of the device under very slowly varying conditions, so that
frequency-dependent effects per se are not important. This requires us to find
the quasi-static solution to the problem, the simplest and the most popular
example of device analysis.

Quasi-static solutions can be found by all the approaches and their approx-
imations that we have described. A time-independent Monte Carlo solution, or
results from the static BTE equation, or its approximation the drift-diffusion
equation, will all give a quasi-static solution. In the p–n junction problem that
we discussed, the carrier distributions were under quasi-static conditions. We
assumed steady-state (i.e., the device response had completely settled) and no
further time dependence in the applied bias. The carrier distributions, etc.,
during the time the switching occurred could be considerably different than
during the quasi-static condition, as it would appear from Figure 3.13 since the
device has large time-dependent displacement and particle current effects. All
the techniques that we have discussed can also give transient, small-signal, and
quasi-static solutions since many of the time-dependent phenomena are incor-
porated in them.

Often, the quasi-static solution is valid up to quite high frequencies. This
allows simple predictive modelling to be applied in computer aided design of
circuits. However, for both very high frequency and high speed, quite often,
this solution is not sufficient. We will discuss the differences, in the context of
devices, by finding the quasi-static solution as well as the small-signal frequency
dependent solution within the limitations of the techniques used.

3.5.2 Quasi-Neutrality

We now apply the drift-diffusion equation, derived above, to establish some
procedures that will be used repeatedly in the rest of the book. This also gives us
an opportunity to describe some of the assumptions and conditions under which
some of the analysis becomes invalid. First, consider the question of when a
semiconductor should be considered space charge “neutral” or quasi-neutral. In
the non-uniformly doped semiconductor shown in Figure 3.15, carriers separate
and generate an electric field. At thermal equilibrium, one may derive this field
using the current continuity equation as

E = −kT
q

∇n
n

=
kT

q

∇p
p
. (3.125)
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Figure 3.15: Non-uniformly doped semiconductor (a) and associated band bend-
ing (b). (b) also shows the electrostatic potential as a function of position.

This implies the existence of a space charge given by

ρ = εs∇.E. (3.126)

The question we wish to answer is when we should include the effect of this
space charge. A semiconductor is quasi-neutral, and the space charge effect can
be ignored when the space charge density is small compared to dopants placed
in the material, i.e.,

ρ� q |ND −NA| . (3.127)

Consider a compositionally homogenous semiconductor. Employing the Maxwell–
Boltzmann approximation,

dψ

dz
= −E =

kT

q

1

n

dn

dz
, (3.128)

and hence

− ρ

εs
=
d2ψ

dz2
=
kT

q

[
− 1

n2

(
dn

dz

)2

+
1

n

d2n

dz2

]
. (3.129)

For a quasi-neutral n-type material, n ≈ ND, and hence

ρ ≈ −εskT
q

[
− 1

N2

(
dN

dz

)2

+
1

N

d2n

dz2

]
. (3.130)

The condition for quasi-neutrality, then, is

εskT

q

∣∣∣∣∣−
1

N2

(
dN

dz

)2

+
1

N

d2n

dz2

∣∣∣∣∣� qN, (3.131)
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Figure 3.16: Electron concentration as a function of position resulting from the
placement of planes of doping varying in sheet density from 1 × 1011 cm−2 to
3.3 × 1012 cm−2 in lightly doped GaAs.

i.e.,

εskT

q2N
= λD

2 �
[∣∣∣∣∣−

1

N2

(
dN

dz

)2

+
1

N

d2n

dz2

∣∣∣∣∣

]−1

. (3.132)

The parameter λD, the extrinsic Debye length, is a characteristic length for
space charge screening. The mobile charge screens the disturbance created by
the fixed charge over the Debye length scale. An interesting example of this
is shown in Figure 3.16 which shows the movement of mobile charge resulting
from the placement of a plane of doping in the semiconductor. The characteristic
length of the electron tail is approximately the Debye length. The figure points
out the severe consequences of rapid change in doping. So long as the rate
of change in doping is slow enough on the Debye length scale, the material
can be considered quasi-neutral. Debye lengths for various dopings in GaAs
are summarized in Table 3.1. A rapid change in doping can break down the
condition of charge neutrality in a semiconductor, and associated space charge
effects must be considered. Only when the Debye length scale is larger than
the length scale of doping change, as described in Equation 3.132, should one
consider the material charge neutral. A lower doping makes the Debye length
large, and hence maintaining charge neutrality easier. Likewise, high doping
with a high rate of change in it has the opposite effect. An interesting aside
is that exponential profiles are always quasi-neutral; for N(z) = N0 exp (−z/λ)
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Table 3.1: Debye lengths in GaAs at 300 K.

Doping Debye Length
cm−3 cm

Intrinsic 2.3
1 × 1015 1.35× 10−4

1 × 1016 0.43× 10−4

1 × 1017 0.14× 10−4

1 × 1018 0.04× 10−4

because
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dz2
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λ2
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1
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N0

λ2
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We can also derive the condition for a varying composition structure. In-
tuitively, a rapid rate of change in composition should lead to breakdown of
quasi-neutrality. An abrupt interface, e.g., should have a large interface charge
and a significant accumulation or depletion of charge at it. On the other hand,
a linearly varying φCn should leave the material quasi-neutral, with the only
effect being that of a quasi-electric field.

Application of the same approach of compositionally homogenous material
to this compositionally heterogeneous case leads to the following inequality for
maintaining quasi-neutrality (see Problem 10):

λD
2 �

[∣∣∣∣∣−
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1
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d2n

dz2
+
( q
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)2 d2φCn
dz2
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]−1

. (3.134)

As expected, a linearly varying φCn, while satisfying the homogenous case
conditions, leads to quasi-neutrality. The effect here is the same as an expo-
nentially changing doping. An interesting aside is that for any condition under
which a compositionally homogenous material is not quasi-neutral, there exists,
theoretically, a specific compositional profile where it would be quasi-neutral in
a compositionally heterogeneous material.

3.5.3 High Frequency Small-Signal Analysis

While a detailed understanding of the quasi-static behavior of a device is ex-
tremely useful, both in understanding the specifics of the functioning of the de-
vice and in its correlation and verification using practical and easier quasi-static
measurements, it is not, and can not be, a complete predictor of the behavior
of the devices at high frequencies. High frequencies bring with them disper-
sive effects. The transport and storage of carriers is affected by the frequency
more strongly than is predicted by quasi-static modelling, and the signal atten-
uates more strongly due to losses associated with frequency-dependent phase
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Figure 3.17: A schematic distributed transmission-line representation for mod-
elling the time-varying dependence of channel control by the gate. (a) shows
the effect in a MESFET and (b) in an HFET.

and amplitude effects. A reason for this is that rapid changes in signal, as-
sociated with high frequencies or fast transients, cause a large time-dependent
displacement current. The effect of this is only partly included in quasi-static
models where capacitors are included to model charge modulation and storage
effects. Current transport is an aggregate of particle current and displacement
current. Thus, current response at high frequencies is different from that under
quasi-static conditions and hence the device behavior is too. Therefore, for high
frequency and high speed devices, in order to understand their behavior at those
frequencies, we need to model the physics of the devices at those frequencies.

Specific examples, pertaining to both the field effect transistor and the bipo-
lar transistor, clarify this importance of modelling at the frequency conditions
of interest. Consider the generic field effect transistor first. When a fast time-
varying signal is applied at the gate of the transistor, as the control region
underneath the gate also varies, the time-varying channel current responds to
these changes. In the case of a MESFET or a junction FET (JFET), the con-
trol mechanism is the movement of the edge of the gate depletion region which
occurs together with the charging and discharging at region’s edge; in the case
of insulating gate field effect transistors (examples: MOSFET, MISFET, SIS-
FET), this is build-up or build-down of the charge in the channel. This charging
and discharging occurs through both the displacement and particle current flow-
ing in the channel, and mostly or entirely displacement current flowing in the
space charge or the insulator region. The conductance in the channel region is
dependent both on time and position while the control region responds. The
response of the control region is, therefore, not identical at the different posi-
tions along the gate, and a simple description of this phenomenon would be to
model it as a distributed transmission line of conductances and capacitances as
shown in Figure 3.17. The response, in amplitude and phase, of such distributed
transmission lines is frequency-dependent.

In a bipolar transistor, displacement currents are particularly important
in the base-collector space charge regions. For a moving charge packet in a
depleted region, the termination of the electric field (an opposite polarity charge)
associated with the charge moves from one edge of the depleted transit region
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Figure 3.18: Schematic of the response in minority carrier density in the base
of a n–p–n bipolar transistor with a signal of cycle time equal to twice the base
transit time. The dashed lines represent the electron concentration distribution
under quasi-static conditions.

to the other. The transit of the charge causes a displacement current since the
electric field changes during transit of this charge. Quasi-static arguments would
ignore this current, but, at high frequencies, its effect is substantial, and the
effect of transport delay can not be ignored. Simplistically thinking, one would
expect the effect of this carrier transit to correspond to a time delay equal to the
time it takes to transit this space charge region. The delay in current response,
however, does not correspond to the transit time, and about half its value is a
better approximation if the carriers transit at a constant velocity throughout
this space charge region. We will discuss this further in our treatment of bipolar
transistors; it is a consequence of both displacement and particle current being
present. We generally ignore the amount of time it takes for a signal to cause a
change in the carrier concentration at the base-emitter junction. It is taken to
be instantaneous. Similar to the delay in the base-collector space charge region,
it should be incorporated if it becomes a significant factor in the operation of
the high frequency device. Fortunately, for useful bias conditions of the bipolar
transistor, the time it takes to store the charge in the base-emitter space charge
region, which occurs at the same time as this transit of carriers, is significantly
larger and hence we may ignore the latter.

A third example in the bipolar transistor that clarifies the frequency dis-
persion is shown in Figure 3.18. Assume that the particle density at the
base-emitter junction instantaneously responds to an applied signal, i.e., transit
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through base-emitter space charge region and the storage in the space charge
region is not limiting. If, now, one applies a high frequency signal of a cycle-
time twice the amount of time it takes for the carrier to transit the quasi-neutral
base region (no displacement current here since it is quasi-neutral), how would
the particle density respond? The input signal goes through half a cycle in the
amount of time it takes for carriers injected at the base-emitter junction to reach
the base-collector junction. So, carriers reaching the base-collector junction are
out of phase with the signal at the injecting junction. Quasi-static analysis as-
sumes that they are in phase. Dissipation occurs as a result of this phase lag,
and is important to the high frequency operation, and especially operation at a
fraction of the ultimate figures of merit that are of interest to us.

So, a small-signal analysis attempts to incorporate such effects. For such
problems, within approximations of the drift-diffusion approach, this may be
done by taking the current continuity equation and incorporating the frequency-
dependent terms in the equation. The current continuity equation is a linear
differential equation, and hence, for small-signals, linear superposition tech-
niques can be applied. For the problem, this would mean that as a function of
position z, time t, and a sinusoidal signal of frequency ω (implicitly understood
as the real part a complex signal varying as exp(jωt) for the sake of simplicity)
applied, the current densities and voltages may be written as

J(z, ω, t) = J(z) + J̃(z, ω, t) = J(z) + Ĵ(z, ω) exp (jωt) , (3.135)

and

V (z, ω, t) = V (z) + Ṽ (z, ω, t) = V (z) + V̂ (z, ω) exp (jωt) . (3.136)

The overline indicates the quasi-static current; the hat indicates the phasor of
the complex signal. The sinusoidal signal is the real part of the complex signal.

Electron densities, hole densities, and other parameters vary with frequency
in a similar fashion, because of the superposition principle. The one-dimensional
current density, and current continuity equations, with these substitutions, are

Jn(z) + Ĵn(z, ω) exp (jωt) = −q [n(z) + n̂(z, ω) exp (jωt)]µn ×
[
∂

∂z
V (z) +

∂

∂z
V̂ (z, ω) exp (jωt)

]
+

qDn
[
∂

∂z
n(z) +

∂

∂z
n̂(z, ω) exp (jωt)

]
,

(3.137)

Jp(z) + Ĵp(z, ω) exp (jωt) = −q [p(z) + p̂(z, ω) exp (jωt)]µp ×[
∂

∂z
V (z) +

∂

∂z
V̂ (z, ω) exp (jωt)

]
−

qDp
[
∂

∂z
p(z) +

∂

∂z
p̂(z, ω) exp (jωt)

]
,

(3.138)
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∂

∂t
[n(z) + n̂(z, ω) exp (jωt)] = Gn + Ĝn exp (jωt) −

Rn − R̂n exp (jωt) +

1

q

∂
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(3.139)

and

∂

∂t
[p(z) + p̂(z, ω) exp (jωt)] = Gp + Ĝp exp (jωt) −

Rp − R̂p exp (jωt) −
1

q

∂

∂z

[
Jp(z) + Ĵp(z, ω) exp (jωt)

]
.

(3.140)

These set of equations can be rewritten separately for the time independent
and and time-dependent part (varying with exp (jωt), i.e., only the fundamental
terms) as

Jn(z) = −qn(z)µn
∂

∂z
V (z) + qDn

∂

∂z
n(z), (3.141)

Jp(z) = −qp(z)µp
∂

∂z
V (z) − qDp

∂

∂z
p(z), (3.142)

0 = Gn −Rn +
1

q

∂

∂z
Jn(z), (3.143)

and

0 = Gp −Rp −
1

q

∂

∂z
Jp(z), (3.144)

for the steady-state terms, and

Ĵn(z, ω) = −q
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V̂ (z, ω) + n̂(z, ω)
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Ĵp(z, ω) = −q
[
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V̂ (z, ω) + p̂(z, ω)
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V (z)

]
− qDp
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Ĵn(z, ω), (3.147)

and
∂

∂t
p̂(z, ω) = Ĝp − R̂p −

1

q

∂

∂z
Ĵp(z, ω), (3.148)

for the time-varying terms.
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Network parameters can be determined from these, the most common one
in theoretical analysis being being y-parameters, because we directly determine
current as a function of voltage. From experiments, S-parameters are more
common since they are directly available from the apparatus, while equiva-
lent circuits are best described using h-parameters because of the high output
conductance and hence current source nature of both field effect transistors
and bipolar transistors. Network parameters are treated separately in the Ap-
pendix A. These network parameters serve several useful purposes. Microwave
circuit design and small-signal equivalent circuit modelling can be conveniently
performed using them. Device stability can be evaluated because stability fac-
tors (e.g., the Linvill stability factor) can be easily determined. Similarly, the
ultimate limits of the device both in gain (such as the unilateral gain or the max-
imum available gain) and frequency figures of merit (such as short-circuit unity
current gain frequency and maximum frequency of oscillation) can be directly
determined. The network parameters, thus, serve several useful purposes.

This analysis is still within the limits of drift-diffusion approximation. It
does not include the off-equilibrium effects that occur at small dimensions and
which allow achievement of the next level of accuracy. In the case of our FET
example, the movement of the depletion region occurs with velocities not lim-
ited by the steady-state mobility-field relationship that is incorporated in the
transport equation, but at higher velocities, because significant off-equilibrium
effects occur due to the gradient in the electric field at the edge of the space
charge region. This was shown in the example of p-n junction in our discussion
of Monte Carlo approach.

Transient and high frequency large signal conditions are two other places
where the quasi-static modelling is inadequate. We will discuss transient op-
eration as part of the treatment on devices; large signal operation will not be
covered in the text.

3.6 Boundary Conditions

Device analysis requires us to describe the operation in a chosen part. This part
defines the section that we may be capable of describing mathematically, and
that is of interest to us. However, we must be able to describe the couplings
of this section at all its boundaries. These couplings, the boundary conditions,
must be physically representative and must not cause a change in the result
from what it would have been in the absence of this sectioning. For example, in
a bipolar transistor, we may wish to describe the behavior in the semiconductor
region through some representative equations. But the coupling of the current
supplied from the power supplies, and carried in the device by the charged
carriers, electrons and holes, requires us to suitably interface the two in the
form of some mathematical model. And this holds true for voltages, etc., too.
We may wish to describe the transport as a one-dimensional simplification in the
quasi-neutral part of a base, in which case we must be able to mathematically
model the two ends, the base-emitter junction and the base-collector junction,
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Figure 3.19: Band edges and the quasi-Fermi levels of a symmetrically doped
n–p junction of GaAs in forward bias.

and these must account for the behavior of the emitter and the collector. Thus,
boundary conditions, if chosen properly, allow us to simplify the analysis of a
problem and give us a better physical insight by isolating the problem. In this
section, we will discuss some of the commonly employed boundary conditions in
device analysis by a variety of techniques. As a consequence of the discussion,
we should also get insight into the simplifications and the underlying behavior
that leads to the choice of these boundary conditions.

We discuss the more commonly used boundary conditions for drift-diffusion
analysis first.10 Most devices of interest to us incorporate p–n junctions: in
bipolar transistors for injection and collection, and in n-channel field effect tran-
sistors for isolation of the device from the substrate. Many of these devices also
incorporate ohmic contacts, metal–semiconductor contacts, or heterojunctions
to contact and modulate the carriers. Our discussion is related to these device
structures, and we will create mathematical models that can be easily intro-
duced for drift-diffusion analysis first.

3.6.1 Shockley Boundary Conditions

Let us first look at the common approximation of the constant quasi-Fermi level
in the space charge region of a homogenous p–n junction (see Figure 3.19). Since
the current carried by each carrier can be expressed in terms of the quasi-Fermi

10For an extended discussion of these, see R. M. Warner and B. L. Grung, Transistors:

Fundamentals for the Integrated-Circuit Engineer, John Wiley, N.Y. (1983).
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levels for the carrier, we can derive the quasi-Fermi level change from the edge
of the depletion region of p and n sides as

exp

(
ξn
kT

)∣∣∣∣
z=wn

− exp

(
ξn
kT

)∣∣∣∣
z=−wp

=

∫ wn

−wp

Jn exp (Ei/kT )

qnikTµn
dz, (3.149)

for electrons. Hence the change in the electron quasi-Fermi level is

∆ξn = ξn|z=wn
− ξn|z=−wp

= kT ln

{
1 +

1

qnikTµn

∫ wp

−wn

|Jn| exp
[(
Ei − ξn|z=−wp

)
/kT

]}
.

(3.150)

The change in the quasi-Fermi level is logarithmically related to the integral;
a large current flow may cause a significant drop in the quasi-Fermi levels.
To check the validity, let us assume that a significant current density is flow-
ing through the structure to cause the variation in quasi-Fermi level position.
Since a large current flows, a near flat band condition occurs. The width of
the space charge region, under these conditions, is small—certainly less than
1000 Å for typical junction conditions involving current densities of 104 A.cm−2.
Therefore, we may calculate the approximate magnitude of this integral; for
GaAs, an approximate magnitude of this is 10−2 eV assuming a mobility of
4000 cm2.V−1.s−1. Thus, our assumption of flat quasi-Fermi level is well justi-
fied for this example. Also, given this, the amount of current across this junction
is determined by the amount of current being extracted from it by the other
regions of the device, e.g., the base of the bipolar or the base of the p–n junction
(the quasi-neutral region). This does not always have to be so. If the mobility
of the material is extremely poor, or a very high current density is attempted to
be extracted, or the temperature is low, the quasi-Fermi levels may change by
substantially more than the thermal voltage, since it directly affects the integral.
Devices based on p–n junctions, operating with small changes in the quasi-Fermi
levels in any region, are said to be operating with low level injection in those
regions.

Analysis of transport in the quasi-neutral regions can be simplified in drift-
diffusion analysis because of the above. In a p–n junction, under these low
level injection conditions, where the quasi-Fermi level is flat, the carrier con-
centrations on the n-side and p-side are related through the difference in the
electrostatic potential. Under thermal equilibrium, this electrostatic potential
is the junction built-in voltage ψj0, the contact potential of the junction. This
is given by:

ψj0 =
kT

q
ln

(
NDNA
ni2

)
=
kT

q
ln

(
nn0pp0
ni2

)
, (3.151)

where ND and NA are the donor and acceptor densities, and nn0 and pp0 are
the majority carrier densities in the n-side and p-side at thermal equilibrium.
From the law of mass action, the minority carrier densities in either regions, pn0
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and np0, also satisfy
pn0nn0 = np0pp0 = ni

2, (3.152)

for homogenous junctions.
With application of a bias of V , the electrostatic potential change at the

junction is ∆ψ = ψj0 − V , so that

np(−wp) = nn0 exp

(
−qψj0 − V

kT

)

and pn(wn) = pp0 exp

(
−qψj0 − V

kT

)
. (3.153)

Under bias, the majority and minority carrier concentrations both change. In
low level injection, the percent change in majority carrier concentration is in-
significant compared to that in minority carrier concentration. Consequently
electron and hole majority carrier population change can be ignored and Equa-
tion 3.153 still remains valid. This allows us to write the equations

np(−wp) = np0 exp

(
qV

kT

)

and pn(wn) = pn0 exp

(
qV

kT

)
. (3.154)

These equations are commonly referred to as the law of the junction or Shockley
boundary conditions. In the rest of the book, we will refer to these as Shockley
boundary conditions. The use of the term “law of the junction” implies a
broad validity; these equations are valid for only low level injection conditions
in homogenous junctions. In compound semiconductor devices, quite often,
we deal with heterogeneous junctions, where this relationship is quite often
inappropriate.

Shockley boundary conditions describe an exponential relationship between
carrier densities at both edges of the depletion region. This exponential factor
is sometimes referred to as the Boltzmann factor; its derivation depends on low
level injection and Boltzmann approximation being valid. In the derivation of
the Shockley boundary conditions, we made two principal assumptions. The first
is that we extract a very insignificant fraction of the current that the junction is
capable of supplying, i.e., the current is much smaller than either the diffusion or
drift current carried by either of the carriers at the junction. We may estimate
the latter. If the junction has a doping density of 1×1018 cm−3 and the carriers
moved at a velocity of 107 cm.s−1, then the maximum current density can be
nearly 1.6 × 106 A.cm−2. The second assumption in the derivation was related
to there being an insignificant change in the majority carrier concentration at
either side of the junction.

3.6.2 Fletcher Boundary Conditions

Quite often, the latter assumption is the first one to breakdown under bias in
actual devices, and it happens in the lower doped side of the junction, e.g., in
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the base of a p–n junction or a bipolar transistor. Under these conditions, the
quasi-Fermi level is still be flat within the junction region, but the majority
carrier density in one of the regions is affected by the minority carrier injection.
Boundary conditions formulated by Fletcher and Misawa are more useful under
these conditions. We consider the Fletcher boundary conditions first. We have
derived the relationship between the carrier concentrations at the edges of the
depletion region (Equation 3.153). Rewriting these equations using Vj for the
voltage across the junction,

p(wn) = p(−wp) exp

(
−qψj0
kT

)
exp

(
qVj
kT

)

and n(−wp) = n(wn) exp

(
−qψj0
kT

)
exp

(
qVj
kT

)
. (3.155)

Since

exp

(
−qψj0
kT

)
=
pn0

pp0
=
np0
nn0

(3.156)

from the thermal equilibrium, we may rewrite these as

p(wn) = p(−wp)
pn0

pp0
exp

(
qVj
kT

)
,

and n(−wp) = n(wn)
np0
nn0

exp

(
qVj
kT

)
. (3.157)

The increase in majority carrier concentration at the edge of the depletion
region, which we ignored in the Shockley boundary condition, occurs in order
to maintain charge neutrality. Its increase therefore is equal to the increase in
the minority carrier charge at the edge of the depletion region, i.e.,

p(−wp) − pp0 = n(−wp) − np0,

and n(wn) − nn0 = n(wn) − nn0. (3.158)

These four equations describe the carrier concentrations at the edge of the
depletion region under high injection conditions but still assume flat quasi-Fermi
levels in the junction region (we ascribe the potential Vj to the change in the
junction potential). By elimination, they can be written in a more appropriate
form relating to the thermal equilibrium concentrations (see Problem 11) as

p(wn) =

[
nn0pp0 − np0pn0 exp

(
2qVj
kT

)]−1

×
[
(pp0 − np0)nn0pn0 exp

(
qVj
kT

)
+

(nn0 − pn0)np0pn0 exp

(
2qVj
kT

)]
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(3.159)

These are the Fletcher boundary conditions. They relate the electrostatic
potential change at the junction Vj, assuming no change in the quasi-Fermi
levels in the junction depletion region, with the carrier densities at the edge
of the depletion region. In the above relationships, changes in the quasi-Fermi
levels may take place in the rest of the quasi-neutral region; their effect is
included.

3.6.3 Misawa Boundary Conditions

Figure 3.20 shows the quasi-Fermi levels and the electrostatic potential at a
p–n diode under high level injection conditions. Any applied bias at the ohmic
contact can drop at the ohmic contacts, in the quasi-neutral regions, and at the
junctions. The potential Vj used in the Fletcher boundary condition equations
above is the part of the applied bias voltage that dropped at the junction. We
considered only the junction part in our analysis, and need to relate it to the
electrostatic potential changes across the device itself. As Figure 3.20 shows,
this involves knowing the changes that occur at the ohmic contacts and in the
quasi-neutral regions. We can find the other potential drops as a continuation
of our analysis, and another reason for doing this is that the Fletcher boundary
conditions are also somewhat cumbersome in appearance. A simpler form results
if we write these as products of carrier densities, and as functions of the quasi-
Fermi level splitting. This leads to a form known as the Misawa boundary
conditions.

As an extension of the discussion of Figure 3.20 consider the quasi-Fermi level
splitting and voltage drops across the junction. Excess potential drop occurs in
both the n-doped and the p-doped side. Of the applied terminal voltage V, only
part of it (Vj) drops across the junction, and the rest of it drops across in the
quasi-neutral regions. The quasi-Fermi level splitting at the junction is less than
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Figure 3.20: Band edges and the quasi-Fermi levels at a GaAs n–p junction in
high level injection.

the applied voltage. The relationship in the voltage across the junction and the
quasi-Fermi level splitting, again assuming Maxwell–Boltzmann relationship, is

Vj = φp − φn +
kT

q
ln

[
p(−wp)
pp0

]
+
kT

q
ln

[
n(wn)

nn0

]
. (3.160)

This relationship follows from the definition of an ohmic contact as a junction
where the quasi-Fermi levels merge and the carrier concentrations are equal to
their thermal equilibrium values. Misawa conditions can then be derived, and
these state (see Problem 12)

[n(−wp) +NA]n(−wp) = pp0np0 exp

(
q
φp − φn
kT

)

and p(wn) [p(wn) +ND] = pn0nn0 exp

(
q
φp − φn
kT

)
. (3.161)

The significance of the Misawa boundary conditions is in their simplicity.
They are a restatement of the Fletcher boundary conditions, having been derived
from them together with the charge neutrality equations. The approximations
made in deriving Fletcher boundary conditions are also the approximations for
Misawa boundary conditions.

The equations can also be recast in another form in terms of only the carrier
concentrations. The product of the carrier concentrations at the edges of the de-
pletion region can be written from above using the charge neutrality conditions
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as (see Problem 13)

n(−wp)p(−wp) = pp0np0 exp

(
q
φn − φp
kT

)

and n(wn)p(wn) = pn0nn0 exp

(
q
φn − φp
kT

)
. (3.162)

3.6.4 Dirichlet Boundary Conditions

We stated earlier that we may model the ohmic contact as a junction where the
carrier concentrations are equal to their values at the thermal equilibrium. This
has the physical meaning that the surface recombination velocity at the contact
is so large that any excess carrier concentration disappears due to recombi-
nation. In reality, of course, ohmic contacts may have smaller recombination
velocities. It is also possible to have a method of ohmic contact formation that
allows efficient ohmic flow of carriers of only one type as in the graded bandgap
contacts. Ga1−xInxAs (n-type) and Ga1−xSbxAs (p-type) are two examples of
such contacts to n-type and p-type GaAs, and we will discuss these examples
in Chapter 4. The former has a barrier to hole flow and the latter a barrier to
electron flow. So, ohmic contacts may be based on different principles, but they
serve one purpose: efficient supply and gathering of carriers. A good ohmic
contact provides any requisite amount of carriers with negligible voltage drop
across it, so as to not limit the device operation.

The most common types of ohmic contacts are based on the use of heavy
doping at an interface between a metal and a semiconductor with tunneling as
the physical basis for ohmicity. Most allow one of the carrier types to tunnel.
Near the surface region, carrier concentrations are determined by the character-
istics of this flow which we may embody in the surface recombination velocity
S of the contact. For a minority carrier in p-type material, the current is

Jn = qS(n − n0). (3.163)

For a p–n junction problem, this will now have to be solved self-consistently
with the the other transport parameters (see Problem 29 of Chapter 4). If
the surface recombination were infinite in the above, the carrier concentration
would be its thermal equilibrium value and the contact would be ohmic for
the minority carrier. If it is low, it may represent an emission velocity for
minority carrier into the metal, which may, for some problems, be an adequate
representation for metal–semiconductor contact. These various conditions at
interfaces bring out some common features employed in drift-diffusion modelling
in accord with the behavior of these interfaces. Mathematically, these features
can be represented in the form of an identity on the electrostatic potential or
the carrier concentration, and is referred to as a Dirichlet boundary condition.

As an example, consider the ohmic contact. There could actually be excess
immobile charge qN at the interface. The behavior of the parameters would
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follow the following mathematical equalities:

ψ − ψj0 − V = 0 (3.164)

for the electrostatic potential in a voltage controlled contact, and

∫
J .dA − I = 0 (3.165)

for current. Here, dA is the vector normal to the elemental area with the
magnitude of the elemental area. At thermal equilibrium, the carrier densities
can be found by using the law of mass action and the equation for charge
neutrality. Let the excess immobile charge at the interface be qN . The carrier
density equations at the contact are:

np = ni
2

and n− p = N. (3.166)

The last two equations for carrier densities at the contact may also be written
as

n =
1

2

(
N +

√
N2 + 4ni2

)

and p =
1

2

(
−N +

√
N2 + 4ni2

)
. (3.167)

These constitute the Dirichlet boundary conditions for ohmic contacts.
Similar boundary conditions may also be written for rectifying metal–semiconductor

contacts, although many of the diverse behaviors of various metal–semiconductor
contacts can not be written as simply. If the barrier height for injection from
the metal to the semiconductor is φB, the contact potential is ψj0, the surface
recombination velocity for the contact is Sn and Sp for electrons and holes,
then the Dirichlet boundary conditions can be derived as follows in a somewhat
simplified form. The potential follows the relationship

ψ − ψj0 + φB − V = 0. (3.168)

Using the definition of recombination velocity and the charge relationships, we
obtain the current and carrier densities are

Jn = qSn

[
n− 1

2

(
N +

√
N2 + 4ni2

)]

and Jp = qSp

[
p − 1

2

(
−N +

√
N2 + 4ni2

)]
. (3.169)

These equations constitute one form of Dirichlet boundary conditions for a
metal and semiconductor interface with surface recombination velocities of Sn
and Sp.



3.7. GENERATION AND RECOMBINATION 157

3.6.5 Neumann Boundary Conditions

Besides ohmic and rectifying interfaces, boundaries between semiconductors
and insulators are also encountered in practice. No or negligible current flows
through the insulators. Gauss’s law requires that for the electric fields normal
to the interface En in the semiconductor and in the insulator,

εsEn|sem. − εinsEn|ins. = Qsurf , (3.170)

where Qsurf is the interface charge density. If the insulator can be assumed to
be infinitely thick, the field in the insulator can be ignored and one has

εsEn|sem. = Qsurf . (3.171)

If one further assumes that the surface is charge-free, then

En|sem. = 0, (3.172)

which is often referred to as the Neumann boundary condition. In compound
semiconductors, there is significant surface state density and hence quite often
a significant surface charge. The Neumann boundary condition is rarely valid.
Fermi level pinning at the surface, which results from this surface charge, may be
incorporated in two ways. We may make the ad hoc assumption that the surface
potential is pinned due to this Fermi level pinning; this is akin to an electrostatic
potential Dirichlet boundary condition. Alternately, we may consider a large
surface state density of donor and acceptor traps that do not allow Fermi level
excursion because of charge imbalance. In this case we may use charge neutrality
including these interface charges, as well as Gauss’s law at the interface.

3.7 Generation and Recombination

In our discussion of the BTE, we emphasized the scattering events that lead to
carriers changing momentum and energy within the conduction bands or the
valence bands. In our derivation of the drift-diffusion equations from the BTE,
processes in between the conduction bands and the valence bands, described
as generation and recombination processes since they involved creation or an-
nihilation of electron–hole pairs, were introduced as another form of scattering
event.

Such interactions between carriers of opposite types are particularly impor-
tant in compound semiconductors because most of them are direct bandgap
semiconductors. Additional interactions between electrons and holes through
levels within the bandgap, due to traps, are also important in compound semi-
conductors. So, several forms of excitation processes can result in either the
recombination of electron and hole pairs or their generation. Radiative recom-
bination, usually involving band to band transitions with the energy released as
photons, is the basis of light-emitting diodes and lasers. Radiative recombina-
tion can also occur sometimes through discrete levels, e.g., in the Zn-O center
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combination in GaP. This is a unique example where one Zn-O pair forms an
isoelectronic recombination center by replacing a Ga-P pair with an energy
level in the bandgap. Recombination can also occur without the involvement
of radiative processes, such as through traps, through other processes where
momentum conservation involves phonons, and through Auger processes where
excess energy of annihilation or creation of an electron–hole pair is associated
with a third carrier. All these processes are important under different conditions
in devices.

In order to understand the statistics of these processes and their significance,
we use the principle of detailed balance which states that, for a system in thermal
equilibrium, the rate of any process and its inverse balance each other. The
adjective “detailed” emphasizes that this balance occurs in all details of the
process. Consider radiative recombination in thermal equilibrium. The detailed
balance requires that, in thermal equilibrium, the same fraction of electron–hole
recombination be radiative as is the electron–hole pair generation, and with the
same spectral characteristics as the radiation that occurs with electron–hole pair
recombination.

The principle of detailed balance is a statistical principle, whose manifesta-
tions include the principle of microscopic reversibility for probabilities instead
of rates, or Kirchoff’s law. The principle of detailed balance was used implicitly
in setting the net of scattering rates for all the scattering processes to zero, in
thermal equilibrium, in our discussion of the BTE.

3.7.1 Radiative Recombination

Let ν be the photon frequency; the principle of detailed balance allows us to
write the radiation rate in the band of dν , at the frequency ν , as

R(ν)dν = P(ν)%(ν)dν, (3.173)

where R is the emission rate, P the net probability per unit time of absorbing
a photon, and % is the photon density at the frequency ν given by

%(ν)dν =
8πν2ϑ3

c3
dν

exp (hν/kT )− 1
, (3.174)

where ϑ is the index of refraction. The total number of recombinations can now
be derived by integrating over the frequency as

R =
8πϑ2(kT )

3

c3h3

∫ ∞

0

1

τ (ν)

η2

exp (η) − 1
dη, (3.175)

where τ (ν) is the mean lifetime of the photon in the semiconductor and η =
hν/kT . This is the van Roosbroeck-Shockley relationship for radiative recom-
bination rate, valid in thermal equilibrium, and useful in calculating the shape
of the luminescence spectrum given by Equation 3.173 if the photon lifetime or
alternately the absorption coefficient α(ν) = ϑ/cτ (ν) is known.
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The radiative recombination rate is proportional to electron and hole densi-
ties that are recombining, i.e.,

Rr = crnp, (3.176)

and in thermal equilibrium,

Rr = crn0p0 = crni
2, (3.177)

so that
Rr = Rr

np

ni2
. (3.178)

Away from thermal equilibrium, the change in recombination rate is

R′

e = Re −Re =

(
n0 + n

′

)(
p0 + p

′

)

n0p0
Re −Re, (3.179)

where p
′

and n
′

are incremental deviations in carrier concentrations. For small
deviations, this gives

R′

e =

(
n

′

n0
+
p

′

p0

)
Re. (3.180)

The radiative lifetime then follows, since excess populations of either carriers
are the same and given by

τr =
n

′

R′

e

=
ni

2

n0 + p0

1

Re

. (3.181)

The capture rate cr is usually denoted by the factor B, the probability of radia-
tive recombination, and given by

B =
Re

ni2
, (3.182)

using the thermal equilibrium condition. The radiative lifetime follows as

τr =
1

B (n0 + p0)
. (3.183)

The constant B for various compound semiconductors is included in the Ap-
pendix B. This description is quite pertinent for moderate doping conditions.
It breaks down at very large doping conditions—both experiments and detailed
theory indicate that τr saturates in the limit of very high doping.

3.7.2 Hall–Shockley–Read Recombination

Traps, because they can exist in more than one charge state, have the ability
to act as recombination-generation centers. This ability comes about because
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Figure 3.21: Capture and emission processes for electrons and holes and involv-
ing a donor-like trap in n-type semiconductor.

these centers can capture an electron and/or a hole from the bands as well as
emit one to the bands. Thus, electrons and holes can recombine or lead to a
generation process at these traps. The statistics for this were first analyzed
by Hall, Shockley, and Read, and are known as Hall–Shockley–Read (HSR)
recombination.

We will consider a donor-like trap, of density NT , in an n-type crystal. Being
a donor-like trap, it exists either in a positively charged state, where we consider
a donor that exists only as a singly ionized donor of density N+

T , or in a neutral
state with density N0

T . The singly ionized state of the trap exists in the bandgap
at an energy ET . In thermal equilibrium, the distribution of these densities is

NT = N
+
T +N

0
T , (3.184)

and away from thermal equilibrium conditions,

NT = N+
T +N0

T . (3.185)

The different processes taking place between the trap and the bands are
shown in Figure 3.21. Mathematically, these processes may be represented by

N0
T

⇀↽ N+
T + e−

and N0
T + h+ ⇀↽ N+

T , (3.186)

where the first is the emission and capture process between the conduction
band and the trap, and the second describes the capture and emission process
between the valence band and the trap.

The rate of capture of electrons from the conduction band is proportional to
the number of positively-charged centers N0

T and the number of carriers available
for capture n. Thus,

Rce = cenN
+
T . (3.187)
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The rate of emission of electrons to the conduction band is proportional to the
number of neutral centers and the available states for capture in the conduction
band, i.e.,

Gce = eeN
0
T (NC − n) . (3.188)

In thermal equilibrium, the rate of capture and emission are the same so,

Rce = Gce
cen0N

+

T = eeN
0

T (NC − n0) . (3.189)

Similarly, the two processes associated with the valence band yield

Rvh = chpN
0
T (3.190)

for capture rate of holes, and

Gvh = ehN
+
T (NV − p) (3.191)

for emission rate of holes, and in thermal equilibrium

Rvh = Gvh
chp0N

0

T = ehN
+

T (NV − p0) . (3.192)

The capture rates of the traps are equal to the product of the capture cross-
section of the trap, the thermal velocity, and the density of such traps that
can capture. The capture cross-section multiplied by the thermal velocity is
a volume associated with each trap per unit time. Any carrier—and carriers
move with thermal velocities—incident within this volume gets captured. The
capture cross-section is thus a parameter which defines an area in which the
trap captures efficiently. The total volume associated with the number of traps,
then, determines the capture rate. Thus capture rate of electrons by the ionized
trap level gives

ce = σvθN
+
T . (3.193)

We evaluate the statistics under conditions in which the Boltzmann approx-
imation is valid. This also implies that the effective density of states is much
larger than the carrier concentrations in the band. Our thermal equilibrium
equations, using the principle of detailed balance, allow us to evaluate some
of the constants. The constants for emission are related to the constants for
capture as above by

ee = ce
n0

NC

N
+

T

N
0
T

, (3.194)

and

eh = ch
p0

NV

N
0

T

N
+

T

. (3.195)
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Here, we have assumed that the carrier concentration is less than the corre-
sponding effective density of states. In thermal equilibrium, we have

n0 = NC exp

(
ξf − Ec
kT

)

and p0 = NV exp

(
Ev − ξf
kT

)
=
ni

2

n0
. (3.196)

The rate of decrease of an excess carrier concentration n
′

is given by the dif-
ference between capture and emission processes

−dn
′

dt
= Rce − Gce

= ce

(
nN+

T − n0N
0
T

N
+

T

N
0
T

)

= ce

[
nN+

T −NC exp

(
−Ec − ET

kT

)
N0
T

]
. (3.197)

Similarly, from recombination and emission processes for holes, we have:

−dp
′

dt
= Rvh − Gvh

= ch

(
pN0

T − p0N
+
T

N
0
T

N
+
T

)

= ch

[
pN0

T −NV exp

(
−ET − Ev

kT

)
N+
T

]
. (3.198)

In steady-state conditions away from thermal equilibrium conditions, the rate of
change of excess electron and hole densities are identical since they only interact
with each other during generation and recombination, i.e.,

dn
′

dt
=
dp

′

dt
, (3.199)

allowing us to write the positively and neutrally charged trap densities as

N+
T = NT

[
ceNC exp

(
−Ec −ET

kT

)
+ chp

]
×

{[
n +NC exp

(
−Ec − ET

kT

)]
ce+

[
p+NV exp

(
−ET − Ev

kT

)]
ch

}−1

, (3.200)

and

N0
T = NT

[
cen+ chNV exp

(
−ET − Ev

kT

)]
×
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{[
n +NC exp

(
−Ec − ET

kT

)]
ce+

[
p+NV exp

(
−ET − Ev

kT

)]
ch

}−1

. (3.201)

This allows us to write the net rate of decrease of excess density as

−dp
′

dt
= −dn

′

dt
=

(
np− ni

2
)
×

{[
n +NC exp

(
−Ec − ET

kT

)]
1

chNT
+

[
p+NV exp

(
−ET − Ev

kT

)]
1

ceNT

}−1

.

(3.202)

This expression relates the net rate of change in carrier concentration with
time, i.e., −U = G −R = dp

′

/dt = dn
′

/dt.
Usually, one defines parameters τp0 and τn0 as

τp0 =
1

chNT

and τn0 =
1

ceNT
. (3.203)

and hence the minority carrier lifetime for the n-type semiconductor, for a
donor-like trap with a single state, is

τp = − p
′

dp′/dt

=
p

′

np− ni2
×
{[
n+NC exp

(
−Ec − ET

kT

)]
τp0+

[
p+NV exp

(
−ET −Ev

kT

)]
τn0

}
, (3.204)

and majority carrier lifetime is

τn = − n
′

dn′/dt

=
n

′

np− ni2
×

{[
n+NC exp

(
−Ec −ET

kT

)]
τp0+

[
p+NV exp

(
−ET −Ev

kT

)]
τn0

}
. (3.205)
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In deriving the above equations we considered a single level donor-like trap in
the limit of Maxwell–Boltzmann approximation. Traps can be acceptor-like; the
equations have the same form as above. A considerably more complex situation
occurs when a trap has multiple levels in the band, e.g., transition metals with
incomplete d-orbitals usually have several levels associated with different states
of ionization. Chromium, e.g., has three levels within the bandgap of GaAs,
and it is among the impurities used to obtain semi-insulating GaAs. Statistics
in such situations can be quite complicated, because the presence of one state
excludes the other. The method of grand partition function to obtain the statis-
tics, summarized in the previous chapter for the statistics of discrete levels, is
particularly useful in such situations. Problem 23 discusses such a complicated
problem, and its implication on lifetimes.

3.7.3 Auger Recombination

Electrons and holes can recombine, without the HSR type interaction at a trap
or the involvement of photon emission, by releasing the excess energy to another
carrier. Such processes involving more than two carriers are usually referred
to as Auger processes. Impact ionization, discussed earlier, is actually one
example of an Auger process, a generation process that involves the creation of
an additional electron–hole pair due to the excess energy of a hot carrier.

The number of Auger recombination processes is large. Auger transitions
may take place through band-to-band, band-to-shallow levels, shallow levels-to-
shallow levels transitions involving excitons, etc. In all these cases the excess
energy released in the transition is picked up by a mobile carrier. Because of
the involvement of carriers, shallow levels, and transition across much of the
bandgap, the process becomes stronger both with increase in doping and by re-
duction in bandgap. In small bandgap materials, it is also strongly temperature-
dependent. Electrons are also more easily likely to get energetic since they usu-
ally have a lighter mass. Light holes are also likely to pick up excess energy;
however, most holes exist as heavy holes because of the larger density of states
for heavy hole band. Band structure is therefore very central to how and which
Auger recombination processes are important, as it is for its inverse, the Auger
generation process.

We can derive the statistics for this process in a similar manner to those for
HSR recombination. When the excess energy is received by an electron in the
conduction band, we have interaction taking place between two electrons and
one hole. Thus,

RAe ∝ n2p, (3.206)

and in thermal equilibrium
RAe ∝ n2

0p0. (3.207)

The generation process depends only on the electron concentration

GAe ∝ n, (3.208)
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and in thermal equilibrium,

GAe ∝ n0. (3.209)

Relating the rates using the principle of detailed balance, in thermal equi-
librium,

GAe = RAe, (3.210)

so, away from thermal equilibrium,

RAe = RAe
n2p

n2
0p0

, (3.211)

and

GAe = GAe
n

n0
, (3.212)

and

RAe − GAe = GAe
(
n2p

n2
0p0

− n

n0

)
= γnn

(
np− ni

2
)
, (3.213)

where

γn = GAe
1

n2
0p0

(3.214)

is an Auger constant. An equivalent expression for holes is

RAh − GAh = γpp
(
np− ni

2
)
. (3.215)

Consequently, the net Auger recombination rate due to electrons and holes is
given by:

UA = RAe − GAe + RAh − GAh = (γnn+ γpp)
(
np− ni

2
)
. (3.216)

We can show that under low level injection these expressions reduce to a
form where the net recombination rate is proportional to the excess carrier
concentration (see Problem 14). For p-type material, such as the base of a
bipolar transistor, the net recombination rate is

UA = γpNA
2n

′

, (3.217)

where n
′

is the excess carrier concentration. Using this, in a way similar to that
of HSR recombination, an Auger lifetime can be defined whose magnitude is

τA =
1

γpNA
2 . (3.218)

For most semiconductors, where the band to band Auger processes dominate,
in the limit of heavy doping the lifetime does appear to follow an inverse de-
pendence with the square root of the doping.
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3.7.4 Surface Recombination

In this discussion of the behavior of excess carriers, a particularly important
one both at surfaces and in treatments of certain boundary conditions, is that
of recombination at surfaces11 and also by extension at interfaces. Compound
semiconductor surfaces usually occur with considerable numbers of states in the
forbidden gap. Generally, there is a distribution of states and the surface is quite
often pinned because of the large number of states. Sometimes this pinning may
occur in the bands, e.g., in InAs it occurs in conduction band while for GaSb
it occurs in the valence band. When these states occur in the forbidden gap,
recombination transitions occur through the non-radiative HSR process at the
surface. Carriers within a few diffusion lengths can readily recombine, leading
to a net flow of current to the surface that we will call surface recombination
current.

The treatment of surface recombination is actually quite complex. Simple
relations, however, can be derived for low level injection conditions. When
excess carriers exist in the bulk, we can derive the diffusive current towards the
surface for a uniformly doped sample. It is this diffusive flux that supplies the
surface recombination current under low level injection conditions. We will treat
this first in a simple way, to show the simplified equations that are used in the
Dirichlet boundary conditions and that readily lead to the concept of surface
recombination velocity. Following that, we will discuss where this simplified
treatment will break down.

Let %s be the reflection coefficient at the surface representing the proba-
bility that a particle returns to the bulk without recombining at the surface.
Similarly, let %b be the reflection coefficient representing the probability that a
carrier headed towards the bulk will show up at the surface. We assume, for
the simple analysis, that these are independent of current density and carrier
concentrations. Following Figure 3.22, the total flux Fs to the surface from the
bulk is given by

Fs = Fi + %bFb, (3.219)

where Fi is the incident flux and Fb is the total reverse flux. Likewise, we may
write the total flux from the surface to the bulk as

Fb = Gs + %sFs, (3.220)

where Gs is the generation rate at the surface. The total fluxes, in terms of the
reflection parameters, generation rate, and the incident flux, are

Fs =
Fi + %bGs
1 − %s%b

and Fb =
Gs + %sFi
1 − %s%b

. (3.221)

11Our comments here closely follow the discussion in J. P. McKelvey, Solid State and Semi-

conductor Physics, Krieger, Malabar, FL (1982).
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Figure 3.22: Fluxes of carriers representing transport processes taking place
in the surface region of semiconductors during surface recombination. After
J. P. McKelvey, Solid State and Semiconductor Physics, Krieger, Malabar, FL
(1982).

For a classical gas distribution, i.e., for non-degenerate materials, the fluxes Fs
and Fb are related to the thermal velocity and the free carrier concentration
as ≈ nvθ/4, which reduces to ≈ n0vθ/4 in thermal equilibrium. This follows
from the argument that, at any given instant of time, half of the carriers are
directed towards the surface, and since their direction is random they have an
average velocity of ≈ vθ/2 in the orthogonal direction. This allows us to write
the generation rate and the incident flux F i, at thermal equilibrium, at the
surface, as

Gs =
n0vθ

4
(1 − %s)

and F i =
n0vθ

4
(1 − %b) . (3.222)

Note that the generation rate remains constant; this follows using similar argu-
ments as with the HSR recombination mechanism. Departure from equilibrium
results in a disparity between the net flux to and from the surface, the differ-
ence of which is the recombination flux. The method applied here is similar to
that sometimes used in discussion of metal–semiconductor junctions. The flux
directed towards the surface originates from a distance on average equal to the
mean free path. Thus, the fluxes to and from the surface at any position are

Fs =
vθ
4

(
n− γ

dn

dz

)
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and Fb =
vθ
4

(
n+ γ

dn

dz

)
, (3.223)

where γ is a proportionality constant. The sum of the surface and bulk fluxes
is nsvθ/4 at the surface. Our equations may now be used to determine the
incident flux as

Fi =
nsvθ

2

1 − %s%b
1 + %s

− n0vθ
4

(1 + %b)
1− %s
1 + %s

, (3.224)

and hence the net flux of carriers, assuming only diffusive transport of carriers
is

F|surf = Fs − Fb =
ns − n0

2
vθ

1 − %s
1 + %s

= −Dn
dn

′

dz

∣∣∣∣∣
surf

. (3.225)

This is simply written as

−Dn
dn

′

dz

∣∣∣∣∣
s

= S ∆n|s , (3.226)

with S, the surface recombination velocity, as

S =
vθ
2

1 − %s
1 + %s

. (3.227)

Note that if all carriers incident at the surface recombine, then the surface re-
combination velocity is vθ/2, its largest value. Assuming an infinite surface
recombination velocity, as is common for many boundaries encountered in de-
vice modelling, is tantamount to assuming that the excess carrier concentration
at the surface is zero. For many practical cases, this assumption is justified. The
function %s represents the statistics of recombination at the surface, because it
represents the probability that a carrier will return. Thus, 1 − %s is propor-
tional to the recombination rate at the surface. We have discussed the statistics
of HSR recombination; these also hold for most surfaces, because the recombi-
nation occurs through deep traps. The recombination rate at the surface can
be represented by similar expressions to those used for a single level. Assuming
that there exists a single dominating trap level, the surface recombination rate
is

R = σnσpvθNTs
nsps − ni

2

(ns + nTs)σn + (ps + pTs)σp
, (3.228)

where ns and ps are the surface carrier concentrations, and nTs and pTs are the
surface carrier concentrations if the Fermi level were at the trap level. Consider
an example that is a simplification of this. For a trap with equal hole and
electron capture cross-section, if the electron is a minority carrier hence if hole
concentrations are large, then the recombination rate is

Rs ≈ σvθNTsns. (3.229)
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The rate of recombination of electrons, per unit time, per unit area, is given by
the above expression. The reflection coefficient is related to this rate since it ex-
presses the probability of not recombining (see Problem 15). The recombination
rate is proportional to the carrier concentration; it is provided by the difference
of incident and reflected flux, and the constant of proportionality σvθNTs is the
surface recombination velocity in the absence of any surface space charge, with
identical conditions at the surface as in the bulk. For low interface state density
oxide-silicon interfaces, σ ≈ 10−16 cm2 and NTs ≈ 1010 cm−2, resulting in a
surface recombination velocity on the order of ≈ 10 cm.s−1. In compound semi-
conductors such as GaAs, even if we ignore the effect of surface space charge and
other effects which we will soon discuss, NTs ≈ 1014 cm−2, σ ≈ 10−15 cm−2,
and hence surface recombination velocity is of the order of 106 cm.s−1. Strictly
speaking, recombination rate characterizes the surface effectively for most pur-
poses. Surface recombination velocity is a concept introduced because it char-
acterizes a meaningful constant in some situations. If, in an ad hoc manner,
we defined it as a parameter that related the recombination rate to the excess
carrier concentration, then it would vary as a function of biasing condition, etc.,
because the above is only a simple derivation from the more complicated HSR
expression.

3.7.5 Surface Recombination with Fermi Level Pinning

In the presence of a charge region at the surface, the surface recombination
velocity takes an even more complicated form. It now depends on the surface
state density, the characteristics of the surface states, surface charge, etc.—
parameters which determine the surface carrier concentrations. We can see
from the relationships above that it will actually go through a maximum when
σn (ns + nTs) + σp (ps + pTs) goes through a minimum. This will occur when
both electron capture and hole capture processes are equally active, i.e., when
the quasi-Fermi levels straddle the trap level.

Since the surface space charge situation is important to most compound
semiconductors, we will look at it in more detail. We consider variations in-
troduced on our simple model due to the presence of band bending from Fermi
level pinning. For low level injection (see Figure 3.23), we may again derive a
relationship that relates surface carrier concentrations to the bulk. The pres-
ence of surface depletion changes the thermal equilibrium concentration at the
surface—in the case of Figure 3.23 this would mean changing from the bulk
thermal equilibrium magnitude by the Boltzmann exponential related to the to-
tal band bending at the surface. The total recombination rate is a more general
case of the above, where we again ignore the nTs and pTs terms and the intinsic
carrier density terms, as

Rs = σnσpvθnvθpNTs
nsps

nsσnvθn + psσpvθp
. (3.230)

Let the bulk value of carrier concentrations be n0 and p0 under thermal equilib-
rium, and let n and p be the bulk values under the low level injection condition.
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Figure 3.23: Band diagram for estimating surface recombination at a trap, in
the presence of Fermi level pinning, at (a) thermal equilibrium, and (b) low level
injection conditions.

If the recombination is the rate-limiting step, then the low level injection condi-
tion implies flat quasi-Fermi levels between the bulk and the surface. If the total
band bending is ∆ψS from the bulk, the carrier concentration at the surface is

ns = n exp

(
−q∆ψS

kT

)

and ps = p exp

(
q∆ψS
kT

)
, (3.231)

with

np = ni
2 exp

(
ξn − ξp
kT

)
, (3.232)

at both the surface and in the bulk. The surface recombination rate can, then,
be written as

Rs =
(σnσpvθnvθp)

1/2
NTs(nsps)

1/2

(nsσnvθn/psσpvθp)
1/2

+ (psσpvθp/nsσnvθn)
1/2

. (3.233)

The occupation probability f of the trap NTs at the surface is given by

f =
σnvθnns + σpvθppTs

σnvθn (ns + nTs) + σpvθp (p + pTs)
. (3.234)
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Since, at thermal equilibrium, the Fermi level is pinned at the trap level ET ,
the occupation probability is very close to 1/2 (see Problem 16). Away from
thermal equilibrium, the resultant surface charge density is given by

Qs = qNTs

(
f − 1

2

)
=
qNTs

2

σnvθnns − σpvθpps
σnvθnns + σpvθpps

, (3.235)

where we again ignore the insignificant terms away from thermal equilibrium.
For large trap densities that lead to Fermi level pinning, this charge is insignifi-
cant compared to the charge qNTs if all the traps were ionized, or equivalently
only a very small deviation from the 1/2 occupation probability occurs. This,
however, implies that

ns
ps

=
σpvθp
σnvθn

. (3.236)

The ratio of carrier concentrations at the surface is a constant, and in a large
trap density, and low level injection limit, the recombination rate is

Rs =
(σnσpvθnvθp)

1/2
NTs

2
(nsps)

1/2
. (3.237)

The recombination rate is not proportional to the minority carrier concen-
tration any more; it is proportional to the square root of the electron and hole
concentration at the surface, and since the quasi-Fermi levels are flat, it is also
proportional to the square root of the electron and hole concentration in the
bulk. A consequence of this is an exp (qV/2kT ) dependence of surface recombi-
nation current for low level injection bias conditions where this analysis applies.
This square root dependence also appears for recombination in a p-n junction
space charge region, and is responsible for similar exp (qV/2kT ) dependence
there.

Surface recombination velocity, defined as a pre-factor to excess minority
concentration during recombination calculations, is no longer a constant but a
function of bias conditions. Arguments have been forwarded that we should
define surface recombination velocity in an alternate form that preserves a con-
stancy.12 In the above, one may introduce s0 as an intrinsic surface recombina-
tion velocity that follows the recombination relation

Rs = S0
√
nsps. (3.238)

This intrinsic recombination velocity is related to the conventional definition of
surface recombination velocity in terms of excess carrier concentration (e.g., one
useful in Dirichlet boundary conditions) via

S = S0

√
ns
ps
. (3.239)

12See the discussion in G. J. Rees, “Surface Recombination Velocity—a Useful Concept?”
Solid-State Electronics, 28, No. 5, p. 517, 1985, and P. De Visschere, “Comment on G. J.
Rees ‘Surface Recombination Velocity—a Useful Concept?’ ” Solid-State Electronics, 29, No.
11, p. 1161, 1986.
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Figure 3.24: The quasi-Fermi levels and conduction and valence band edges in
the presence of a high surface recombination rate.

Intrinsic surface recombination velocity is the surface recombination velocity
that occurs when the electron and hole densities at the surface are equal. Rig-
orous calculations of these parameters show that significant deviations occur at
high level injection conditions, where our theory does not appear valid. Differ-
ences also occur when the surface recombination rate is the rate-limiting step.
Under these conditions, the band diagram and the quasi-Fermi levels look as in
Figure 3.24, indicating that the carrier flux needed for recombination occurs via
both drift and diffusion at the surface.

We will continue discussion for the more complicated cases of this subject
in Chapter 7 on bipolar transistors. Here, we have only considered the one-
dimensional situation and have assumed the quasi-Fermi levels to be constant.
The trap recombination statistics have to be self-consistently analyzed with the
ability of the semiconductor to provide the carriers for recombination at the
surface. A changing quasi-Fermi level implies that supply of carriers becomes
a rate-limiting step. The recombination rate is now limited by supply of car-
riers from the bulk and does not necessarily follow this analysis. Additionally,
in real devices, two-dimensional considerations predominate under certain bias
conditions, i.e., carriers injected along the channel occurring due to Fermi level
pinning must also be considered in our analysis.
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3.8 Summary

This chapter reviewed and developed methods of analysis that will be used in
the rest of the book. In particular, we have emphasized the approximations
of various approaches, and how one may isolate sections of a larger problem
in order to analyze related behavior. To do this we use appropriate boundary
conditions, which mimic the behavior at the interface where a section is isolated,
and the appropriate model to describe the events taking place within the section.

The first method of analysis considered is based on a simple treatment of the
kinetics of particles treated as an ensemble. This was the particle kinetic ap-
proach and allowed us to develop meaningful methods for analysis of information
related to low-field mobility, etc. The second method is the Boltzmann Trans-
port Equation, which considers the use of distribution functions describing the
phase space behavior of particles. The development of this distribution function,
or the moments of it (statistical averages corresponding to macroscopic proper-
ties) in time allows us to describe the behavior of the system. However, in order
to obtain results conveniently, while still maintaining the basis in distribution
functions, we had to limit the methodology to displaced Maxwell–Boltzmann
distributions and we had to approximate scattering effects by relaxation time
approximations. The method, thus, deserves to be used with extreme caution.
These limitations are avoided, at the expense of demanding numerical compu-
tation, in the Monte Carlo approach where statistics are developed either for
an individual particle or an ensemble of particles. The limitations of the Monte
Carlo approach are related to the adequacy of the description of the processes
taking place in the semiconductor. The collection of a vast amount of statistics
on particles avoids the need to assume certain distribution functions for the
particles as required in the Boltzmann Transport Approach.

Conventional semiconductor devices are usually analyzed within the drift-
diffusion approximation. We derived the relevant semiconductor transport equa-
tions from the Boltzmann Transport Equation and discussed the limitations and
approximations in making the simplification to drift-diffusion equation. We
also showed how one may derive small-signal solutions to transport problems
of interest based on this approach by considering the frequency dependence in
the drift-diffusion equation. In the rest of the book, although this approach
is stressed the most, we will also resort to Monte Carlo approach where the
application of drift-diffusion is clearly inadequate.

In analyzing device problems with any of these approaches, we still need to
consider models for the boundaries of the system. Many p–n junction problems
can be analyzed adequately with the use of Shockley and Fletcher or Misawa
boundary conditions. These boundary conditions allow one to determine the
carrier densities over a range of biases in device structures where such junctions
exist, one example being the bipolar transistor. We also considered Dirichlet
boundary conditions that can be applied at many semiconductor interfaces—
metal–semiconductor junctions, ohmic contacts, and high recombination sur-
faces being some examples. Finally we considered the use of Neumann bound-
ary conditions at semiconductor surfaces. Recombination is a particularly strong
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and important attribute of compound semiconductors; they are largely direct
bandgap materials and hence exhibit radiative recombination. In addition, they
have a large trap density and therefore a large non-radiative recombination. In
addition, the smaller bandgap semiconductors can have significant Auger recom-
bination. The necessary underlying mathematical basis of all these processes
was discussed together with that for surface recombination.
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Problems

1. We have derived the low field mobility relationship as a function of a single
time constant; this is an idealization of a single valley semiconductor. At
higher fields, though, more than one valley may contribute to conduction.
GaAs, e.g., at fields of ≈ 3.0 × 103 V.cm−1, also exhibits conduction in
the L valley and to a lesser extent in the X valley. Consider the problem
of conduction in two valleys and derive the mobility relationship assuming
that a single time constant characterizes momentum relaxation in each of
these valleys.

2. An important problem encountered in minority carrier devices using low
dopings or high injection—such as p–i–n diodes, thyristors, and bipolar
transistors—is the problem of conduction when both minority carriers
and majority carriers are present in sufficient numbers to be strong con-
tributors to current. The problem is usually encountered only at small
electric fields. Derive the mobility relationship important in such condi-
tions, expressing it in terms of single time constant approximations for
both electrons and holes. This mobility is commonly referred to as the
ambipolar mobility.
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3. For a parameter ϕ(E) related to transport, show that the weighted average
over all carriers is given by the relationship

〈ϕ〉 = −2
∫∞

0 ϕ(E)g(E) (∂f(E)/∂E)EdE

3
∫∞

0 g(E)f(E)dE
(3.240)

which reduces to

〈ϕ〉 =

∫∞

0 ϕ(E)E3/2 exp (−E/kT ) dE∫∞

0 E3/2 exp (−E/kT ) dE
(3.241)

in the Boltzmann approximation for semiconductors with parabolic bands.

4. Show, using the kinetic approach, that the current obeys the relationship
in Equation 3.25 in the presence of a small electric and magnetic field.

5. Show that the Hall pre-factor r for acoustic deformation potential scat-
tering is given as

r =
3π

8
. (3.242)

6. The thermal velocity vθ =
√

8kT/πm∗ is the root mean square speed
or the root mean square of the magnitude of velocity. What is the most
probable speed or magnitude of velocity in the Boltzmann approximation?

7. For a carrier density of n, show that the flux of carriers in any direction
is given by nvθ/4.

8. The internal energy per unit volume, following our discussion of thermal
velocity, etc., is

W =

∫ ∞

0

Ef(E)D(E)dE. (3.243)

Show that, for the Maxwell–Boltzmann approximation, this leads to W =
3nkT/2, where n is the carrier density. At absolute zero, show that the
energy is W = 3nξf/5.

9. Consider the problem of transport in external and built-in fields. Using
the relationship between the perturbation in the distribution function and
the isotropy of the semiconductor, and assuming randomizing scattering
processes, show that the drift velocities are related as

vd =
∆E
E0

v
′

d. (3.244)
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10. Show that a non-homogenous semiconductor can be treated as quasi-
neutral provided

λD
2 �

[∣∣∣∣∣−
1

N2

(
dN

dz

)2

+
1

N

d2n

dz2
+
( q

kT

)2 d2φCn
dz2

∣∣∣∣∣

]−1

. (3.245)

11. Derive the Fletcher boundary conditions (Equation 3.159) from the re-
lationships between carrier concentrations at the edge of the depletion
region and the condition of charge neutrality.

12. Show, mathematically, that the Fletcher boundary conditions (Equation 3.159)
and the Misawa boundary conditions (Equation 3.161) are equivalent.

13. Show that the Misawa boundary conditions stated in Equation 3.161 and
Equation 3.162 are equivalent.

14. Show that under low level injection, the expression for the Auger recom-
bination rate reduces to a direct proportionality to the excess carrier con-
centration with the proportionality constant dependent on the square of
dopant concentration.

15. Argue how the recombination rate at the surface is related to the reflection
coefficient at the surface. Cast the relationship in a mathematical form.

16. Show that if the Fermi level is pinned at the surface, i.e., if the sheet den-
sity of traps substantially exceeds the sheet charge density in the surface
depletion region, then the occupation probability of a trap level is close
to 1/2. Under what conditions may this break down?

17. Is it possible for the momentum relaxation time to be larger than the
energy relaxation time? Explain how, and if true what would the conse-
quences be?

18. Assuming Boltzmann and relaxation time approximation, and small de-
parture from thermal equilibrium, show, using the BTE approach, that a
gradient of carrier density leads to diffusion whose diffusion coefficient is
λvθ/3 where λ is the mean free path.

19. Consider a semi-infinite n-type sample of GaAs doped to 1016 cm−3 and
with a mid-gap trap that has identical electron and hole capture cross-
sections of 10−15 cm−2. Derive, using justifiable simplifications, the ex-
pression for decay of excess carriers in both the low injection limit and
the high injection limit. What are the short time and long time limits if
1015 cm−3 carriers were created? What are the short and long time limits
if 1017 cm−3 carriers were created?
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20. If τn0 = τp0 = τ0, show that the maximum lifetime occurs when the
intrinsic and Fermi energy coincide. Show that this lifetime is

τ = τ0

[
1 + cosh

(
ET −Ei
kT

)]
. (3.246)

21. If the flux of carriers in any direction is given as nvθ/4, how can the surface
recombination velocity exceed vθ/4?

22. In this problem, we will evaluate statistics of trap energy levels arising
from independent defects. Consider a semiconductor with two defects
associated with energy levels E1 and E2.

(a) What is the occupation probability of the two levels?

(b) If the Fermi energy is between the two levels with E2 − ξf � kT ,
what do the occupation probabilities reduce to?

23. We now extend the previous problem to analysis of recombination in a
semiconductor when the energy levels arise from the same impurity. A
technologically relevant example of this is gold, a transition element, as a
substitutional impurity in silicon. In GaAs, multiple levels occur due to
chromium, and will be discussed in Chapter 5. For gold, a closed d-shell
is inert. A positively charged state can accept an electron, a negatively
charged state can donate an electron. The higher negatively charged states
occur in the valence band. So, the substitutional impurity in Si causes a
lower energy level ED, a donor level, and a higher energy level EA, an
acceptor level.

(a) Calculate the equilibrium density of Au atoms in the positively charged
state (N+

T ), the density of Au atoms in the neutral charge state (N0
T ),

the density of Au atoms in the negatively charged state (N−
T ), and

the total charge density on Au. Consider the degeneracies as ga, and
gd.

(b) What are the rate equations? Let σ+
n represent the capture cross-

section for the electron capture process on the donor site leading to
a capture rate of c+n . Let σ0

n represent the capture cross-section for
the capture of an electron on an acceptor leading to the capture rate
of c0n. Let σ0

p represent the capture cross-section for the hole capture
process on the donor site leading to a capture rate of c0p. Let σ−

p

represent the capture cross-section for the capture of a hole on an
acceptor leading to the capture rate of c−p . Let e0n, e−n , e+p , and e0p
identify the electron and hole emission rates from donor and acceptor
sites.

(c) Invoke the principle of detailed balance to evaluate the emission rates
in terms of the capture rates at thermal equilibrium.

(d) What is the low level neutral region recombination rate?
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(e) Calculate the low level neutral region minority carrier lifetime for
trap concentrations significantly smaller than the shallow donor con-
centration.

(f) In high level injection conditions, what is the the limiting form of the
lifetime?

(g) Capture cross-sections for Au in Si, at 300 K, are as follows: σ+
n =

3.5 × 10−15 cm2, σ0
n = 5.0 × 10−16 cm2, σ−

p = 1.0 × 10−15 cm2, and
σ0
p = 3.0×10−16 cm2. Assuming that recombination occurs only due

to Au in Si, what are the low-level and majority carrier lifetimes for
1016 cm−3 Au-doped Si at 300 K for intrinsic material, 1016 cm−3

n-type material, and 1016 cm−3 p-type material?

24. Let ED and gd be the donor energy in a semiconductor sample that is
n-type but compensated. Show that the carrier concentration is related
as

n

(
n +NA − n2

i

n

)
=
NC
gd

(
ND −NA − n+

n2
i

n

)
exp

(
−Ec − ED

kT

)
.

(3.247)
How does the activation energy behave in a plot of carrier concentration
with temperature in different temperature ranges?
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Chapter 4

Transport Across Junctions

4.1 Introduction

We begin our analysis of devices by first studying two-terminal structures.
The theory and understanding of these are important to the understanding
of transistors, since junctions are natural parts of these devices. For exam-
ple, metal–semiconductor junctions are used to control the channel of a metal–
semiconductor field effect transistor, p–n junctions are the basis for both in-
jection and isolation in bipolar transistors, and heterojunctions are applicable
to both field effect transistors and bipolar transistors. This discussion serves
another useful purpose: it allows us to discuss applications of the methods of
analysis of the previous chapter in simpler structures, even as they have the
richness and diversity that clearly exemplify the approximations of our analysis
techniques.

This chapter discusses transport at junctions formed between metals and
semiconductors, and semiconductors and semiconductors. Drift-diffusion, thermionic
emission, and thermionic field emission theories are developed for the metal–
semiconductor junctions exemplifying assumptions of equilibrium between the
electrons in metal and semiconductor in the drift-diffusion theory, or the lack
thereof with significant hot carrier effects in the other theories. The drift-
diffusion and the thermionic emission theories are then serially combined to
show a theory that still assumes a classical drift-diffusion equation and hence
its assumptions of distribution functions. We have discussed transport in built-
in and applied fields in p–n junctions when discussing the relative merits of the
Monte Carlo and the BTE approaches and have pointed out their effects on the
distribution function. That discussion, however, did not bring out a particularly
severe approximation in the distribution function at the metal–semiconductor
junction itself because of the negligible flow of carriers from the metal into
the semiconductor and because almost all carriers entering the metal are lost.
Thus, this discussion of metal–semiconductor transport theories brings out the
breadth of the problem quite well.

181
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The discussion of metal–semiconductor junctions is naturally amenable to
extensions involving transport across heterojunction discontinuities. In trans-
port across heterojunctions, processes encountered in metal–semiconductor junc-
tions are still equally important, but with some additional complications. Now,
the transport across the abrupt barrier from one semiconductor to the other can
not be dealt with as simplistically as in the metal–semiconductor case, because
the barriers are smaller and the scattering rates and energy losses in the semi-
conductors are much smaller than in a metal. The latter additionally leads to a
fair fraction of injected carriers being capable of returning, should their momen-
tum change direction. The lower barrier heights of heterojunctions also results
in an increased importance of tunneling, with energy conservation (elastic) and
without energy conservation (inelastic), and a particularly interesting example
of resonance transmission in the form of resonant Fowler–Nordheim tunneling.
This is therefore discussed in the context of heterojunctions.

The p–n junction transport in quasi-static approximation is discussed next,
to develop examples in high injection, to point out some of its assumptions,
and to develop a general charge control approach that is commonly known as
the Gummel–Poon analysis after its originators. This analysis will be extended,
like the earlier discussions of other junctions, in our discussion of three-terminal
device structures. The p–n junctions can also be formed with heterojunctions
and are the basis of heterostructure bipolar transistors; the discussion ends with
this subject.

The chapter concludes with a discussion of ohmic contacts, the most general
forms of which are based on tunneling between metals and semiconductors.

4.2 Metal–Semiconductor Junctions

We start with a preliminary discussion of contacts. Consider two metals far
away. The metals are neutral, they have differing Fermi energies, which char-
acterize the average energy of carriers with respect to the vacuum. When these
metals are brought together with a return path for the flow of carriers, as shown
in Figure 4.1, carriers move from one to the other until the electrochemical po-
tential is identical. Carriers move from higher energy to lower energy, so that, in
thermal equilibrium, the equilibrium Fermi energy lies in between. The charge
transfer results in formation of an electric dipole at the interface that also allows
the discontinuous change in the vacuum level.

The electrostatic potential differences in the bulk, when the metals are sep-
arated, are

µ1 = Evac − qφ1

and µ2 = Evac − qφ2, (4.1)

and in contact, in thermal equilibrium,

µ1 = Evac − qφ1 − qψ10

and µ2 = Evac − qφ2 − qψ20,
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Figure 4.1: The vacuum level and the Fermi level of two metals separated is
shown in (a), and in (b) the levels are shown when the two metals are brought
together in contact with a path for current flow. The lower part of (b) shows
the electric dipole formed at the interface due to charge transfer.

(4.2)

and the two chemical potentials are equal,

µ1 = µ2, (4.3)

so that
ψ20 − ψ10 = φ1 − φ2. (4.4)

The differences in electrostatic potential balance differences in chemical poten-
tial when the two metals are brought in contact and are in thermal equilibrium.

Now let us extend this picture to an idealized metal–semiconductor junction
as shown in Figure 4.2. Here, we have assumed that interface effects play no
role, an assumption that is often incorrect. For now, this serves as a simplified
example. When the contact is formed, electrons at the Fermi level in the metal
see a barrier of height qφB ,1 and the electrons at the conduction band edge in
the semiconductor see a barrier of height qψj0. In thermal equilibrium, for this
idealized situation, these barrier heights from the metal to the semiconductor
and from the semiconductor to the metal are related by

qφB = q (φm − χ)

and qψj0 = q (φm − χ) − qVn, (4.5)

1We also use qφM to denote this barrier height elsewhere in this text.
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Figure 4.2: Formation of an idealized metal–semiconductor diode; (a) shows
the vacuum levels, band edges, work functions, and electron affinities, and (b)
shows these in contact in thermal equilibrium with a current path for electron
transfer.

where qVn = Ec− ξf is evaluated in the bulk. The approximation in the above
is the neglect of interface effects. Usually, semiconductors have a significant
number of interface states, quite often in the bandgap. Interface states also
occur due to surface reconstruction when a metal is placed in intimate contact
on a nascent semiconductor surface. The metal–semiconductor barrier height,
therefore, is never quite in accord with the above. Silicon comes close, but
most compound semiconductors do not. In practice, therefore, we replace the
metal–semiconductor barrier height by the experimentally measured values.

When we forward or reverse bias this junction (see Figure 4.3), the barrier
for injection from the semiconductor to the metal is either reduced or increased.
In the forward direction, a reduced barrier results in an increase in injection
into the metal of electrons from the semiconductor, while in the reverse direc-
tion, an increased barrier results in a decrease in injection into the metal of
electrons from the semiconductor. The injection of electrons from the metal to
the semiconductor remains essentially the same since the metal is highly con-
ducting and, in this simple picture, the barrier is constant. Therefore the diode
conducts a large current in the forward direction and a small current in the
reverse direction.

The interesting aspects of rectification were recognized very early, and some
of the earliest work in hot electron transport was actually related to rectifica-
tion properties. Many of these theories of the 1930’s and Bethe’s thermionic
emission model of the 1940’s have gone through significant modifications as our
understanding of the hot electron phenomenon has improved. Before discussing
the transport, though, we will discuss some of the modifications that we must
include in the above description to make it consistent with real structures.
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Figure 4.3: Metal-semiconductor diode with (a) a forward bias and (b) a reverse
bias applied to the diode.

Barrier heights in compound semiconductors are strongly influenced by chem-
ical interactions and other interface phenomena. Even for ideal systems such
as vacuum cleaved surfaces, surfaces behave in different ways, in different ori-
entations, at different temperatures, with different metals, because surfaces do
not maintain a physical structure that is identical to that of the bulk. This is a
result of the drive to lower energy, and different metals influence it differently,
causing different interface states to appear in the bandgap. The surface recom-
bination velocity, which described the surface recombination and was used in
modelling the Dirichlet boundary conditions, was one of the consequences of
these interface states. These interface states, if they exist in sufficient numbers,
cause Fermi level pinning, because a large charge dipole can exist at the interface
without any deviation in the Fermi level. In practice, therefore, barrier heights
in compound semiconductors are best determined experimentally. This data is
sufficiently reproducible, and it adequately describes the required parameter of
the interface modelling problem.

There are effects on this barrier height which are unrelated to the existence
or absence of interface states. One such effect is caused by image force, and
it results in a lowering of barrier height that is called image force lowering. A
charge in close proximity to a highly conducting surface has a lowering of its
energy. This follows directly from the solution of Laplace’s equation describ-
ing this problem, with the boundary condition that the conducting plane be
treated as an equi-potential surface. Intuitively, this can be described via an
image charge of equal and opposite magnitude, that the charge sees behind the
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Figure 4.4: Energy of an electron (solid line) as a function of position in the
presence of image charge effect near the metal–semiconductor interface.

conducting plane, with the plane being the mirror. An electron and the metal
follow this description with the metal as the equi-potential conducting plane.
The electron feels an image charge of the opposite type in the metal at an equal
distance from the interface. The force on the electron in the semiconductor is
given by

F =
q2

4πεs(2z)
2 , (4.6)

where z is its distance from the interface, which corresponds to a potential
energy of −q2/16πεsz. In the presence of the electric field E , at the interface,
the potential energy due to Coulombic interactions (following Figure 4.4) is

E = − q2

16πεsz
− qEz. (4.7)

Several assumptions have clearly been made in the act of writing this equa-
tion. A primary one is that we have assumed that our band structure model
holds all the way to the interface. The electric field is assumed constant in
the above; in a depleted semiconductor with a uniform charge concentration,
it varies linearly with distance. However, close to the interface in a very short
region where we utilize this equation, it can be treated as a constant. The
maximum in this energy occurs at

z = zm =

√
q

16πεsE
, (4.8)
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with a maximum in energy of

E = Em = −q
2

√
qE
πεs

. (4.9)

So, actual metal–semiconductor barrier height is a function of the electric
field at the interface and hence of bias applied; it differs from the low field value
by the amount of the maximum energy given by Equation 4.9. The effect is most
important in reverse bias where E is large because of a larger amount of charge
in the semiconductor. Typical barrier heights for GaAs vary between 0.65 eV
and 0.85 eV for n-semiconductors and 0.5 eV and 0.6 eV for p-semiconductors.
For GaAs again, if an electric field of 100 kV.cm−1 were present, it would lead
to a lowering of barrier height by 0.36 eV. Such large fields usually occur
either in large reverse bias for moderately doped junctions, or near zero bias
conditions for highly doped junctions. Effective barrier height therefore can
decrease substantially with doping.

In our discussion of the different approaches to modelling transport, we
concluded that, for a p–n junction, the drift-diffusion approach models trans-
port adequately because the distribution function remains a displaced-Maxwell–
Boltzmann function, and because any errors of drift or diffusion compensate.
Away from the metal–semiconductor interface by a few scattering lengths, this
should still be an adequate description of the transport in the semiconductor.
Near the metal–semiconductor interface, the situation is unlike the p–n junction
problem because carriers that get injected into the metal are quite unlikely to
return because of a rapid loss in carrier energy in a very short distance. Thus,
the random orientation of velocities of the Maxwell–Boltzmann distribution is
lost. Within a scattering length of the interface, due to the lack of any re-
turning electrons from the metal, the velocities are all pointed in a hemisphere
directed towards the metal, and the distribution function is actually more like
a hemi-Maxwell–Boltzmann distribution function. But away from the interface
by a number of scattering lengths, transport in the semiconductor region is by
drift-diffusion, as usual. The transport at the interface is governed by two con-
siderations. Carriers that have sufficient energy to surmount the barrier, that
have velocity pointed towards the metal, and that do not lose these properties
during a collision as they reach the metal–semiconductor interface will emit into
the metal. This is the thermionic emission process. Due to the small barrier that
has to be traversed by the carriers that are close to the interface, and due to the
short distance, some carriers may tunnel through into the metal. This is known
as field emission, and when thermionic emission is combined together with this,
the process is called thermionic field emission. All of these transport processes
take place in the metal–semiconductor diode, with current conservation being
maintained, and the current magnitude being determined by whichever limits
the current to a lower value. In case they are comparable, one may have to in-
clude all if one is interested in knowing the magnitude. Often, when combining
all these processes, field emission is ignored, and the thermionic–drift-diffusion
formulation adopted.
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Figure 4.5: Energy band diagram under an applied bias at a metal–
semiconductor junction for (a) drift-diffusion and (b) thermionic and thermionic
field emission theory.

Early theories assumed that the transport was being limited by the rate
at which carriers became available at the metal–semiconductor interfaces, i.e.,
these theories considered drift-diffusion as the rate-limiting step. The carriers
in the semiconductor and the metal at the interface are, then, in equilibrium.
For the moment, we ignore the consequences of hemi-Maxwell–Boltzmann dis-
tribution to the concept of quasi-Fermi level defined with respect to Maxwell–
Boltzmann distribution and modified appropriately for the Fermi–Dirac distri-
bution, since the problem of dealing with this question arises over distances of
the order of a few scattering lengths. This assumption of drift-diffusion limited
transport means that the quasi-Fermi level is no longer flat in the semiconduc-
tor, since it limits the transport, and since carriers are in equilibrium with each
other on either side of the interface (see Figure 4.5). In fact, since the transport
to the metal–semiconductor interface is the rate-limiting step, the density of
carriers at the interface is unaltered by bias, i.e., the quasi-Fermi level at the
interface continues to coincide with the metal Fermi level.

Electrons are emitted into the metal at the interface at an energy in excess
of the metal Fermi energy. These electrons rapidly lose their energy over few
10s of Ås. In thermionic emission theory and its variations, the drift-diffusion
in the depletion region is not the rate limiting step, i.e., like the p–n junction
in the low-level injection condition, the quasi-Fermi level remains flat, and the
current in the structure is substantially smaller than either the drift or the
diffusion current flowing at any cross-section in the semiconductor depletion
region. The quasi-Fermi level, therefore, remains flat up to the interface, and
then discontinuously drops to the metal Fermi level. Strictly speaking, the
quasi-Fermi level concept was introduced for the Boltzmann distribution, which
is not necessarily valid in the metal. The existence of thermionically limited
transport implies that the electrostatic potential change in the semiconductor
over a region whose width is smaller than the mean free path of the carrier
should be larger than a couple of thermal voltages. This is known as the Bethe
condition, and we will show its validity in our derivations.
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Figure 4.6: A schematic of drift (bottom half), diffusion (top half), and net
currents as a function of position in the depletion region in thermal equilib-
rium (V = 0), forward bias (V > 0), and reverse bias (V < 0) of a metal–
semiconductor junction. After H. K. Henisch, Semiconductor Contacts—An

Approach to Ideas and Models, Clarendon Press, Oxford (1984).

We can find metal–semiconductor combinations where either of these theo-
ries are better approximations. Materials with extremely poor mobilities, such
as some of the p-type structures or some of the n-type II-VI materials, show
transport limited by drift-diffusion in the semiconductor depletion region. Dif-
fering temperatures also affect the limiting mechanism.

In this section, we will first derive the simple form of the drift-diffusion
theory, then the thermionic emission theory and its modification including field
emission, and finally we will unify these two theories to extend the validity to
both limits of transport.

The dominating component of the drift-diffusion mechanism, drift or dif-
fusion, is dependent on the bias applied and is the cause of the rectification
ability. Drift and diffusion at the rectifying junction lead to current in opposite
directions. In forward bias, as seen in Figure 4.6, the drift component decreases
because of a decrease in drift field, and hence the diffusion component predom-
inates. In reverse bias, the drift current increases because of an increase in the
field, and therefore, it determines the reverse current, unless generation effects
predominate.
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4.2.1 Drift-Diffusion

We first consider transport assuming that the net current is limited by drift-
diffusion transport in the depletion region. We will also assume that diffusivity
and mobility are related by the Einstein relationship, i.e., the field strength
is low enough for the non-degenerate junction. Consider a forward bias of V
on a metal–semiconductor junction whose resultant depletion width is zd. Let
J be the current flowing in the metal–semiconductor diode, and let us ignore
generation–recombination effects. In terms of ψ, the electrostatic potential,
integration of the current continuity equation following multiplication by the
exponential factor exp (−qψ/kT ) yields

∫ zd

0

J exp

(
− qψ

kT

)
dz =

qDn
∫ zd

0

[
− qn

kT
exp

(
− qψ

kT

)
dψ+

exp

(
− qψ

kT

)
dn

]

= qDn
∫ zd

0

{
nd

[
exp

(
− qψ

kT

)]
+ exp

(
− qψ

kT

)
dn

}

= qDnn exp

(
− qψ

kT

)∣∣∣∣
zd

0

. (4.10)

If recombination current is absent, current is constant, and we obtain

J = qDn
n exp (−qψ/kT )|z=zd

z=0∫ zd

0
exp (−qψ/kT ) dz

. (4.11)

If we assume for convention that the electrostatic potential at the junction is
the reference, we have

ψ(0) = 0

and ψ (zd) = φB − Vn − V

where qVn = Ec − ξf (4.12)

in the bulk. The carrier concentration at the junction and the junction depletion
region edge are

n(0) = NC exp

(
−qφB
kT

)
,

and n (zd) = NC exp

(
−qVn
kT

)
, (4.13)

and hence

J = q
Dn∫ zd

0
exp (−qψ/kT ) dz

NC exp

(
−qφB
kT

)[
exp

(
qV

kT

)
− 1

]
. (4.14)
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The exponential factor in bias voltage gives rectification character to the
current. The second factor in this equation has units of velocity, and is some-
times called a drift-diffusion velocity because it indicates the average velocity
with which carriers move via drift-diffusion in the depletion region. The use of
the specific carrier concentration relationships above assumes the form of be-
havior of the quasi-Fermi level shown in part (a) of Figure 4.5. We may simplify
this result in reverse and moderate forward bias, where depletion approximation
holds. Specifically, the electrostatic potential then follows

qψ

kT
=
q2ND
2εskT

z2
d −

q2ND
2εskT

(zd − z)
2
. (4.15)

Denoting the first term in the above as a2 and the second as η2,

∫ zd

0

exp

(
− qψ

kT

)
dz = exp

(
−a2

) ∫ zd

0

exp
(
η2
)
dz

=

√
2εskT

q2ND
exp

(
−a2

) ∫ a

0

exp
(
η2
)
dη

≈ εskT

q2NDzd
, (4.16)

where we have used the maximum magnitude of 1/2a of the error-function
integral.

This lets us write, for moderate bias conditions,

J =
q2DnNC
kT

√
2q (ψj0 − V )ND

εs
exp

(
−qφB
kT

)[
exp

(
qV

kT

)
− 1

]
. (4.17)

The pre-factor of the current–voltage relationship has a small voltage depen-
dence. It can be ignored in the forward direction where the exponential term
dominates, but in the reverse direction, where the exponential is small, it is this
term, and the image force barrier lowering, that give rise to bias dependence.
Also recall that we ignored generation and recombination in the derivation.
In the reverse direction, where drift-diffusion current is small, the generation
processes can predominate for materials with low lifetime.

4.2.2 Thermionic Emission

In order for drift-diffusion to be a limiting step, the transport of carriers has to
be considerably slow. The drift-diffusion approach assumes that the transport
to the barrier is a rate-limiting step. More often, though, the transport is
limited by injection over the barrier. A simple schematic of this is shown in
Figure 4.7, which shows the Bethe condition for transport to be limited by the
emission process at the metal–semiconductor junction. The Bethe condition
states that for the transport at the metal–semiconductor junction to be limited
by the interface, the width of the layer at the interface in the semiconductor
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Figure 4.7: Schematic showing the Bethe condition for transport to be limited by
thermionic emission. The width of the region over which a kT drop in potential
energy occurs at the barrier (zc), should be much smaller than the the mean
free path λ. zd is the depletion region width of the junction.

across which a kT change in electrostatic energy occurs should be significantly
less than the mean free path of the semiconductor.2 Let zc be the width of this
region over which the kT change in energy occurs.

zc � λ (4.18)

for emission at the metal–semiconductor interface to dominate. We will call this
width the collision-less width to indicate its intent. The basis of this condition is
that by ensuring it, one assures that the carrier distribution function at z = zc is
independent of the current.3 If the carrier distribution function at zc and beyond
is independent of the current, then it follows that the quasi-Fermi level in the
region beyond is constant and the current is limited by the interface transport
and not by the drift-diffusion transport in the bulk. Clearly, an implication
of the above condition is that under large forward biases, where the region
zc gets broad, the condition should be expected to break down. Thus, there
are limitations to the bias conditions up to which we may apply the following
analysis. At some high bias point, most semiconductors would require a unified
thermionic emission and drift-diffusion description.

From the semiconductor, the carriers emitted into the metal are the ones with
sufficient energy and appropriate velocity in the collision-less region. Likewise

2Our discussion here follows the arguments forwarded in F. Berz, “The Bethe Condition for
Thermionic Emission Near an Absorbing Boundary,” Solid-State Electronics, 28, No. 10, p.
1007, Oct. 1985. Also, see discussion in G. Baccarani, “Current Transport in Schottky-barrier
Diodes,” J. of Appl. Phys., 47, No. 9, p. 4122, Sep. 1976.

3Strictly speaking, the electrostatic energy change should be more than kT to ensure
sufficient change; more on this condition in the thermionic–drift-diffusion section.
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from the metal, except that the large barrier height and large scattering rate of
metals makes such a current small.

Our analysis here follows a standard and intuitive approach. Later, in our
discussion of thermionic–drift-diffusion transport, we will follow a more exact
analysis that relaxes the approximation adopted here related to the distribution
function being Maxwell–Boltzmann even at the metal–semiconductor interface.
The total current density is the difference in the current flow from the semi-
conductor into the metal Jsm and the current flow from the metal into the
semiconductor Jms. The former is the integral

Jsm =

∫ ∞

ξn,sem+q(φB−V )

qvzdn (4.19)

at the interface. This equation states that only those particles with sufficient
energy to cross the barrier, and moving in the −z direction, actually cross the
barrier. Assuming Boltzmann and parabolic band approximation,

dn =
(2m∗)

3/2

2π2h̄3

√
E −Ec exp

(
E − ξn,sem

kT

)
dE. (4.20)

If we further assume that any excess energy is kinetic in nature, i.e.,

E − Ec =
1

2
m∗v2, (4.21)

we get

dn = 2

(
m∗

2πh̄

)3

exp

(
−Ec − ξn,sem

kT

)
exp

(
−m

∗v2

2kT

)
4πv2dv, (4.22)

and

Jsm = 2q

(
m∗

2πh̄

)3

exp

(
−Ec − ξn,sem

kT

)∫ ∞

−∞

exp

(
−m

∗v2
x

kT

)
dvx ×

∫ ∞

−∞

exp

(
−m

∗v2
y

kT

)
dvy ×

∫ ∞

−
√

2q(ψj0−V )/m∗
vz exp

(
−m

∗v2
z

kT

)
dvz,

= A∗T 2 exp

(
−qφB
kT

)
exp

(
qV

kT

)
, (4.23)

where

A∗ =
qm∗k2

2π2h̄3
(4.24)

is known as the effective Richardson’s constant (120 A.cm−2.K−2 for free elec-
trons). The carriers in the metal in the very tail of the energy should be expected
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to have an exponential tail, even though they do not obey Maxwell–Boltzmann
statistics. So, one should expect a similar exponential relationship

Jms = A∗′

T 2 exp

(
−qφB
kT

)
, (4.25)

where the constant A∗′

does not necessarily have the same meaning or interpre-
tation as in a semiconductor because of the differences in statistics of the two
materials. However, at zero bias, since the two currents are equal, we obtain
A∗ = A∗′

in this model. The resulting thermionic current can be written, as a
function of applied bias of V , as the difference of these two currents

J = A∗T 2 exp

(
−qφB
kT

)[
exp

(
qV

kT

)
− 1

]
. (4.26)

Note that the functional form of this equation is the same as in the drift-diffusion
theory.

We know the effective mass for an isotropic (spherical constant energy sur-
face) single valley semiconductor. However, what should it be for other semicon-
ductors? For anisotropic constant energy surfaces, such as at L or X minima,
or for degenerate bands such as light and heavy hole bands, the appropriate
mass is obtained by summing over the relevant masses in the direction of injec-
tion, weighted by the probability of the occurrence of a carrier with that mass,
i.e., the masses are weighted by the density of states. Problem 1 deals with
this question. The effective mass, for arbitrary orientations, appropriate to the
calculation of Richardson’s constant is

m∗ =
(
mxmyl

2
z +mymz l

2
x +mzmxl

2
y

)1/2
, (4.27)

where lx, ly, and lz are the direction cosines. For X-like minimas, this reduces
to

m∗ = 2m∗
t + 4(m∗

lm
∗
t )

1/2
(4.28)

for injection in 〈100〉 direction, and

m∗ = 2
√

3
(
m∗
t
2 + 2m∗

lm
∗
t

)1/2
(4.29)

for injection in 〈111〉 direction. Similarly, for L-valleys,

m∗ =
4√
3

(
m∗
t
2 + 2m∗

lm
∗
t

)1/2
(4.30)

for injection in 〈100〉 direction, and

m∗ = m∗
t +

(
m∗
t
2 + 8m∗

lm
∗
t

)1/2
(4.31)

for injection in 〈111〉 direction.
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Figure 4.8: The different components of injection at a metal–semiconductor
barrier shown in forward (a) and reverse (b) bias.

4.2.3 Field Emission and Thermionic Field Emission

Our discussion above has ignored quantum mechanical effects. Carriers that
have the velocity and the energy to inject over the barrier may suffer quantum-
mechanical reflections because of the abrupt barrier. Carriers that do not have
the requisite energy or velocity to inject over the barrier may still cross into the
metal by tunneling through the thin barrier. This finite non-zero probability
of penetration can make a substantial difference in the magnitude of current at
low temperatures where the thermionic current reduces due to lower density of
carriers in the tails, as well as high dopings where the barriers are thinner. This
emission behavior is often referred to as field emission, and its inclusion in the
thermionic emission model leads to the thermionic field emission model.

The field emission probability (see Figure 4.8) increases with temperature
because electrons at higher energies see a thinner barrier with a lower barrier
height. Since the field emission current over any energy range is proportional
to the source function, the carrier concentration, and the characteristics of the
barrier, at high energies it decreases again because of the decrease of carrier
density at those energies. Thus, it peaks at a certain energy. For very high
temperatures, the carrier density is high with high enough energy for crossing
the barrier and most current is thermionic. Thermionic field emission current
is thus important at low and intermediate temperatures, and high dopings.

Simple calculations of tunneling probability usually invoke the WKB approx-
imation (so named after Wentzel, Kramers, and Brillouin)4 that we will discuss
later in the context of tunneling in heterostructures. It relates the elastic tun-

4The WKB approximation allows us to determine the transmission probability accurately
when the change in barrier is continuous. For discontinuous changes, the pre-factor changes
and hence one can only determine the proportional dependence on the exponential term of
WKB approximation.
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neling transmission probability Tt with the carrier momentum (or, equivalently,
the reduced wave vector) through

Tt ∝ exp

(
−2

∫
|kz| dz

)
, (4.32)

where tunneling is assumed to take place in the direction z. The larger the
evanescent effect of the carrier momentum in a barrier or the longer the tun-
neling distance, the smaller the probability. The WKB approximation, for a
triangular barrier, gives the result of probability for elastic tunneling transition
as

Tt ∝ exp

[
−4

√
2m∗

3h̄qE (qφB)
3/2

]
. (4.33)

The maximum field at a metal–semiconductor junction is related to the junction
potential (the diffusion potential), doping, and the permittivity through

Emax =

√
2qNDψj0

εs
, (4.34)

and hence we may write

Tt ∝ exp

[
− 2(qφB)

3/2

3E00

√
qψj0

]
, (4.35)

where

E00 =
qh̄

2

√
ND
m∗εs

. (4.36)

E00 is a characteristic energy parameter which determines, by virtue of its mag-
nitude vis-a-vis the thermal energy, the temperature below which field emission
becomes important.5 Figure 4.9 shows this parameter for some of the compound
semiconductors.

The lower density of states of most of the compound semiconductors and
the smaller electron effective mass lead to smaller barriers that are easier to
penetrate. Thus, field emission is relatively more important in compound semi-
conductors than in silicon. Thus, an accurate description of transport in metal–
semiconductor junctions in compound semiconductors requires inclusion of both
thermionic and field emission. The thermionic field current is given by a relation
quite similar to the thermionic emission relationship, although it is relatively
more complex to derive (see Problem 2). The current due to thermionic field
emission is given by

J = Js exp

[
qV

E00 coth (E00/kT )

] [
1 − exp

(
−qV
kT

)]
, (4.37)

5See F. A. Padovani and R. Stratton, “Field and Thermionic Field Emission in Schottky
Barriers,” Solid-State Electronics, 9, p. 695, 1966.
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Figure 4.9: The characteristic energy E00 as a function of donor concentra-
tion for some of the semiconductors. The curve a identifies InAs, the curve b
identifies GaAs, and the curve c identifies InP.

where Js is related through

Js = Jm
q
√
πE00q (φB − V − Vn)

kT cosh (E00/kT )
exp

[ −q(φB + Vn)

E00 coth (E00/kT )

}
, (4.38)

and Jm is the current density under flat band conditions, i.e.,

Jm = A∗T 2 exp

(
−qVn
kT

)
. (4.39)

Here qVn is the energy difference between the conduction band edge and the
quasi-Fermi level in the bulk.

In this relationship, with increasing temperature, the transition from field
emission-dominated characteristics to thermionic emission-dominated charac-
teristics occurs naturally through the property of the coth function. Note that
the denominator of the voltage exponential asymptotically reaches either E00

in the low temperature limit or kT in the high temperature limit, again consis-
tent with field emission-dominated behavior in the low temperature limit, and
thermionic emission-dominated behavior in the high temperature limit.

We had alluded to the importance of image force lowering, as well as quantum-
mechanical reflections, to the transport. Image force lowering can be directly
included by an appropriate change in the barrier heights. Since image force
lowering also affects the shape of the barrier at the interface, it also subtly in-
fluences the field emission current of the above. Image force lowering also leads
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to a broadening of the barrier at the interface and hence leads to lower reflection
problems, all of which increase the magnitude of the current.

The image force effect and the effect of emission from the metal become
stronger in reverse bias, which leads to thinner barriers for injection from the
metal. In reverse bias, as shown in Figure 4.8, the current from the metal into
the semiconductor increases while the current component from the semiconduc-
tor into the metal continues to decrease unless effects due to inversion occur at
the interface.

Increasing image force lowering, due to the increased field at the interfaces,
continuously changes the apparent barrier height of the metal–semiconductor
junction. Additionally, field emission and tunneling also increase with reverse
bias, as does generation current. Hence, there is a continuous increase of the
current with reverse bias which is much stronger than in p–n junctions. The
current equation for thermionic field emission, where image force lowering was
not included explicitly, continues to hold for reverse bias, except for the neglect
of generation current.

An approximation of it, for reverse bias V larger than a few thermal voltages,
is

J = −Js exp

{
qV

E00

[
E00

kT
− tanh

(
E00

kT

)]}
, (4.40)

where the approximation for Js is

Js = A∗T

√
πE00

k

[
q (V − Vn) +
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]1/2
×
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]
. (4.41)

In reverse bias, field emission occurs from the metal into the semiconductor
through an approximately triangular barrier. Its low temperature limit is given
by (see Problem 3)

J = A∗E00
2

k2

φB − V − Vn
φB

exp

(
− (2qφB)

3/2

3E00

√
qφB + qV − qVn

)
. (4.42)

We have discussed the implication of this field emission from the metal in in-
creasing the reverse bias current; it is also the reason for ohmicity for the large
number of ohmic contacts based on heavily doped metal–semiconductor inter-
faces.

4.2.4 Thermionic Emission-Diffusion theory

We have now developed a description for transport across a metal-semiconductor
junction based on thermionic emission and with tunneling effects incorporated in
it to describe thermionic field emission. We have also developed the description
based on drift-diffusion limited transport in the semiconductor depletion region.
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The objective of a more general theory, that encompasses both thermionic emis-
sion and drift-diffusion, is to be applicable to metal–semiconductor junctions in
both the limits, over wider bias range, for any semiconductor. A general theory
also allows us to understand the relative importance of the two components
of transport for any given semiconductor. Thus, a high mobility semiconduc-
tor would show a flat quasi-Fermi level to the metal–semiconductor interface,
indicating that the drift-diffusion transport in the semiconductor is not rate-
limiting. For a low mobility semiconductor, on the other hand, the quasi-Fermi
level should change with position in the depletion region and reach the metal
Fermi level at the metal–semiconductor interface, indicating that it is the rate-
limiting step.

To develop such an analysis, we need to express these currents—drift-diffusion
in the bulk part of the depletion region, and thermionic emission in the interface
part of the depletion region—in terms of the semiconductor parameters and the
bias, and then we need to force them to be continuous, thus maintaining the
required self-consistency. This requires us to obtain the quasi-Fermi level in the
bulk, or equivalently the electron distribution function in the bulk as well as at
the interface.

The analysis follows, assuming as before a perfectly absorbing boundary
condition at the metal–semiconductor junction, i.e., no quantum mechanical
reflections, etc. Figure 4.7 showed a schematic description of the problem, bro-
ken up into the collision-less region of width zc at the interface responsible for
thermionic emission, and the rest of the depletion region from zc to zd respon-
sible for the drift-diffusion. First, we wish to obtain the carrier distribution as
a function of the velocity distribution at the interface. All the carriers at the
interface z = 0 with velocity in the direction of the metal cross the interface.
Hence, at z = 0 the distribution function is hemi-Maxwellian, while at z = zc
the distribution is Maxwellian for carriers. The current is given by

J = q

∫ ∞

−∞

vf(v, z)dv (4.43)

at any position z in the depletion region, where v is the velocity. Here we are
expressing the distribution function as a function of velocity, which is equivalent
to describing it in terms of momentum. Consider the forms of the distribution
functions. For carriers beginning with velocity vc pointing towards the metal
at the edge of the collision-less region zc, the velocity in the collision-less region
evolves as

v(z)
2

= v2
c −

2q

m∗ [ψ(zc) − ψ(z)] for 0 ≤ z ≤ zc. (4.44)

At the interface, carriers with positive v(0) return back while those that are
still negative cross the barrier. The carriers that return back to z = zc have
velocity identical to when they started but of opposite sign. Therefore, at z = 0
carriers have velocities that are less than zero only, and at z = zc the carriers
have velocities less than

√
2q∆ψ/m∗, where ∆ψ is the change in electrostatic



200 4 Transport Across Junctions

potential in the collision-less region. In the absence of collision, the distribution
function f(v, z) remains the same in the collision-less region, i.e.,

f(v, z) = f(vc, zc) for 0 ≤ z ≤ zc. (4.45)

The distribution of carriers of interest at z = zc is

f(v, zc) = B exp

(
−m

∗v2

2kT

)
(4.46)

for v <
√

2q∆ψ/m∗ and zero otherwise. Likewise, at z = 0,

f(v, 0) = B exp

(
−m

∗v2

2kT
− q∆ψ

kT

)
(4.47)

for v < 0 and zero otherwise. This distribution function is usually referred to as
a hemi-Maxwellian distribution function since it is one of the hemispheres of the
constant energy spheres in momentum space. By integrating the distribution
function over all possible velocities, the carrier density at z = zc and z = 0
follow as

n(zc) = B
√
πkT

2m∗

[
1 + erf

(
q∆ψ

kT

)]
,

n(0) = B
√
πkT

2m∗ exp

(
−q∆ψ
kT

)
, (4.48)

and hence

n(0) =
n(zc)

1 + erf (q∆ψ/kT)
exp

(
−q∆ψ
kT

)
. (4.49)

Recall the Bethe condition, which stems from the requirement that the car-
rier distribution function at z = zc be unaffected by the current, or equivalently
that the carrier concentration at z = 0 be significantly smaller than that at
z = zc. We may assure this by requiring the electrostatic energy change in the
collision-less region to be 2kT or more. This will assure a large change in car-
rier concentration (see Problem 4). Since ∆ψ is factor of two or larger than the
thermal voltage, the error function term is approximately unity and we obtain

n(0) ≈ n(zc)

2
exp

(
−q∆ψ
kT

)
. (4.50)

Note that the carrier concentration change is larger than what a flat quasi-Fermi
level would have implied in this region (see Problem 5). The current follows from
Equation 4.43 as

J = qn(0)

√
2kT

πm∗ , (4.51)

and one can define an effective velocity veff of transport across the interface as

veff =

√
2kT

πm∗ . (4.52)
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Recall our discussion of thermionic emission; this is half of the thermal velocity
of the carriers. It averages the velocity in the hemisphere.

In terms of carrier density at z = zc, the current can be expressed as

J = qn(zc)

√
kT

2πm∗ exp

(
−q∆ψ
kT

)
. (4.53)

We can now invoke the drift-diffusion effect on transport by considering the
transport in the rest of the depletion region. If we assume a flat quasi-Fermi
level, i.e., no drift-diffusion limitation on transport, then

n(zc) = n(zd) exp

(
q
ψ(zc) − ψ(zd)

kT

)
(4.54)

describes the relationship from the edge of the depletion region to the edge
of the collision-less region. Hence, in the absence of drift-diffusion transport
limitations,

J = q

√
kT

2πm∗ exp

(
−q∆ψ
kT

)
exp

(
q
ψ(zc) − ψ(zd)

kT

)
, (4.55)

which is

J = qNC

√
kT

2πm∗ exp

(
q
ψ(0) − ψ(zd)

kT

)

= A∗T 2 exp

(
−qφB
kT

)
exp

(
qV

kT

)
. (4.56)

This is the expression for pure thermionic emission transport.
However, if the quasi-Fermi level is not flat, i.e., drift diffusion to the interface

is also important, then we must utilize the form similar to Equation 4.14 to relate
the band bending, i.e., we relate the carrier concentration at z = zc with z = zd
by considering the drift-diffusion current, and then force this current to be the
same as the thermionic emission current in order to maintain current continuity.
This allows us to write (see Problem 6)

J =
qNC(kT/2πm∗)

1/2
exp (−qφB/kT ) [exp (qV/kT ) − 1]

1 + (q/µkT ) (kT/2πm∗)
1/2

exp (−qφB/kT )
∫ zd

0
exp (qψ/kT ) dz

. (4.57)

This equation takes into account the hemi-Maxwellian distribution of carriers
at the metal–semiconductor interface, the lack of collisions in a region of width
zc � λ over which the electrostatic energy changes by 2kT , as well as the supply
of carriers by drift-diffusion across the depletion region. Problem 7 considers
the thermionic emission and drift-diffusion limit of this expression.

4.3 Heterojunctions

Heterojunctions are formed when two dissimilar materials are joined together at
a junction using one of the materials growth techniques. Any arbitrary combina-
tion of semiconductors or semiconductors and insulators, or growth technique,
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does not necessarily result in a interface that can be of benefit in devices. Unique
combinations, such as SiO2/Si, or many of the lattice matched semiconductors
(to be discussed in the context of heterostructure field effect transistors), result
in interfaces with low interface density, and low interface scattering. These het-
erojunctions are the basis for field effect and bipolar devices. It is the transport
properties, both perpendicular and parallel to the interface, that we utilize to
advantage in these devices. The effect of low interface states is to allow us to
control, in a very reproducible way, both perpendicular and parallel transport.
For insulators, such as SiO2, the perpendicular transport is of little concern since
it is negligible (displacement current may still flow) except in breakdown condi-
tions. For semiconductors, both are of interest. Semiconductor heterojunctions
are the most popular form for compound semiconductors. This section follows a
similar description as before in considering perpendicular transport through the
junctions; parallel transport will be considered in our discussion of heterostruc-
ture field effect transistors.

An additional complication, unlike the SiO2/Si interface, for semiconductor
heterojunctions is the effect of alloy grading, i.e., a changing of the composition
of the semiconductor at the interface over a short distance. Such an arrange-
ment is practiced in bipolar transport, its use in field effect transistors is largely
to allow ohmic access to the channel of the device, since abrupt discontinu-
ities lead to rectification. The abrupt discontinuities in these heterojunctions
can appear both in the conduction band edge energy (∆Ec), and the valence
band (∆Ev), whose origin is the strong inter-atomic Coulombic effects that take
place at the interface. Figure 4.10 shows three common forms (Type I, II, and
III) of heterojunctions encountered. There is thus a variety of behavior that
occurs in realistic semiconductor heterostructures; type I being the form that
has been most extensively exploited in devices. Our discussion, throughout this
text is principally with this type of heterostructure. This figure showed the dis-
continuities at an abrupt heterojunction. In general, these discontinuities are
not related by differences in electron affinity, and hence throughout this text,
following our earlier discussion of this subject, we use these as experimentally
obtained parameters.

Clearly, since compositional mixing can be achieved in semiconductor het-
erojunctions over short length scales, variations in discontinuities can also be
achieved. Figure 4.11 shows, for an n-type Ga.7Al.3As/GaAs heterojunction,
the conduction band edge and electron density for abrupt and linearly graded
junctions. This is an idealization. We assume that one can obtain an abrupt
change to linearly varying composition. However, the conclusion that the barrier
height and the discontinuity can be varied in short grading regions is correct.
Recalling our discussion of quasi-neutrality, the appearance of a discontinuity in
band edges at a heterojunction clearly leads to a breakdown in quasi-neutrality
as seen in Figure 4.11. However, following this earlier discussion, a long grading
distance at a heterojunction leads to a decrease of the alloy field, an effect of
the changing material characteristics, and the quasi-neutrality may be restored
provided the Debye length criterion is satisfied. An effect of changing compo-
sition over a distance is that in this region the quasi-field for an electron may
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Figure 4.10: Cases (a), (b), and (c) show schematically the band edges for
the three common forms (Type I, II, and III) of semiconductor heterojunc-
tions encountered. The lower half of these cases show the band diagrams
with doping conditions commonly encountered. An example for case (a) is
GaAs/Ga1−xAlxAs, for case (b) is InAs/AlSb, and for case (c) is InAs/GaSb.
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Figure 4.11: The conduction band edge and electron quasi-Fermi level at abrupt
and graded Ga1−xAlxAs/GaAs heterojunctions. The background doping is as-
sumed to be 1 × 1016 cm−3 and the grading distances for linear grading are
250 Å, 500 Å, and 1000 Å.
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be different than the quasi-field for a hole, since the change in bandgap as a
function of position results in differing changes in the conduction band edge
and the valence band edge. We will consider this further in the discussion on
heterostructure bipolar transistors.

In this section, we consider transport across isotype interfaces, i.e., interfaces
of the same polarity. Anisotype interfaces will be considered in our discussion
of p–n junctions in the next section.

4.3.1 Thermionic Emission

Conduction in heterojunctions should be expected to be similar in nature to the
metal–semiconductor junction, except for some additional complexities. The
behavior of electrons in the metal was characterized by a free electron mass,
and a negligibly short distance over which the carrier injected from the semi-
conductor thermalized. The injection of carriers from the metal depended on
the barrier formed with the semiconductor; no changes occurred in the injection
as function of bias, since the barrier and the metal were left relatively undis-
turbed by the bias. When considering a semiconductor–semiconductor hetero-
junction, we have to consider changes in the distribution function on both sides
of the junction. As an example, any applied bias is partitioned between the
two semiconductors in a semiconductor–semiconductor heterojunction, while in
a metal–semiconductor junction, the high conductivity of the metal forces the
potential drop to occur in the semiconductor alone. We will consider the p–n
heterojunction later; here we will consider an isotype heterojunction. Prob-
lem 8 considers the transport across the interface using the same procedure
as in the thermionic–drift-diffusion theory of a metal–semiconductor junction.
As we have discussed, usually, for electrons in the compound semiconductors,
thermionic emission theory is adequate for a variety of conditions. Semiconduc-
tor heterojunctions, unlike the metal–semiconductor junctions, exhibit much
larger field emission and other tunneling effects. This is a result of their smaller
barrier height. Our analysis is, therefore, a simplified treatment of the problem
of emission using the Maxwell–Boltzmann distribution approximation at the in-
terface. Following Figure 4.12, we may determine the current components if we
assume a Boltzmann distribution.

Let ND1 and ε1 be the doping and the dielectric constant of the large
bandgap semiconductor and let ND2 and ε2 be the corresponding values for the
small bandgap semiconductor. The current flowing from 1 to 2, evaluated at the
interface in the first semiconductor, is the product of the charge of the carriers,
the number of carriers available for transmission to the second semiconductor,
a transmission probability T12 for transmission into the second semiconductor,
and the carrier velocity in the z-direction. The transmission probability T12

depends on the availability of states in the second semiconductor for the trans-
mission. Since most of the states are empty in the high energy tail region, the
transmission probability is close to unity for transmission in both directions.
However, it is not identical. In our discussion of Richardson’s constant and
maintaining zero net current at thermal equilibrium in the derivation of the
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Figure 4.12: An isotype n–n heterojunction between a large bandgap and a
small bandgap material. The figure shows those carriers that can cross over the
barrier if they have the minimum velocity required to cross the barrier. Note
the potential drops on each side of the junction in this heterojunction case, in
contrast to the case of metal–semiconductor junction.

thermionic current in the metal–semiconductor junction, we invoked an argu-
ment based on equality of flux in the two directions to obtain the desired result.
A Richardson’s constant–based approach will naturally fall out of a discussion
of thermionic emission at a semiconductor heterojunction from both sides of
the interface. Detailed balance requires that, at thermal equilibrium, these be
identical. We will show based on arguments of momentum conservation that the
two are related and result in the desired zero net current at thermal equilibrium.

This current from semiconductor 1 to 2 (J12), due to thermionic emission,
obtained by integrating over all possible velocities, and assuming a Maxwell–
Boltzmann distribution function at the interface, is given by the integral
∫∞

vzmin

∫∞

−∞

∫∞

−∞
qT12ND1vz exp

[
−m∗

1

(
v2
x + v2

y + v2
z

)
/2kT

]
dvxdvydvz∫∞

−∞

∫∞

−∞

∫∞

−∞
exp

[
−m∗

1/2kT
(
v2
x + v2

y + v2
z

)
/2kT

]
dvxdvydvz

. (4.58)

This integral has the following basis. If we assume drift-diffusion as not being a
limitation on transport and assume a Maxwell–Boltzmann distribution function,
then the carrier distribution function at the metal–semiconductor interface can
be related to that at the edge of the depletion region. This argument is similar
to that used in reducing to the thermionic emission limit in our thermionic–drift-
diffusion analysis of a metal–semiconductor junction. The limit of integration is
appropriately shifted to account for this, and, as we shall show later, to account
for conservation of momentum and energy during the emission. The expression
above is written as a function of ND1, the donor and carrier concentration, at
the edge of the depletion region. vzmin is related to the emission barrier, which
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is related to the barrier height and the electrostatic potential V1. V1 is the part
of the applied potential that appears across the junction depletion region in
semiconductor 1. Following Problem 9, the current may be written, in terms
of the effective conduction band density of states NC1 and a momentum-space
averaged emission transmission probability T12, as

J12 = NC1T 12

√
kT

2πm∗
1

exp

(
−qφB0

kT

)
exp

(
qV1

kT

)
. (4.59)

Similarly, for the conduction from material 2 the small bandgap material
to material 1 (the large bandgap material), this current (J21) is given by the
integral

∫∞

−vzmin

∫∞

−∞

∫∞

−∞
qT21ND2vz exp

[
−m∗

2
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/2kT
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dvxdvydvz∫∞
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∫∞
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∫∞

−∞
exp

[
−m∗

2/2kT
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v2
x + v2

y + v2
z

)]
dvxdvydvz

(4.60)
where the minimum velocity, in a way similar to the previous case, is determined
by the condition

1

2
m∗

2v
2
zmin = qφB2 − qV2, (4.61)

where V2 is the part of the applied potential V that appears across semiconduc-
tor 2. This may be simplified to

J21 = NC2T 21

√
kT

2πm∗
2

exp

(
−qφB0

kT

)
exp

(
qV2

kT

)
. (4.62)

The net current, which is the difference between these two components across
the junction, is

J = q exp

(
−qφB0

kT

)[
T 12NC1

√
kT

2πm∗
1

exp

(
qV1

kT

)
−

T 21NC2

√
kT

2πm∗
2

exp

(
qV2

kT

)]
. (4.63)

In thermal equilibrium, detailed balance in the above implies the condition

T 12NC1√
m∗

1

=
T 21NC2√

m∗
2

. (4.64)

This condition is, within our approximations, a mathematical abstraction
of the requirement of zero current in thermal equilibrium conditions. It should
be viewed only as such, that the coefficient in the transmission of the hot car-
riers across a heterojunction discontinuity adjusts itself to allow the balance
at thermal equilibrium. The consequences of the approximation of a Maxwell–
Boltzmann distribution function as opposed to the hemi-Maxwellian distribution
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that may actually be more appropriate at the junction, and the self-adjustment
of carrier distribution in order to account for current continuity, are all lumped
into this phenomenological coefficient. Note that the current varies exponen-
tially with bias and its magnitude depends on how the division of applied voltage
occurs on the two sides of the junction. The division of voltage is related by
Maxwell’s first equation, which relates the displacement vector with the inter-
face charge. Problems 8 and 9 consider this example with its associated bias
voltage partitioning.

As can be seen, this behavior for a semiconductor–semiconductor hetero-
junction is considerably more complicated than that of the metal–semiconductor
junction. Fortunately, many heterojunctions of interest are highly asymmetric
in doping, and in cases where there exists a sufficiently large barrier, the problem
reduces to the metal–semiconductor junction–like situation. An example is a
larger barrier with high doping in the smaller bandgap semiconductor. For this
problem, the smaller bandgap semiconductor behaves quite similar to the metal,
and a thermionic equation based on the Richardson’s constant determined from
the large bandgap semiconductor parameters suffices. Quite often, though, the
dopings on both sides of junction are high; these are the basis for some of the
ohmic contacts. In these cases, however, tunneling effects dominate.

We now return to the question of thermal equilibrium in this problem and
the proper form of Richardson’s constant.6 This question can be resolved by
considering conservation laws of energy and momentum for the carrier emission
at the interface. When an electron transits from one semiconductor to another,
across the band discontinuity, it occupies different conduction band states de-
termined by the band structure of the new semiconductor. In the process of
doing so, assuming that this transit occurs without involvement of any scat-
tering mechanisms that lead to energy loss or momentum change, energy and
momentum must be conserved. Continuity of the wave function parallel to the
interface actually requires a stricter condition of conservation of momentum par-
allel to the interface (k‖). The equation for conservation of energy, considering
the transit across a discontinuity of ∆Ec, implies

h̄2k2
⊥1

2m∗
1

+
h̄2k2

‖

2m∗
1

= ∆Ec +
h̄2k2

⊥2

2m∗
2

+
h̄2k2

‖

2m∗
2

. (4.65)

For m∗
1 < m∗

2, the constant energy surface for allowed wave vector components
is an ellipsoid given by

k2
⊥1 +

(
1 − m∗

1

m∗
2

)
k2
‖ =

2m∗
1∆Ec

h̄2 +
m∗

1

m∗
2

k2
⊥2. (4.66)

The selection criterion described by this conservation equation is shown in Fig-
ure 4.13. This matching implies that for thermionic injection from material 1
to 2, there exists a non-zero minimum in energy Emin, which is different from

6This question has been discussed in detail in A. A. Grinberg, “Thermionic Emission in
Heterosystems with Different Effective Electronic Masses,” Phys. Rev. B, 33, No. 10, p.
7256, 1986. Our arguments follow this analysis.
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Figure 4.13: A surface plot showing the allowed wave vectors that satisfy the
conditions for conservation of thermionic emission energy and momentum during
injection from a low massm∗

1 material across a discontinuity of ∆Ec into a larger
mass m∗

2 material.

the value of energy discontinuity. This minimum is obtained from the matching
condition for minimum energy

Emin = ∆Ec −
(m∗

2 −m∗
1)E‖

m∗
1

. (4.67)

With this minimum, the thermionic current is given by the integral

J =
qm∗

1

2π2h̄3 exp

(
−qVn
kT

)∫ ∞

0

exp

(
−E‖

kT

)
dE‖

∫ ∞

Emin

exp

(
−E⊥

kT

)
dE⊥.

(4.68)
The integral for emission in the other direction is identical, and hence the ap-
parent discrepancy is resolved. There exists one unique Richardson’s constant
that describes the thermionic transport at the heterojunction. The ambiguity
arises because of a simplified choice of minima for evaluation of the integral.
Hence, the thermionic injection current for flow of carriers in the two directions
is equal in thermal equilibrium. Also, it follows that the Richardson’s constant
is determined by the smaller effective mass.

4.3.2 Tunneling

We ignored tunneling in the above analysis. In the discussion of metal–semiconductor
junctions, we included tunneling effects in the thermionic field emission theory
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for the junction. For transport at metal–semiconductor junctions, we treated
thermionic emission as the dominant process of current flow, and field emission
as a perturbation to the thermionic emission that increases the current. In our
treatment of tunneling effects in heterojunctions, we will discuss the tunneling
current by itself, because very often it is the dominating means of current flow
in the heterojunction, owing to their smaller barriers and barrier widths.

The discussion to this point has assumed that the electron energy is con-
served during the tunneling transition, although we alluded to the possibility of
inelastic processes also. Inelastic interactions can occur between the electrons
and phonons, plasmons, etc. Tunneling in p–n junctions, with non-Γ conduction
minima, such as in silicon and germanium, occur predominantly with phonon-
assisted processes. This is necessary to allow for the change in the momentum.
Optical phonon interaction occurs with a change in energy of h̄ωq. At low tem-
peratures, phonon emission may still occur, but phonon absorption processes
disappear because of the freeze-out of phonons. Also, for biases smaller than
this threshold (h̄ωq/q), neither emission nor absorption can occur at very low
temperatures. Thus at these low biases, phonon-assisted tunneling should be
very temperature sensitive. This is unlike the temperature insensitivity of most
tunneling processes in semiconductors because bandgaps and effective masses
are very weakly temperature dependent.

We briefly discuss tunneling in an indirect semiconductor versus a direct
semiconductor to show the considerable variety one observes in tunneling in
compound semiconductors of various thicknesses and barrier compositions. Con-
sider the prototypical GaAs/Ga1−xAlxAs/GaAs structure of Figure 4.14. This
structure occurs in various forms in many devices both in field effect transistors
(e.g., in SISFETs) and in coupled barriers. Tunneling may take place through
processes based on Γ electrons alone, together with conservation of the energy
of the electron. This would be most likely if the Ga1−xAlxAs had a composition
in the direct bandgap region. Even in the direct bandgap region, an electron in
the Γ valley in GaAs may tunnel via the L or X valley in Ga1−xAlxAs, together
with the involvement of an inelastic scattering process. This means that the
Γ valley electron may tunnel into the GaAs collector by coupling through the
Γ barrier, the L barrier, or the X barrier. Up to a mole-fraction close to 0.4,
the Γ barrier is the lowest, and most likely it would dominate the tunneling.
But beyond that, the inelastic processes should dominate, since the material
becomes indirect. For indirect bandgap Ga1−xAlxAs, direct transitions would
require the cold electrons in the Γ valley of GaAs to tunnel through a higher
barrier unlike the indirect tunneling which occurs through a lower barrier. This
makes it far less likely than the other inelastic processes. For increasing mole-
fraction of aluminum arsenide, initially the L valley is lower, and finally the X
valley is the lowest. Thus, at the highest mole-fractions, the X barrier may be
the dominant cause of tunneling, barrier width permitting, even though the X
valley is the third-highest valley in GaAs, and very few electrons start out from
it. The larger the barrier width, the higher the likelihood of scattering, and
hence the higher the likelihood of inelastic scattering in such structures. This is
of importance to SISFETs as well as to coupled tunneling structures which we
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Figure 4.14: Tunneling of a Γ electron by inelastic (a) and elastic process (b) in
a GaAs/Ga1−xAlxAs/GaAs structure. The spheres shown are in the constant
energy surfaces for the tunneling electron; the differences in the radius represent
the change in potential energy during tunneling. In (b), the parallel momentum
remains constant while the perpendicular momentum changes.
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will discuss later in this book.
Tunneling in indirect parts of the structure can be quite complicated because

equi-energy surfaces are anisotropic, and depending on the orientation, they may
not even be equivalent. Thus carriers occupying different energy surfaces may
behave differently. As an example, consider Ga1−xAlxAs at high AlAs mole-
fractions, similar to silicon, for tunneling in the 〈100〉 direction. X valleys are
the conduction band minima and the constant energy surfaces are as shown in
Figure 2.26. A set of two ellipsoids and a set of four ellipsoids are equivalent
for the purposes of tunneling, and the four-ellipsoid set is favored in tunneling
because it has a lower transverse mass. Tunneling from the GaAs primary valley
to these surfaces will still require the involvement of transfer of energy through
scattering, and may occur with phonons, plasmons, interface scattering, etc.
This problem of tunneling in semiconductor heterostructures for such situations
will be revisited during our discussion of coupled barrier structures.

We now consider the methods of analysis for determining the current densi-
ties in tunneling processes.7 We will consider the problem of a triangular barrier,
which has already occurred as part of field emission in the metal–semiconductor
junction, first. This is also among the earliest of tunneling problems to have
been analyzed. It is related to emission from metal surfaces into vacuum, a
reverse of the field emission problem from the semiconductor into the metal.
An early theory for tunneling was developed by Fowler and Nordheim assum-
ing a triangular potential barrier for the emission into vacuum. This theory,
in a modified form, is relevant to semiconductor structures also. First, we will
consider the exact solution to the problem of tunneling transmission through a
triangular barrier; then we will use a simpler technique that can be the basis
for more general solutions.

Consider the triangular potential barrier shown in Figure 4.15. The Schrödinger
equation for this single-body problem is

− h̄2

2m∗
∇2ϕ+ (V −E)ϕ = 0, (4.69)

where ϕ is the eigenfunction and E the eigenenergy. For z < 0, V = 0, and for
the triangular barrier, the barrier V is described by

V = ξf + qφB − qEz (4.70)

for z > 0, where E is the electric field, ξf the Fermi energy, and qφB the
barrier height. The eigenfunction and the derivative of the eigenfunction are
continuous. This is the statement of continuity of the probability of finding a
carrier as a function of position and the continuity of the carrier’s momentum as
a function of position. Mathematically, this means that at the classical turning

7Tunneling is a very rich and diverse phenomenon. Two books, C. B. Duke, Tunneling

in Solids in Solid State Physics—Advances in Research and Applications, Academic Press,
N.Y. (1969) and E. Burstein and S. Lundqvist, Ed., Tunneling Phenomena in Solids, Plenum
Press, N.Y. (1969), which are also general references for this chapter and Chapter 8, give a
detailed account of this. Some of our discussion here and in Chapter 8 draws from these.
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Figure 4.15: Part (a) of this figure shows tunneling through a triangular barrier
for an electron with energy less than the barrier height. Part (b) shows the
classical turning points for this electron.

points z = 0 and z = zT ,

ϕ(z = 0−) = ϕ(z = 0+),

∂ϕ

∂z

∣∣∣∣
z=0−

=
∂ϕ

∂z

∣∣∣∣
z=0+

,

ϕ(z = z−T ) = ϕ(z = z+
T ),

and
∂ϕ

∂z

∣∣∣∣
z=z−

T

=
∂ϕ

∂z

∣∣∣∣
z=z+

T

. (4.71)

The linear dependence of potential on z appears in a number of semiconductor
problems; the one here is an example of a barrier, it also shows up as a well
at a heterostructure interface in the small bandgap material. This differential
equation, with a linear dependence on z for the term with the zero’th order
derivative, is an example of Airy equation. The eigenfunction solution is

ϕ(z) = A exp (jkxx+ jkyy) [exp (jkzz) + % exp (−jkzz)] (4.72)

for z < 0, and
ϕ(z) = B [Bi(η) + jAi(η)] (4.73)

for z > 0. Here, the normalized factor η is

η = −
(

2m∗qE
h̄2

)1/3(
z − qφB + ξf −Ez

qE

)
, (4.74)

and Ai(η) and Bi(η) are Airy functions. For z < 0, there is no barrier, and the
eigenfunction describes a plane wave. For z > 0, the eigenfunction is described
as a linear combination of Airy functions. In these equations, A is an amplitude
normalization factor for the plane wave eigenfunction, % is the reflection coeffi-
cient at the first classical turning point, and B is the amplitude normalization



214 4 Transport Across Junctions

factor for the eigenfunction in the region z > 0. For values of z sufficiently
farther than the first classical turning point, the Airy function solution has an
asymptotic form,

ϕ(z) =

(
π2

|η|

)−1/4

B exp
(
j
π

4

)
exp

(
j
2

3
|η|3/2

)
. (4.75)

This is the transmitted wave at large distances. The probability current associ-
ated with this is

J = j
h̄

2m∗

(
ϕ
dϕ∗

dz
− ϕ∗ dϕ

dz

)
=

h̄

πm∗

(
2m∗qE
h̄2

)1/3

|B|2. (4.76)

The transmission probability Tt can now be found because the incident wave
was a plane wave of probability current h̄k/m∗. For this barrier,

Tt =
4

π

1

k

(
2m∗qE
h̄2

)1/3





[
Bi(η0) −

1

k

(
2m∗qE
h̄2

)1/3

Ȧi(η0)

]2

+

[
Ai(η0) +

1

k

(
2m∗qE
h̄2

)1/3

Ḃi(η0)

]2



 , (4.77)

where

η0 =
1

qE

(
2m∗qE
h̄2

)1/3

(qφB + ξf − Ez) . (4.78)

This is a general result for the tunneling transmission probability in a triangular
barrier, assuming a constant effective mass, and only elastic processes.

We can, however, derive a simpler form based on expansion of the Airy func-
tions, discarding the smaller terms of the series expansion. The asymptotic form
of the barrier transmission probability, derived in this way (see Problem 10), is

Tt = 4
(ξf + qφB −Ez)

1/2
Ez

1/2

ξf + qφB
×

exp

[
−4

3

√
2m∗qE
h̄2

( | qφB + ξf − Ez |
qE

)3/2
]
. (4.79)

Knowing the tunneling transmission probability Tt, we can now derive the
tunneling current. The current density in a small energy range dE, at the energy
E, due to tunneling, is a function of the number of carriers available for tunneling
described by a source function S(Ez) which is related to the distribution function
and the density of states, the tunneling transmission probability Tt, the charge,
and the velocity of the carriers. Thus, the tunneling current density is given by

J = q

∫ ∞

0

h̄kz
m∗ Tt(E)S(Ez)dEz. (4.80)
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For an arbitrary problem, current density due to tunneling can be determined
knowing the source function, which depends on the distribution function and
the density of states, and integrating over the appropriate energy range. This
integral could also be written in the momentum space as

J =
2q

(2π)
3
h̄

∫
f(E)Tt(Ez)

∂E

∂kz
dkzd

2k‖, (4.81)

where the explicit dependence of the tunneling transmission probability on the
perpendicular momentum is included.

This calculation can now be performed exactly for our problem. First we
determine the source function. The source function is directly related to the
occupation probability related to Fermi–Dirac statistics and can be written as

S(Ez) =
2

(2π)3h̄

∫ ∞

−∞

dkx

∫ ∞

−∞

dkyf(E)

=
4πm∗kT

h3
ln

[
1 + exp

(
ξf −Ez
kT

)]
. (4.82)

The tunneling transmission probability is given following Equation 4.79, and
hence the tunnel current follows by integration of the product. For a triangular
barrier,

J =
q2m0E2

16π2m∗φB
exp

[
−4

√
2m∗(qφB)3/2

3qh̄E

]
. (4.83)

Perhaps the most complicated step in this calculation was the determination
of tunneling transmission probability. The source function or supply function
can be quite easily determined because the occupation statistics and the density
of states are known for the problems of interest. The characteristic of the barrier
is what we are usually interested in determining since we do not know it as well.
An approach similar to the above would be difficult for arbitrary cases. A
simple example of this is a parabolic barrier. Metal-semiconductor junctions,
p–n junctions, etc., all exhibit a parabolic barrier at the interface, if depletion
approximation is applicable. The differential equation related to that is even
more difficult to handle analytically, and perhaps a faster way would be to solve
it numerically. This is at the expense of an intuitive insight that most analytical
techniques provide.

A common procedure to still handle these problems in closed form is to
resort to the WKB approximation. Tunneling through the barrier results in
an evanescent wave characterized by an imaginary momentum h̄k. The wave
function during transmission through the barrier, therefore, has an exponential
decay of the form exp(−jkzz), where the term within the brackets is real neg-
ative. The probability of finding the particle at any position z is proportional
to the square of the accumulated decay of the eigenfunction. Thus, it stands
to reason that the tunneling transmission probability, through a barrier whose
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classical turning points are zT1 and zT2, is approximately given by

Tt(Ez) ≈ exp

(
−2

∫ zT2

zT1

kzdz

)

= exp



−2

∫ zT2

zT1

√
2m∗ (V (z) −Ez)

h̄2 dz



 . (4.84)

This is the WKB approximation that we had used earlier in the calculation of
field emission current in a metal–semiconductor junction. The application of this
to a triangular barrier where V decreases linearly with distance is straightfor-
ward. Indeed, the tunneling transmission probability is identical to the asymp-
totic approximation determined before (see Problem 10), and likewise the tun-
neling current density is determined as

J =
q2m0E2

16π2m∗φB
exp

[
−4

√
2m∗(qφB)

3/2

3qh̄E

]

= 1.54× 10−6

(
mE2

m∗φB

)
exp

[
−4

√
2m∗(qφB)

3/2

3qh̄E

]

= αE2 exp

(
−E0

E

)
, (4.85)

where

E0 =
4
√

2m∗(qφB)
3/2

3qh̄
. (4.86)

This can also be rewritten as

ln
J

E2 = lnα− E0

E . (4.87)

This form of the tunneling current equation is called the Fowler–Nordheim equa-
tion. Tunneling current occurs in this form in a variety of problems where energy
losses during tunneling are small and a triangular barrier is a valid approxima-
tion. Recall that we arrived at this form assuming elastic processes. Small losses
in energy, e.g., through a single phonon process for carriers that are otherwise
high in energy, also follow this behavior. Note that tunneling of higher energy
carriers is favored because they encounter a smaller barrier. This functional
relationship of current and field is encountered as an approximation in a vari-
ety of problems in semiconductor devices. Tunneling through insulators such as
SiO2 is one common example, tunneling through larger bandgap barriers at het-
erojunctions is another example, and finally Zener tunneling where the barrier
at a p–n junction can be idealized as a triangular barrier is another example.
Note the lack of strong temperature dependence in all these cases because the
effective mass is the strongest source for it.

Tunneling current is a sensitive function of the field parameter E0. Let
us consider some simple examples to show this sensitivity, assuming a barrier
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Table 4.1: Characteristic field for tunneling for triangular barriers of various
parameters.

Barrier Height= Barrier Height=
0.8 eV 0.3 eV

m∗ = m∗ = m∗ = m∗ =
0.067m0 0.5m0 0.067m0 0.5m0

E0 (V.cm−1) 1.26× 107 3.5 × 107 2.9× 106 7.9× 106

height of 0.8 eV to represent metal–semiconductor junctions and 0.3 eV to rep-
resent heterojunctions. We consider two effective masses, 0.067m0 to represent
electron processes, and 0.5m0 to represent hole processes. Table 4.1 shows the
magnitude of the field E0 for these conditions. The smaller the characteristic
field the larger the tunneling current density. Thus, factors-of-10 differences
in electron tunneling current result from changes in barrier height typical of
heterojunctions. This emphasizes the importance of tunneling currents in het-
erostructures.

4.3.3 Resonant Fowler–Nordheim Tunneling

We now use an example where the WKB approximation is not a good predic-
tor because it is a simplification of the description of wave propagation. Note
that the exponential relationship only considers propagating waves in the di-
rection of tunneling. Wave nature, however, can result in effects related to
the interferences from reflections that occur at all the semiconductor discon-
tinuities. Resonant Fowler–Nordheim tunneling is such an example resulting
from the interference of the waves. Figure 4.16 shows a schematic of this in
the triangular well formed at a triangular barrier when it is biased appropri-
ately. Electrons that tunnel into the conduction band of the barrier can suf-
fer quantum-mechanical reflection at the discontinuity, and hence can interfere
constructively or destructively depending on the wave propagation properties.
These interferences are directly related to the tunneling transmission probability,
and appear as a modulation in the current–voltage behavior at low tempera-
tures where elastic processes dominate and other current components can be
suppressed. Such interferences can be observed in many of the heterojunction
tunneling structures at low temperatures. Such resonance structures have also
been observed in SiO2/Si systems. This also serves as an example of elastic hot
carrier tunneling in that system, because interference requires that the energy
be identical. Since the barrier height at a SiO2/Si interface is large, a large field
is required to allow for the occurrence of the resonance condition. Large barrier
structures thus exhibit this form of tunneling only at the highest biases.

This phenomenon actually was among the earliest unambiguous demonstra-
tions of scattering-free electron transport in semiconductor devices. As elastic
processes become less likely, the occurrence of resonant processes also becomes
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Figure 4.16: A schematic example of resonant Fowler–Nordheim tunneling due
to interference of the propagating waves.

less likely because of its dependence on coherent interference. Even for indi-
rect materials, so long as elastic tunneling can take place, such as in SiO2/Si
junctions, it can be observed.

4.4 Ohmic Contacts

Our discussion of transport across junctions formed using metals with semicon-
ductors and heterojunctions naturally leads us to a discussion of ohmic contacts.
Ohmic contacts are needed in all semiconductor devices in order to allow a link
through which current can flow and bias can be applied. Ohmic contacts are
generally formed using heavy doping in structures to obtain large current flow
without any significant bias drop across the ohmic contact regions. Current flow
in these structures may be by any of the transport mechanisms that we have
discussed. Ohmicity implies that the current is proportional to voltage, both in
sign and magnitude. This can only occur over a limited current or bias range,
because of the limitations on linearity. Contacts based on thermionic emission
or thermionic field emission exhibit linearity over a smaller range because these
processes are strongly non-linear. Tunneling processes exhibit linearity over a
larger range. Heavy doping in all these cases serves to increase the currents and
hence the current range of ohmicity; it also serves to minimize the potential
drop in semiconductors. Heavy doping, therefore, also allows for reducing the
effects of non-linearity from transport in the semiconductor itself by keeping the
fields low.

The ohmic access to a lightly doped region of a semiconductor device from a
heavily-doped region, therefore, occurs quite commonly. We considered conse-
quences of quasi-neutrality at such junctions in our discussion of drift-diffusion
transport in Chapter 3. Doping changes should occur over length scales that
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allow for screening of the background charge, and hence suppression of any bar-
riers caused by the background charge. Exponential changes in doping, such as
those that occur in tails of Gaussian profiles or error function profiles, naturally
lead to maintaining of quasi-neutrality. If quasi-neutrality is maintained, the
current density resulting from majority carrier transport, in steady-state, is a
product of charge density and carrier velocity. Since fields are small, and voltage
drops across an ohmic region minimal, the time-dependent electric field varia-
tions during a transient are also small, and hence the steady-state calculation
is also representative of the transient calculation.

In compound semiconductor ohmic contacts, these large doping regions are
usually implemented together with isotype heterojunctions or with metals. The
implementation of the former specifically takes advantage of the lower barrier
heights and hence higher tunneling transmission probability of heterojunctions;
it is therefore a tunneling-based contact. The implementation of the latter oc-
curs usually with larger barriers, and hence either thermionic field emission
emphasizing tunneling near the top of the barrier—a temperature-sensitive pro-
cess since it depends on electron energy distribution—or tunneling emphasizing
processes at the bottom of the barrier—a temperature-insensitive process. Fig-
ure 4.17 shows some examples of such contacts. Parts (e) and (f) of this figure
demonstrate an interesting variation on the common methods of forming ohmic
contact. Fermi level pinning, which usually occurs in the bandgap, can also
occur in the conduction or valence band. InAs, e.g., pins in the conduction
band, and GaSb pins in the valence band. Such materials, therefore, show di-
rect electronic conduction between the metal and the semiconductor. A suitable
grading, following the requirement of quasi-neutrality, or an interface where an
additional tunneling process has to be considered, allows one to link this contact
region to the semiconductor of interest. Ohmic contacts are usually character-
ized by the parameters specific contact conductance (σc), or specific contact
resistance (ρc), and defined by

σc =
1

ρc
=
∂J

∂V
(4.88)

where V is the applied bias voltage.

We consider these parameters, for metal–semiconductor junctions, for the
transport processes that we have analyzed in this chapter. The derivative of the
expression for current can be used to show that the specific contact resistances
(see Problem 11) are proportional to the exponential factors as

ρc ∝ exp

(
qφB
kT

)
(4.89)

for thermionic emission,

ρc ∝ exp

[
4π

√
m∗εs
h

φB√
ND

tanh

(
hq

4πkT

√
ND
m∗εs

)]
(4.90)
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Figure 4.17: Band diagrams showing processes of transport at ohmic contacts
based on tunneling-dominated transport ((a) and (b)), thermionic field emission-
dominated transport ((c) and (d)), and utilizing Fermi level pinning in the bands
((e) and (f)). Parts (a) and (c) utilize metal–semiconductor junctions, (b) and
(d) utilize heterojunctions, and (e) and (f) utilize Fermi level pinning in the
conduction or valence band.
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Table 4.2: Specific contact resistances based on depletion approximation and
tunneling through a triangular barrier.

Barrier Height= Barrier Height=
0.8 eV 0.3 eV

m∗ = m∗ = m∗ = m∗ =
0.067m0 0.5m0 0.067m0 0.5m0

σc (S.cm2) 1.26× 107 3.5× 107 2.9× 106 7.9× 106

for thermionic field emission, and

ρc ∝ exp

[
4π

√
m∗εs
h

φB√
ND

]
(4.91)

for field emission in a triangular barrier.
Note the general features of these expressions. Thermionic emission pro-

cesses are temperature-sensitive because they describe current transport due to
emission from the hot electron tail of the distribution function. The magnitude
of this resistance should be large. The thermionic field emission due to addi-
tional tunneling occurring in the higher energy tail of the carrier distribution
function is less temperature-sensitive than the thermionic emission, but it is
still significant. The tunneling for very thin barriers, assumed to be triangular,
leads to least the temperature sensitivity because the thin barriers allow for
tunneling of low-energy electrons. The last of these is the basis for many of the
metal–semiconductor ohmic contacts.

We can use our expression for Fowler–Nordheim tunneling, which is the
dominant tunneling process, to derive the complete form of this conductance.
Using Equation 4.85,

σc =
dJ

dV
= α (E0 + 2E) exp

(
−E0

E

)
dE
dV

. (4.92)

The derivative of field with potential follows from the Poisson equation as

dE
dV

= −
(

2qND(φB − V )

εs

)1/2

, (4.93)

and hence the doping dependence. It is instructive to evaluate the magnitude of
this conductance for some examples. We consider barrier heights of 0.6 eV and
0.3 eV, and a doping of 1×1020 cm−3. The specific contact conductance is shown
in Table 4.2. The calculation, although simplistic, is instructive. A smaller
barrier, such as in a heterojunction, allows for low specific contact resistance
if the semiconductor used in its formation can be accessed with a low specific
contact resistance also. Holes, represented here by a larger effective mass, lead
to a higher specific contact resistance for similar barrier heights. Light holes
exist too, but the density of the light hole states is small and hence tunneling
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to these is less likely. In practice, barrier heights for holes is smaller, and the
specific contact resistances for both electrons and holes is similar.

The major approximations in the above relate to the exact determination
of the fields, interface roughness that significantly enhances the field and hence
the tunneling current, image force lowering which reduces the barrier height,
heavy doping effects which introduce both Coulombic fluctuations and other
band structure effects, interface oxides, etc. Clearly, depletion approximation is
quite inappropriate and others only contribute to making the calculation more
inexact. A more general expression of current can be derived for field emission
where some of the approximations are relaxed (see Problem 12) as

J =
A∗

α2k2
exp

(
−qφB − V

E00

)
×

{
παkT

sin(παkT )
[1 − exp (−qαV )] − qαV exp [−α (ξf − Ec)]

}
,

(4.94)

where α = ln [4 (qφB − qV ) /ξf ] /2E00. In deriving this expression, we have
assumed that

1 − αkT > kT

(
1

2E00ξf

)1/2

. (4.95)

The expression for specific contact resistance, assuming further that ξf −
Ec − qV > 3kT and αV � 1 (see Problem 12), is

ρc =
(k/qA∗) exp (qφB/E00)

(πT/ sin(πα∗kT )) − (1/α∗T ) exp [−α∗ (ξf − Ec)]
. (4.96)

where α∗ is the magnitude of α at zero bias. The functional form is similar to
the earlier field emission description in a triangular barrier.

Isotype heterojunctions with large dopings on both sides of the junction and
a metal–semiconductor junction with large doping in the semiconductor are two
of the more common methods of forming ohmic contacts. Due to smaller bar-
rier heights or barrier widths, in some of these cases even for moderate doping
conditions, the barriers do not substantively impede the flow of current. One
such example is the access to the two-dimensional electron gas at a heterojunc-
tion interface of a heterostructure field effect transistor. A low specific contact
resistance can be obtained to the two-dimensional gas even if it is formed in a
low-doped substrate. This low contact resistance mainly arises because of the
low barrier height and width for carrier tunneling from the large bandgap ma-
terial to the small bandgap material. The contact is still limited by the features
of the barrier, and further lowering of the contact resistance may be achieved
by grading of the barrier. Grading of the barrier lowers the barrier height and
allows for more field emission.

The contacts formed from a semiconductor through a heterojunction to a
metal that exploit lower barriers in different semiconductors and their inter-
faces are particularly interesting in compound semiconductor devices. A set
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Figure 4.18: Metal–semiconductor junctions formed with heterostructures us-
ing abrupt interface with Ge (a), abrupt interface with InAs (b), and graded
interface with InAs (c). (a) and (b) are two examples where the tunneling the-
ory is suitably applicable. The grading in the InAs contact is shown to occur
pseudomorphically to a larger bandgap compound such as Ga1−xInxAs or GaAs.
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of examples where this may be relevant is shown Figure 4.18. The choice for
interfacial heterojunction is a semiconductor with favorable properties for for-
mation of an ohmic contact. Examples for n-type GaAs are InAs and large InAs
mole-fraction Ga1−xInxAs which show negative barrier heights for conduction
band, and Ge, which shows a low positive barrier height. Both of these con-
tacts show minimal resistances (the sum of the specific contact resistance of the
metal–semiconductor and the heterojunction interface). Because of the lower
barrier height, heterojunctions may be kept abrupt. Abrupt heterojunctions
between semiconductors of low barrier heights can be treated in a manner that
we have already described. In these cases, the junction current as described by
the tunneling current is simply

J =
4πm∗qkT

h3

∫ ∞

Ec
TtS(E)dE, (4.97)

where the source function is

S(E) = ln

{
1 + exp [(ξf − E) /kT ]

1 + exp [(ξf − E − qV ) /kT ]

}
. (4.98)

Ohmic contacts can also be formed using other techniques. Disorder at the
interface, e.g., can lead to states in the band that allow hopping conduction
leading to bias-symmetric conduction. One of the more common methods for
forming ohmic contacts in GaAs utilizes a eutectic of gold and germanium.
Thermal processing of this structure is commonly believed to lead to islands
where an inter-metallic forms an ohmic contact to highly n+ doped regions
of compound semiconductor, Ge providing the doping by substituting on the
Group III element site. These islands provide conduction by lateral spreading
of the current; the contact is non-uniform because it has spreading effects from
the islands. Very small area contacts will not follow large area behavior. More
importantly, the square root dependence on doping that one expects from the
tunneling behavior is not followed. Instead, one sees an inverse dependence (see
Problem 13) of the specific contact resistance.

4.5 p–n Junctions

We discussed in chapter 3, transport in p–n junctions using the BTE approach,
and we also discussed boundary conditions for p–n junctions in both low in-
jection conditions and high injection conditions. Our analysis and discussion
here will develop the necessary junction parameters, emphasize limitations of
depletion approximation, discuss voltage drop across the quasi-neutral region in
high level injection conditions, and develop a general charge control approach
to analyze transport in p–n junctions. The latter approach, called Gummel–
Poon model after its originators, is applied to a variety of conditions including
recombination, a variety of doping profiles, and heavy doping conditions, to
demonstrate the transport effects in p–n junctions.
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4.5.1 Depletion Approximation

We first consider, within depletion approximation, junction parameters of inter-
est, and then we will consider limitations of the assumption of complete carrier
depletion in the junction space charge region. Figure 4.19 shows band edges and
carrier densities for a GaAs p–n junction.8 In the quasi-neutral part of either
the p-type or the n-type material,

d2ψ

dz2
= −qN

εs
= 0, (4.99)

where ψ is the electrostatic potential. The sign of the charge used in the above
equation corresponds to that of donors. In the quasi-neutral region, there exists
no net charge density, and hence the electric field is constant. Since the electric
field is negligible at the ohmic contact, electric field is negligible in the quasi-
neutral region, and hence the electrostatic potential ψ is constant. In depletion
approximation, i.e., ignoring the mobile carrier charge, in the depletion region
on the n side, the electric field is given by

E = −dψ
dz

=
qND
εs

z + A. (4.100)

Electric field is zero at the edge of the depletion region (z = wn) of the n-type
semiconductor, hence the constant

A = −qNDwn
εs

, (4.101)

and

E = −qND
εs

(wn − z) (4.102)

in the depletion region. This expression is similar to that for a metal–semiconductor
diode. Integrating again,

ψ = −
∫

Edz = q
ND
εs

(
wnz −

z2

2

)
+ B. (4.103)

Using the boundary condition for the electrostatic potential in the n-type ma-
terial, ψ = ψn at z = wn, we obtain

ψ = ψn − qND
2εs

(wn − z)
2
. (4.104)

Similarly, on the p-side we have

ψ = ψp +
qNA
2εs

(z +wp)
2
, (4.105)

8For the calculation of the depletion region widths, etc., we will assume origin to be at the
metallurgical junction with the depletion region edge in the p-type material at z = −wp and
in the n-type material at z = wn.
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Figure 4.19: Band bending and quasi-Fermi levels (a), and electron and hole
densities (b) at a p–n homojunction in GaAs in thermal equilibrium.
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where depletion region edge is assumed to occur at z = −wp.
For a homogeneous material, with no interface charge, both the electric field

and the electrostatic potential are continuous at the junction (z = 0), i.e.,

ψp +
qNA
2εs

w2
p = ψn − 2ND

2εs
w2
n

and
qNA
εs

wp =
qND
εs

wn. (4.106)

This allows us to write the charge on each side of the depletion region as

Q = qNAwp = qNDwn =

[
2qεs

NDNA
ND +NA

(ψn − ψp)

]1/2
, (4.107)

where (ψn − ψp) is the total band bending of the junction which is the built-in
potential ψj0,

ψj0 =
kT

q
ln

(
NDNA
ni2

)
(4.108)

in the Boltzmann approximation. We can also write the two depletion widths
as

wn =

[
2εsψj0NA

q (ND +NA)ND

]1/2
=

√
2λDn

[
qψj0NA

kT (NA +ND)

]1/2
, (4.109)

and

wp =

[
2εsψj0ND

q (ND +NA)NA

]1/2
=

√
2λDp

[
qψj0ND

kT (NA +ND)

]1/2
, (4.110)

where λDn and λDp are the Debye lengths in the n-type and p-type regions.
Also, the total depletion region width is

W = wn + wp =

[
2εsψj0

qNDNA/ (ND +NA)

]1/2
. (4.111)

These expressions simplify for one-sided junctions because the effective doping
is the geometric mean and it becomes the smaller doping for one-sided junctions.

In reality, a mobile charge exists at the junction edges and under larger for-
ward bias, and a significant mobile charge may exist within the depletion region.
Close to the flat-band conditions of the junction, this charge can be consider-
able. Depletion region, therefore, is a misnomer for such conditions. The term
space charge region is more appropriate. In this text, both are used interchange-
ably. Consider the inclusion of this charge at the edges of the junction depletion
region,

d2ψ

dz2
= −q (ND − n)

εs
= − q

εs

[
ND − ni exp

(
qψ

kT

)]
. (4.112)
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If we consider the deviation of electrostatic potential from ψn given by ∆ψ =
ψn − ψ,

d2∆ψ

dz2
=

q

εs

[
ND − ni exp

(
q
ψn − ∆ψ

kT

)]

=
qND
εs

[
1 − exp

(
−q∆ψ
kT

)]
. (4.113)

In the small region at the junction edge, with ∆ψ << kT/q, we may expand
the exponential in a Taylor series expansion, and if we include only the first
perturbation term, we obtain

d2∆ψ

dz2
=
q2ND
εskT

∆ψ =
∆ψ

λD
2
. (4.114)

So, electrostatic potential actually deviates exponentially with a characteristic
length given by the Debye length at the edge of the depletion region. Conse-
quently the mobile charge density falls off in significance exponentially.

The significance of this exponential fall-off is that we may use its characteris-
tic length, the Debye length, to judge the appropriateness of the use of depletion
approximation. If the depletion region width on either side is comparable to the
Debye length, then the depletion approximation is clearly invalid. We have

wn
λDn

=

[
2qψj0ND

kT (NA +ND)

]1/2
,

and
wp
λDp

=

[
2qψj0NA

kT (NA +ND)

]1/2
. (4.115)

Consider an abrupt one-sided GaAs n+–p junction with dopings of 5 ×
1017 cm−3 and 5 × 1014 cm−3. The built-in voltage for this junction

ψj0 =
kT

q
ln

(
NDNA
ni2

)
= 1.19 V, (4.116)

and hence, wn/λDn = .3, and wp/λDp = 9.6. On the higher-doped side, the
depletion approximation is poor, because a substantial electron density occurs
throughout the depletion region in this n-type region. On the other hand,
for a symmetric junction of 1 × 1016 cm−3 doping, the built-in voltage of the
junction is 1.16 V, and wn/λDn and wp/λDp are ≈ 6.7, making the depletion
approximation a good one on both sides of the junction. Similarly, for a large
doping symmetric junction of 5 × 1017 cm−3, ψj0 = 1.36 V, and wn/λDn and
wp/λDp are ≈ 7.3, a good depletion approximation. Thus, one-sided junctions
lead to breakdown of the depletion approximation in the higher-doped side. The
approximation is poorest because potential drop across the heavily doped layer
is lower due to asymmetry and hence the depletion width in the higher-doped
side is smaller.
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4.5.2 High-Level Injection

We considered the low-level injection behavior of p–n junctions quite extensively
during the discussion of Shockley, Fletcher, and Misawa boundary conditions.
We will analyze the problem further by considering the behavior of p–n junction
in high-level injection. In particular, we are interested in determining the voltage
drops across the n-side and the p-side. Let J be the total current through the
device. Our transport equation for the n-side is

Jn = qµnnnE + qDn
∂nn
∂z

, (4.117)

and hence

E =
Jn

qµnnn
− Dn
µnnn

∂nn
∂z

. (4.118)

Particle current flows both as electron and hole current, therefore,

Jn(z) = J − Jp(z), (4.119)

and hence we get the expression for the electric field as

E(z) =
J

qµnnn(z)
− Jp(z)

qµnnn(z)
− kT

qnn

∂nn
∂z

. (4.120)

On the n-side again, we may express the hole current directly, and substitute
the above for the electric field. This allows us to express the hole current density
as

Jp(z) = qµppnE(z) − qDp
∂pn
∂z

= qµppn(z)

[
J

qµnnn(z)
− Jp(z)

qµnnn(z)
− kT

qnn

∂nn
∂z

]
−

qDp
∂pn(z)

∂z
. (4.121)

Since charge neutrality implies

∂pn(z)

∂z
=
∂nn(z)

∂z
, (4.122)

we can simplify this to yield

Jp(z) =
1[

1 +
µppn(z)
µnnn(z)

]
{
µppn(z)

µnnn(z)
J − qDp

[
1 +

pn(z)

nn(z)

]
∂pn(z)

∂z

}
(4.123)

as the expression for hole current, and, substituting back in the electric field
expression,

E(z) =
J

q(µnnn(z) + µppn(z))
− Dn −Dp

(µnnn(z) + µppn(z))

∂pn(z)

∂z
(4.124)
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as the expression for the electric field.
Note that this actually follows from the the total current relation

J = σE(z) + qDn
dpn(z)

dz
− qDp

dpn(z)

dz
, (4.125)

where σ is the conductivity of the material which also includes high-level injec-
tion effects.

We can now determine the voltage drop across either of the semiconductor
regions. Let Vn be the change in electrostatic potential on the n-side; it is given
by

Vn = −
∫ zn

wn

E(z)dz, (4.126)

where zn is the position of the ohmic contact to the n-type material. Charge
neutrality and the junction boundary conditions allow us to write

pn(z) = pn0 + ∆pn exp

(
− z

Lp

)
, (4.127)

nn(z) = nn0 + ∆nn exp

(
− z

Lp

)
, (4.128)

∆pn = ∆nn, (4.129)

and ∆pn = pn0

[
exp

(
qVj
kT

)
− 1

]
, (4.130)

and hence

Vn =
J

q

∫ zn

wn

1

(µnnn0 + µppn0) + (µn + µp)∆pn exp (−z/Lp)
dz −

∫ pn0

pn(wn)

(Dn −Dp)
(µnnn0 + µppn0) + (µn + µp)∆pn exp (−z/Lp)

dpn.

(4.131)

This may be written in the form of the integrable expression

Vn =
J

q

∫ zn

wn

1

(µnnn0 + µppn0) + (µn + µp)∆pn exp (−z/Lp)
dz −

(Dn − Dp)
∫ pn0

pn(wn)

1

(µnnn0 − µnpn0) + (µn + µp)pn(z)
dpn,

(4.132)

and finally, following integration,

Vn =
J(zn −wn)

q(µnnn0 + µppn0)
+

JLp
q(µnnn0 + µppn0)

×

log

{
(µnnn0 + µppn0) + (µn + µp)∆pn exp [− (wn − zn) /Lp]

(µnnn0 + µppn0) + (µn + µp)∆pn

}
−

Dn − Dp
µn + µp

log

[
(µnnn0 + µppn0)

(µnnn0 + µppn0) + (µn + µp)∆pn

]
. (4.133)
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This describes completely, in terms of known prameters, the total voltage drop
across the n-side of the junction. Its simplification, at low level injection (i.e.,
nn0 >> pn0,∆pn) where the logarithmic terms are negligible, is simply

Vn =
J(zn −wn)

qµnnn0
, (4.134)

or

E =
Vn

zn − wn

=
J

qµnnn0
, (4.135)

which is Ohm’s Law because the denominator is the conductivity of the semi-
conductor.

A similar expression may be found for the p-side. Usually, though, junctions
are one-sided and the high-level injection effects need to be included on only one
side of the junction. These relations relate the current density to the voltage
drop in the quasi-neutral region. The relationship between the current and
electrostatic potential at the junction is known from Chapter 3. The applied
voltage is partitioned between the junction and the quasi-neutral region at high-
level injection. These form a complete set of equations to determine the current
for the applied bias at the device terminals.

Figure 4.20 shows the characteristics of a symmetric p–n junction under
conditions of medium- and high-level injection. The diode in this example is a
short diode, where the diffusion length is larger than the base width—the width
of the quasi-neutral region. Depletion approximation is quite valid at low-level
injection conditions, and the exponential drop in the carrier concentration is
also demonstrated under these conditions. The potential drop is negligible in
the low-level injection conditions, and all the applied potential drops at the
junction. Figure 4.20 shows the changes from this at medium- and high-level
injection.

At medium-level injection conditions, some deviation in majority carrier
concentration occurs because the minority carrier concentration is becoming
significant, and the change maintains quasi-neutrality away from the junction.
Almost all of the voltage still drops across the junction.

Under high-level injection conditions, a significant injection of minority car-
riers occurs, and an equal change in majority carrier concentration occurs to
re-establish quasi-neutrality. The electric field needed to maintain this gradient
in the majority carriers is now clear in the variation of the conduction band edge
as a function of position. Also note from this variation of the conduction band
edge, and the variation of the quasi-Fermi level, that both diffusion and drift
current flow now occurs in the base of the p–n junction. The low and medium
injection conditions show current transport only through diffusion.

Figure 4.21 shows the current–voltage behavior of a GaAs diode; this exam-
ple assumes a large lifetime and diffusion length. At the lowest biases the current
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Figure 4.20: Band edges and electron and hole concentration in a symmetric
GaAs p–n junction under medium- (a), and high-level (b) injection. The thermal
equilibrium conditions for this junction are shown in the previous figure.

Figure 4.21: Current-voltage characteristics of an idealized one-sided n+–p
GaAs junction as a function of applied bias. The n+-type doping is 5×1018 cm−3

and the p-type doping is varied between 1017 cm−3 and 1018 cm−3.
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increases exponentially, at the rate of 60 mV/decade in current. This increase is
characteristic of the exponential current–voltage relationship that characterizes
transport in an ideal p–n junction. It occurs because the flat quasi-Fermi level
at the low-level injection condition relates the carrier concentration at the edges
of the depletion region by the Boltzmann factor. Therefore, in the presence of
diffusion-dominated transport in the low-level injection condition, and with low
recombination effects so that electron and hole current densities are constant
in the depletion region, the current also varies exponentially. Deviation from
this behavior at the higher-level injection condition comes about because now
the junction voltage is smaller than the applied voltage, and because of the
high injection, both diffusive and drift transport occur. Note also that in the
exponential region the current is only very weakly dependent on the doping of
the lighter doped side. It is the strongest function of the built-in voltage which
is only a weak function of doping.

This discussion assumed transport with perfect ohmic contacts, i.e., contacts
where the excess carrier concentration was zero. We have discussed modelling
of contacts by a surface recombination velocity that relates this excess carrier
concentration above its value at thermal equilibrium. Problem 29 considers
incorporation of such boundary conditions in analyzing the behavior of p–n
junction diodes.

4.5.3 Gummel–Poon Quasi-Static Model

The Gummel–Poon model implementation9 for p–n junctions and bipolar tran-
sistors is a useful approach for predicting the the quasi-static transport behavior
of an arbitrary device. In our discussion of p–n junctions to this point, we have
only considered uniform dopings. It may be desirable in certain structures
to have varying doping profiles. p–n junctions with large dopings occur with
bandgap grading due to bandgap shrinkage. Alloy grading of heterostructures
occurs with bandgap grading also. These devices can, thus, have varying quasi-
fields in the base either with a doping gradient or an alloy gradient. Gummel–
Poon modelling is a convenient mechanism to precisely predict the quasi-static
behavior for such a variety of structures. It is also useful for complex recombi-
nation situations. Our model is a simple extension of the homojunction model
to include the heterostructure and the bandgap grading in the base. It is useful
at both low and medium current densities.

Consider the references and charge parameters for an arbitrary p–n junction
as described in Figure 4.22. Qp and Qn describe the integrated charge due to
majority carriers in the quasi-neutral region on both sides of the junction, while
Qp
n and Qn

p are the corresponding integrated minority carrier charge densities.
The ohmic contacts are located at z = −zp and z = zn for the p-type and n-type
regions, and z = −wn and z = wp are the positions of the edges of the depletion
region.

9H. K. Gummel and H. C. Poon, “An Integral Charge Control Model of Bipolar Transis-
tors,” The Bell System Technical Journal, p. 827, May-June 1960, discusses the application
of the approach in bipolar transistors.
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Figure 4.22: References for analysis of p–n junctions using the quasi-static
Gummel–Poon approach; Qp and Qn are the integrated majority carrier charge
densities in the p-type and n-type quasi-neutral regions, Qp

n and Qn
n are the

integrated minority carrier charge densities in the quasi-neutral regions.
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The continuity equations for steady-state are

∂Jn
∂z

= q [R(z) − G(z)] (4.136)

for the electron current and

∂Jp
∂z

= −q [R(z) − G(z)] (4.137)

for the hole current. We will employ these equations, which describe the posi-
tional change of the current density, to write equations for the current density
as a function of its magnitude at the contacts. Since current continuity requires
the current at the two contacts to be the same, this will allow us, by referencing
to either of the contacts, to write an equation for the current in terms of the
changes in the quasi-Fermi level which may then be related to the voltage for
different injection conditions, just as we did in the boundary condition analysis.
In doing this, several well-defined integrals occur, which are variously referred
to as Gummel or modified Gummel numbers. The origin of these integrals can
be traced to the charge in the quasi-neutral regions, modified by factors such
as alloy grading, bandgap changes, and differing diffusivities or mobilities, all
of which affect current transport. In low-level injection, for uniformly-doped
short diodes, the minority carrier current is proportional to the minority carrier
density at the edges of the depletion region, and inversely proportional to the
width because these two parameters define the gradient of the minority car-
rier charge density. The minority carrier charge density is directly related to
the exponential of the junction bias—the Boltzmann factor—and the minor-
ity carrier density at thermal equilibrium. The minority carrier density, thus,
is inversely related to the majority carrier density, which is a constant for a
uniformly-doped and uniform-alloy composition junction in low-level injection.
Under these conditions, the current density is inversely proportional to the ma-
jority carrier charge density and the width of the quasi-neutral region, i.e., the
integrated majority carrier charge densities Qn and Qp. These are the simplest
forms of Gummel numbers applicable if alloy grading, bandgap changes, diffu-
sivity or mobility changes as well as other injection effects are negligible, and
the p–n junction is a short junction. Our derivation allows for the inclusion
of these, and hence we generate modified Gummel numbers,10 which are more
complex in form, but more generally applicable. Our major limitation will be
that current transport is considered by drift-diffusion alone. Thus, it is not
applicable to devices with any rapid changes in alloy composition that lead to
band edge discontinuities and thermionic transport.

In the absence of recombination, current density for electrons and holes is
constant in the junction region, the sum of which is the total current in the

10For a basis of this modification, see A. H. Marshak and K. M. Van Vliet, “Carrier Densities
and Emitter Efficiency in Degenerate Materials with Position-Dependent Band Structure,”
Solid-State Electronics, 21, p. 429 (1978), and A. H. Marshak and C. M. Van Vliet, “Electrical
Current and Carrier Density in Degenerate Materials with Non-Uniform Band Structure,”
Proc. of IEEE, 72, No. 2, p. 148 (1984).
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device. This constant current density in the junction region for both carriers
is used as the basis for the calculation of total current density in the simpler
diode problem. It allows us to determine the minority carrier current density at
the junction edges and hence the current density of the diode. These minority
currents are diffusive, i.e., there exists a gradient in the minority carrier density
in the quasi-neutral region. The current supports this carrier distribution. The
converse is also true: the carrier distribution supports this current.

If we integrate the current continuity equation from the contacts, the electron
current density at any position z may be written w.r.t. its magnitude at one of
the contacts as

Jn(z) = Jn(zn) − q

∫ zn

z

[R(z) − G(z)] dz, (4.138)

and

Jn(z) = Jn(−zp) + q

∫ z

−zp

[R(z) − G(z)] dz. (4.139)

The first term in the former equation is related to the injected or extracted
electron current density and the second is related to generation–recombination
current. The second term relates the exchange between the minority and ma-
jority carrier current density. A decrease in minority carrier current occurs with
an increase in majority carrier current, and in the process, the total current
remains constant. A similar set of equations for the hole current density are

Jp(z) = Jp(−zp) − q

∫ z

−zp

[R(z) − G(z)] dz, (4.140)

and

Jp(z) = Jp(zn) + q

∫ zn

z

[R(z) − G(z)] dz. (4.141)

Electron current is injected through the n-type region, and hole current
through the p-type region, thus, the terms Jn(zn) and Jp(−zp) are the injected
electron and hole current densities. The total current density remains constant
in this one-dimensional analysis, and at any cross-section, the total current
density is given by

J(z) = Jn(z) + Jp(z)

= Jn(zn) − q

∫ zn

z

[R(z) − G(z)] dz + Jp(−zp) −

q

∫ z

−zp

[R(z) − G(z)] dz

= Jn(zn) + Jp(−zp) − Jgr(−zp). (4.142)

The current density Jgr(z) is the integral of the charge generation–recombi-
nation rate from any position z in the diode to the end of the device defined by
the n-side ohmic contact,

Jgr(z) = q

∫ zn

z

[R(z) − G(z)] dz. (4.143)
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This definition allows us to write more succinct forms of the spatial dependence
of the current density as

Jn(z) = Jn(zn) − Jgr(z) (4.144)

and
Jp(z) = Jp(zn) + Jgr(z). (4.145)

Both electron and hole current densities are the largest at the ohmic contacts
of their respective majority carrier regions. The hole current density decreases
from the p-contact to the n-contact, while a corresponding increase occurs in
the electron current density. The decrease in hole current density appears as an
increase in the electron current density and vice-versa. An equation, similar to
Equation 4.142, can be written by using the opposite references. This equation
is therefore written in terms of the minority current densities at the contacts
instead of the majority current densities.

J(z) = Jn(−zp) + Jp(zn) + Jgr(−zp). (4.146)

This equation may be viewed as being in terms of collected currents since the
minority carriers are injected by majority carrier regions. The total current is
the sum of the minority carrier current at the contacts and the Jgr(−zp) term
due to generation–recombination effects that characterizes the exchange current
of carriers.

The carrier transport can now be written using drift-diffusion formalism. We
write the currents in terms of the quasi-Fermi potentials φn and φp for electrons
and holes, and the electrostatic potential ψ. We have

Jn = −qµnn
∂φn
∂z

, (4.147)

where

n = ni exp

[
q(ψ − φn)

kT

]
. (4.148)

For hole current density, we have

Jp = qµpp
∂φp
∂z

, (4.149)

where

p = ni exp

[
q(φp − ψ)

kT

]
. (4.150)

Using the Einstein relation, and quasi-Fermi potentials instead of carrier densi-
ties as the variable, current density can be written as

Jn = qµnni exp

[
q(ψ − φn)

kT

]
∂φn
∂z

= qµnni
kT

q
exp

(
qψ

kT

)
∂

∂z

[
exp

(
−qφn
kT

)]

= qDnni exp

(
qψ

kT

)
∂

∂z

[
exp

(
−qφn
kT

)]
. (4.151)
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This relates the change of quasi-Fermi levels for electrons to the electron current
density as

∂

∂z

[
exp

(
−qφn
kT

)]
=

Jn(z)

qDnni exp (qψ/kT )
. (4.152)

We may now relate the changes in quasi-Fermi potential to its magnitude at
the contacts. Integrating from the p-type ohmic contact to the n-type ohmic
contact (−zp to zn),

exp

[
−qφn (zn)

kT

]
− exp

[
−qφn (−zp)

kT

]
=

∫ zn

−zp

Jn(z)

qDnni exp (qψ/kT )
dz. (4.153)

The current density at any position is related to the current density at the
contact and the generation–recombination term through the identity Jn(z) =
Jn(zn) − Jgr(z). Thus,

exp

[
−qφn (zn)

kT

]
− exp

[
−qφn (−zp)

kT

]
=

Jn (zn)

∫ zn

−zp

1

qDnni exp (qψ/kT )
dz −

∫ zn

−zp

Jgr
qDnni exp (qψ/kT )

dz,

(4.154)

and hence, the majority carrier current at the contact at z = zn can be written
as

Jn (zn) =

[∫ zn

−zp

1

qDnni exp (qψ/kT )
dz

]−1

×
{

exp

[
−qφn (zn)

kT

]
− exp

[
−qφn (−zp)

kT

]
+

∫ zn

−zp

Jgr(z)

qDnni exp (qψ/kT )
dz

}
. (4.155)

The total change in the quasi-Fermi potential between the two ohmic contacts
is the applied voltage V across the diode, i.e.,

V = φn (−zp) − φn (zn) . (4.156)

This assumes a perfect ohmic contact with no voltage drop across it; more
complicated conditions, e.g., using finite surface recombination velocity, can
also be incorporated. For now, we consider ideal contacts. We multiply and
divide by the factor exp [qφn(−zp)/kT ], giving

Jn(zn) =

{∫ zn

−zp

exp [q (φn(−zp) − ψ) /kT ]

qDnni
dz

}−1

×
{[

exp

(
qV

kT

)
− 1

]
+



4.5 p–n Junctions 239

∫ zn

−zp

Jgr(z)

qDnni
exp

[
q
φn(−zp) − ψ

kT

]
dz

}
. (4.157)

This is a general form of the expression for electron current density for arbi-
trary situations with doping, alloy composition, and bias variations in a one-
dimensional geometry. It is a complicated form, which relates the currents
through integrals of terms involving elementary charge, the diffusion coefficient,
and the majority charge density. These integrals are the various forms of modi-
fied Gummel numbers. Equation 4.157 is the basic expression that we will refer
to in complicated problems, but to demonstrate its utility even in simpler forms,
we will consider homojunction structures. A convenient form, then, is

Jn(zn) =
qni

2

Γn

[
exp

(
qV

kT

)
− 1

]
+

1

Γn

∫ zn

−zp

Jgr(z)ni
Dn

exp

[
q
φn (−zp) − ψ

kT

]
dz, (4.158)

where

Γn =

∫ zn

−zp

ni
Dn

exp

[
q
φn(−zp) − ψ

kT

]
dz (4.159)

is one form of the Gummel number for electrons. Following similar procedures,
an expression may be written for hole current (see Problem 14) for the general
case as

Jp (zn) =

[∫ zn

−zp

1

qDpni exp (−qψ/kT )
dz

]−1

×
{

exp

[
qφp (zn)

kT

]
− exp

[
qφp (−zp)

kT

]
−

∫ zn

−zp

Jgr(z)

qDnni exp (−qψ/kT )
dz

}
, (4.160)

which, under the restricted condition of no alloy grading, reduces to

Jp (zn) =
qni

2

Γp

[
exp

(
qV

kT

)
− 1

]
−

1

Γp

∫ zn

−zp

Jgr(z)ni
Dp

exp

[
q
ψ − φp(zn)

kT

]
dz, (4.161)

where

Γp =

∫ zn

−zp

ni
Dp

exp

[
q
ψ − φp(zn)

kT

]
dz (4.162)

is a Gummel number for holes. These expressions for Gummel numbers have
been written in terms of the quasi-Fermi potentials, the electrostatic potential,
and the intrinsic carrier concentration. They are in a general form that is
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applicable to high-level injection or long base conditions. Under these arbitrary
conditions, the total current, a constant at any bias, flowing in the diode can
be written as

J(z) = Jn(zn) + Jp(zn)

= qni
2

(
1

Γn
+

1

Γp

)[
exp

(
qV

kT

)
− 1

]
+

1

Γn

∫ zn

−zp

Jgr(z)ni
Dn

exp

[
q
φn (−zp) − ψ

kT

]
dz −

1

Γp

∫ zn

−zp

Jgr(z)ni
Dp

exp

[
q
ψ − φn (−zp)

kT

]
dz. (4.163)

We continue to assume perfect ohmic contacts with quasi-Fermi level position
defined by the majority carrier, the excess minority carrier concentration going
to zero, and the voltage drop at the contact negligible. The assumption of
perfect ohmic contacts implies

φp (−zp) = φn (−zp) (4.164)

and
φp (zn) = φn (zn) . (4.165)

We now restrict our discussion to applications involving low-level injection.
Under these conditions, the quasi-Fermi potentials φn and φp remain approx-
imately constant in the quasi-neutral regions and the junction space charge
region. The Gummel number for electrons can then be written as

Γn =

∫ zn

−zp

ni
Dn

exp

[
q
φn(−zp) − ψ

kT

]
dz

≈
∫ zn

−zp

ni
Dn

exp

[
q
φp (−zp) − ψ

kT

]
dz. (4.166)

The Gummel number can be evaluated by integrating over the device depth.
The carriers are majority carriers in part of the device; the integrand in this
region is large. In the space charge region, and in the region where they are
minority carriers, this magnitude is usually small in low-level injection. Using
references from Figure 4.22, we have

Γn =

∫ −wp

−zp

p

Dn
dz +

∫ zn

−wp

ni
Dn

exp

[
q
φp(−zp) − ψ

kT

]
dz, (4.167)

where the integral is related to majority carrier density (holes) in the p-type
region, and the last term is in a region where the integrand is small. Usually,
therefore, in low-level injection, the last term is small, and we obtain

Γn ≈
∫ −wp

−zp

p

Dn
dz. (4.168)
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Similarly, we may find the hole Gummel number, whose major term is due to
the electron charge density in the n-type region, i.e.,

Γp ≈
∫ zn

wn

n

Dp
dz. (4.169)

In their original formulation, Gummel and Poon considered the integrated
charge as the basis for the integral equations. These unmodified Gummel num-
bers were defined as

GNn =
Qn
q

=

∫ zn

wn

ndz (4.170)

and

GNp =
Qp
q

= q

∫ −wp

−zp

pdz. (4.171)

If the diffusivity is constant, intrinsic carrier concentration is constant, and low-
level injection conditions exist, then the Gummel numbers of Equation 4.159
and 4.162 are equivalent to these. The effect of varying diffusivity of carriers
is effectively incorporated in the unmodified Gummel–Poon approach by using
the weighted diffusion coefficients Dnand Dp. We may write these relationships
as

1

Γn
=

qDn

Qp

and
1

Γp
=

qDp

Qn
, (4.172)

where

Dn =

∫ −wp

−zp
pdz

∫ −wp

−zp
(p/Dn) dz

and Dp =

∫ zn

wn
ndz

∫ zn

wn
(n/Dp) dz

. (4.173)

Our expressions for electron and hole current densities at z = zn can be
rewritten in terms of these integrated charge numbers as

Jn(zn) =
q2ni

2Dn

Qp

[
exp

(
qV

kT

)
− 1

]
+

qDn

Qp

∫ zn

−zp

Jgr(z)ni
Dn

exp

[
q
φn (−zp) − ψ

kT

]
dz (4.174)

and

Jp(zn) =
q2ni

2Dp

Qn

[
exp

(
qV

kT

)
− 1

]
−

qDp

Qn

∫ zn

−zp

Jgr(z)ni
Dp

exp

[
q
ψ − φp (zn)

kT

]
dz. (4.175)
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The total current density for this homojunction, under conditions of low-level
injection and with ideal ohmic contacts, is

J(z) = qni
2

(
qDn

Qp
+
qDp

Qn

)[
exp

(
qV

kT

)
− 1

]
+

qDn

Qp

∫ zn

−zp

Jgr(z)ni
Dn

exp

[
q
φn (−zp) − ψ

kT

]
dz −

qDp

Qn

∫ zn

−zp

Jgr(z)ni
Dp

exp

[
q
ψ − φp (zn)

kT

]
dz. (4.176)

This was derived from first principles including both drift and diffusion terms
for the minority carriers since the quasi-Fermi potentials were used as a basis
for the derivation. Thus, it does apply to conditions where the doping may be
a function of position and where drift effects may be also be important. The
geometrically weighted diffusivities Dn and Dp contain the contribution due to
drift current.

The effect of motion of minority carriers is related to their motion param-
eters of effective diffusivity. The expressions indicate that this parameter is
dependent on the material properties related to diffusivity and intrinsic carrier
concentration, and to the integrated majority carrier charge density. This de-
pendence was discussed on the basis of intuitive arguments at the beginning of
this section. Thus, the contribution of electrons is related to ni, Dn, and Qp,
and the generation–recombination effects. The voltage V in these equations is
the total potential drop in the semiconductor from one ohmic contact edge to
the other, i.e., V = Vp+Vj +Vn, where Vp is the voltage drop across the p-side,
Vj the voltage drop at the junction, and Vn the voltage drop across the n-side.

Let us now apply this approach to the simple situation of low-level injection
in a short diode with generation–recombination considered negligible and with
a uniform doping profile. We have

Qp = q(zp − wp)pp0,

Qn = q(zn − wn)nn0,

Jgr(z) = 0,

Dp = Dp,
and Dn = Dn. (4.177)

This results in the following:

Jn(zn) =
q2ni

2Dn

Qp

[
exp

(
qV

kT

)
− 1

]

=
qni

2Dn
(zp − wp)pp0

[
exp

(
qV

kT

)
− 1

]

=
qnp0Dn
zp − wp

[
exp

(
qV

kT

)
− 1

]
, (4.178)
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and

Jp(zn) =
q2ni

2Dp

Qn

[
exp

(
qV

kT

)
− 1

]

=
qni

2Dp
(zn −wn)nn0

[
exp

(
qV

kT

)
− 1

]

=
qpn0Dp
zn −wn

[
exp

(
qV

kT

)
− 1

]
. (4.179)

The total current, constant and independent of position in the device structure
is

J(z) =

(
qnp0Dn
zp − wp

+
qpn0Dp
zn −wn

)[
exp

(
qV

kT

)
− 1

]
. (4.180)

This is the common expression for a short, uniformly-doped, homojunction
diode in low-level injection, ignoring generation–recombination contributions.
It is the sum of diffusion currents on either side of the junction, which is re-
lated to the gradients of the minority carrier densities which are constant in the
absence of generation–recombination.

Now consider the same example with a varying doping profile to show the
more general applicability in cases where the generation–recombination effects
may still be ignored (by definition, the generation–recombination effects may
not be ignored in a long diode). We consider a short diode with an exponential
doping profile in one of the base regions.

Consider the example of Figure 4.23 . The diode has a uniformly doped
p-type region with a doping NA on one side of an abrupt junction and an
exponentially increasing doping ND(z) on the other side of the junction given
by

ND(z) = ND0 exp

(
z − zn
`

)
. (4.181)

Such a retrograde doping profile commonly occurs in devices where constant
capacitance is desired. An example is the varactor diode used for frequency
multiplication in microwave applications. Because of the non-uniform doping,
a built-in field exists in the n-type region, and both diffusion and drift currents
occur in this region. These are included in the weighted diffusion coefficient Dp.
For the doping profile shown, we have

Qp = q(zp −wp)NA,

Qn = q

∫ zn

wn

ND(z)dz

= q`ND0

[
1 − exp

(
−zn − wn

`

)]
,

Jgr = 0,

Dp =

∫ zn

wn
ndz

∫ zn

wn
(n/Dp) dz

,

and Dn = Dn. (4.182)
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Figure 4.23: Example of a short p–n diode with an exponentially varying profile
in one of the base regions. The top half of the figure shows the band edges and
the bottom half shows the carrier density as a function of position.
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The expression for the diffusivity Dp, thus, weights the contribution of the high-
est doping that occurs at the ohmic contact, and not at the edge of the junction
depletion region. The drift effect is incorporated in this effective coefficient.
Using the expression for current, under these conditions,

J =

{
qni

2Dn
(zp − wp)NA

+
qni

2Dp

`ND0 {1 − exp [− (zn −wn) /`]}

}
×

[
exp

(
qVj
kT

)
− 1

]
, (4.183)

a considerably more complex expression, but obtained in a fairly straightfor-
ward manner. The first part of this expression, due to electron transport in the
short uniformly-doped p-type region, is the same as in the previous example.
The second part of the expression is the variation introduced by non-uniform
doping, and the drift and diffusion current contribution of the hole current.

These examples ignore recombination effects, usually a poor assumption in
materials with short lifetimes such as compound semiconductors. We will there-
fore show the applicability of our derivation of the Gummel–Poon model to these
by including simpler forms of generation–recombination effects in examples.
Consider HSR-dominated generation–recombination processes, in a uniformly-
doped long abrupt diode. The generation–recombination rates in the quasi-
neutral regions are characterized by a lifetime, τn for electrons, τp for holes; and
let −Uscr represent the net generation–recombination rate in the space charge
region. Following our discussion of recombination processes, the former would
be equally applicable for Auger processes due to heavy doping effects, the lat-
ter, however, is a complicated quantity because it exhibits a position-dependent
variation within the space charge region of the junction. These net generation–
recombination rates, for uniform doping in various parts of the diode, are given
by

R(z) − G(z) =
np0
τn

[
exp

(
qVj
kT

)
− 1

]
exp

(
z + wp
Ln

)
(4.184)

in the p-type region (−zp ≤ z ≤ −wp),

R(z) − G(z) = Uscr (4.185)

due to HSR recombination in the space charge region (−wp ≤ z ≤ wn), and

R(z) − G(z) =
pn0

τp

[
exp

(
qVj
kT

)
− 1

]
exp

(
−z − wn

Lp

)
(4.186)

in the n-type region (wn ≤ z ≤ zn).
We wish to evaluate the integral containing the generation–recombination

current term where the expression for the generation–recombination current is

Jgr(z) =

∫ zn

z

[R(z) − G(z)] dz. (4.187)
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Let Jscr represent the contribution of the generation–recombination in the space
charge region, i.e.,

Jscr =

∫ wn

−wp

qUscr(z)dz. (4.188)

Using our simplified equation for electron current at the n-region contact,

Jn(zn) =
qni

2

Γn

[
exp

(
qV

kT

)
− 1

]
+

1

Γn

∫ zn

−zp

Jgr(z)ni
Dn

exp

[
q
φn (−zp) − ψ

kT

]
dz

≈ qni
2

Γn

[
exp

(
qVj
kT

)
− 1

]
+

1

Γn

∫ −wp

−zp

Jgr(z)pp0
Dn

dz.

(4.189)

The latter follows from the assumption of perfect ohmic contacts, which allows
us to substitute φn(−zp) = φp(−zp); the integral is therefore dominated by
the contribution of the p-type region. We can evaluate this resulting integral
involving recombination current by considering the three sections (p-type region,
space charge region, and n-type region) contributing to it, and, in view of the
above, we will consider the contribution of Jgr(z) in the p-type region only.

The effect of the generation–recombination term, due to Jgr(z), is the most
complicated in form in the p-type region since the limits of integration for the
generation–recombination rate are from this to zn, which includes contributions
from both the space charge region and the quasi-neutral n-type region. Let us
consider this term first, i.e., the contribution of the quasi-neutral p-region of the
device (−zp ≤ z ≤ −wp)

Jgr(z) = Jscr +

qpn0Lp
τp

[
exp

(
qV

kT

)
− 1

] [
1 − exp

(
−zn − wn

Lp

)]
+

qnp0Ln
τn

[
exp

(
qV

kT

)
− 1

] [
1 − exp

(
z + wp
Ln

)]
. (4.190)

In a long diode,

zn − wn � Lp
and zp − wp � Ln, (4.191)

and, therefore, the exponential in the second term is negligible. Also, by
definition,

Lp
τp

=
Dp
Lp

and
Ln
τn

=
Dn
Ln

, (4.192)
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yielding

Jn(zn) =
qni

2

Γn

[
exp

(
qV

kT

)
− 1

]
+

1

Γn

{(
qpn0Dp
Lp

+
qnp0Dn

Ln

)[
exp

(
qV

kT

)
− 1

]
+ Jscr

}
×

[
(zp − wp)pp0

Dn

]
−

2

Γn

np0Dn
Ln

Ln
[
exp

(
qV

kT

)
− 1

] [
1 − exp

(
−zp −wp

Ln

)]
.

(4.193)

Again, the device being a long diode, the exponent in the last equation is
negligible, and since

Γn ≈
[
(zp −wp)pp0

Dn

]
(4.194)

for a uniformly doped device, we obtain

Jn (zn) =

(
qpn0Dp
Lp

+
qnp0Dn

Ln

)[
exp

(
qVj
kT

)
− 1

]
+ Jscr. (4.195)

This is the electron current at the n-type contact in the long diode. In deriving
this we consider the recombination perturbation as coming about only due to
the recombination current integral in the p-type region. The basis of this is
that this integral is a product of the hole density and the recombination current
integral; therefore, the space charge region and the n-type region contribute
little to the perturbation. Intuitively, also, since this is a long diode, all the
current at the n-type contact must be electron current, since all excess holes
injected in the n-type region must recombine before reaching the contact. The
above expression, therefore, must also give the total current for a long diode.
Let us show this by considering the hole current at the n-type contact at z = zn.

We may evaluate this hole current at zn

Jp(zn) =
qni

2

Γp

[
exp

(
qV

kT

)
− 1

]
−

1

Γp

∫ zn

−zp

Jgr(z)ni
Dp

exp

[
ψ − φn(zn)

kT

]
dz

≈ qni
2

Γp

[
exp

(
qV

kT

)
− 1

]
− 1

Γp

∫ zn

wn

Jgr(z)nn0

Dp
dz.

(4.196)

Since the recombination perturbation is an integral involving the product of the
hole density and the generation–recombination integral, it is dominated by the
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contribution from the quasi-neutral n-type region. This contribution is given by

Jgr(z) =

∫ zn

z

qpn0

τp

[
exp

(
qV

kT

)
− 1

]
exp

(
−z − wn

Lp

)
dz

=
qpn0

τp
Lp
[
exp

(
qV

kT

)
− 1

]
×

[
exp

(
−z − wn

Lp

)
− exp

(
−zn −wn

Lp

)]

≈ qpn0

τp
Lp
[
exp

(
qV

kT

)
− 1

]
exp

(
−z − wn

Lp

)
. (4.197)

We have again used the inequality (zn − wn) << Lp, and hence dropped the
last exponential. We can now evaluate the hole current at zn,

Jp(zn) ≈ qni
2

Γp

[
exp

(
qV

kT

)
− 1

]
−

1

Γp

∫ zn

−wn

qpn0Lpnn0

τpDp

[
exp

(
qV

kT

)
− 1

]
exp

(
−z − wn

Lp

)
dz

≈ qni
2

Γp

[
exp

(
qV

kT

)
− 1

]
−

qni
2

Γp

[
exp

(
qV

kT

)
− 1

] [
1 − exp

(
−zn − wn

Lp

)]

≈ 0. (4.198)

As expected, the hole current is negligible at the n-region contact for this
example of long diode.

The total diode current density, therefore, is

J(zn) = Jn(zn) + Jp(zn)

= Jn(zn)

=

(
qpn0Dp

Lp
+
qnp0Dn

Ln

)[
exp

(
qV

kT

)
− 1

]
+ Jscr.

(4.199)

The first term of this expression is the familiar form of the long diode ex-
pression for uniform doping. The second term in this expression of Jscr is the
contribution of the space charge layer. The conventional expression ignores
the space charge region contribution to generation–recombination, while this
expression was derived considering contributions from all the regions. The con-
tribution Jscr, therefore, arrived naturally in our expression instead of through
perturbative iterations of the derivation. Since our control equations are linear
differential equations, it occurs as a superposition term, as expected.
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The evaluation of Jscr follows directly from the evaluation of the integral in
Equation 4.188. Space charge recombination usually arises from HSR recombi-
nation. Hence, following our discussion in Chapter 3, we employ the simplified
equation

U =
np− n2

i

τ0 {n+ p+ 2ni cosh [(ET − Ei) /kT ]} , (4.200)

where we have assumed the trap to have identical τn0 and τp0 given by τ0. Such
traps are efficient recombination centers. However, differing values are the norm
and can be treated numerically. Given this assumption, another characteristic
of the net recombination rate is that a maximum in it occurs when ET = Ei.
A differing τn0 and τp0 changes this conclusion only slightly. So, deep traps are
responsible for the generation-recombination effects. The np product is known
in the space charge region since quasi-Fermi levels are assumed constant in low-
level injection. We will evaluate this integral for these most efficient traps, i.e.,
for ET = Ei. The contribution of the space charge region recombination current
is

Jscr =

∫ wn

−wp

n2
i [exp (qV/kT ) − 1]

τ0 (n+ p+ 2ni)
dz. (4.201)

Since the maximum contribution to this integral occurs from the region of max-
imum net recombination rate, we can approximate this integral as a product
of the width of the space charge region W = (wn − wn) and the maximum of
the net recombination rate. n and p are know as a function of the displacement
between the quasi-Fermi levels and intrinsic energy level. Hence, a maximum
in Uscr can be shown to occur when

Ei =
ξn + ξp

2
(4.202)

in the space charge region. This occurs where

n = p = ni exp

(
qV

2kT

)
, (4.203)

yielding the approximate relationship for space region current as

Jscr =
qWni
2τ0

exp (qV/kT ) − 1

exp (qV/2kT ) + 1
. (4.204)

In forward bias, this reduces to

Jscr ≈
qWni
2τ0

exp

(
qV

2kT

)
. (4.205)

In reverse bias, this reduces to

Jscr ≈ −qWni
2τ0

. (4.206)
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The derivation for current in a long diode assumed a uniform doping den-
sity. Our Gummel–Poon equations are more general than that. Problem 15
discusses the long diode case with a non-uniform doping, similar to our short
diode example.

In these examples of Gummel–Poon modelling, we made a simplifying as-
sumption by restricting the exposition to homojunctions. This allowed us to
move the term ni outside the integral. In general, it may be position-dependent,
such as when heavy doping effects or alloy grading effects predominate. We will
now establish the expressions for these conditions. The derivation only needs
to include the fact that the intrinsic carrier concentration may be position-
dependent. Our derivation will be in terms of the current density at the edges
of the depletion region, and hence, in general, use of this procedure will require
the determination of both the hole current density and the electron current
density.

The general expression for current density at the n-type contact (z = zn),
as a simple extension of the earlier derivation is, (see Problem 16)

Jn(−wp) =

{∫ −wp

−zp

1

qDnni exp {q [ψ − φn(−zp)] /kT}
dz

}−1

×
{[

exp

(
q
Vp + Vj
kT

)
− 1

]
+

∫ −wp

−zp

Jpgr(z)

qDnni exp {q [ψ − φn(zp)] /kT}
dz

}
, (4.207)

where

Jpgr(z) =

∫ −wp

z

q [R(z) − G(z)] dz. (4.208)

This equation is in a general form, applicable also for high-level injection, since
we have only equated the differences in the quasi-Fermi potentials to the change
in the electrostatic potential that they correspond to.

A similar expression may be written for the hole current density, and is given
as

Jp(wn) =

{∫ zn

wn

1

qDnni exp {q [φp(zn) − ψ] /kT}dz
}−1

×
{[

exp

(
q
Vn + Vj
kT

)
− 1

]
+

∫ zn

wn

Jngr(z)

qDpni exp {q [φp(zn) − ψ] /kT}dz
}
, (4.209)

where

Jngr(z) =

∫ z

wn

q [R(z) − G(z)] dz. (4.210)
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Assuming perfect ohmic contacts under low-level injection, we obtain

Jn(−wp) =

(∫ −wp

−zp

p

qDnni2
dz

)−1

×
{[

exp

(
qV

kT

)
− 1

]
+

∫ −wp

−zp

pJpgr(z)

qDnni2
dz

}
(4.211)

for the electron current. This equation may be written in a form similar to the
earlier equation for diodes using an effective Gummel number,

Jn(−wp) =
qDnni

2

GN ′

p

[
exp

(
qV

kT

)
− 1

]
, (4.212)

where the effective Gummel number is

GN ′

p =
Qp
q




1 +

∫ −wp

−zp

[
pJpgr(z)/qDnni2

]
dz

exp (qV/kT ) − 1






−1

. (4.213)

Likewise, the expression for hole current at the n-type contact (z = zn) is

Jp(wn) =

(∫ zn

wn

n

qDpni2
dz

)−1

×
{[

exp

(
qV

kT

)
− 1

]
+

∫ zn

wn

nJngr(z)

qDpni2
dz

}
. (4.214)

Writing this equation in a form similar to the expression for the electron current
density, we obtain

Jp(wn) =
qDpni

2

GN ′

n

[
exp

(
qV

kT

)
− 1

]
, (4.215)

where the effective electron Gummel number is given by

GN ′

n =
Qn
q

{
1 +

∫ zn

wn

[
nJngr(z)/qDpni2

]
dz

exp (qV/kT ) − 1

}−1

. (4.216)

These expressions are cast in a form similar to our expressions for the long
diode and short diode expressions. They reduce directly to the short diode
expression since the effective Gummel number is then the majority charge di-
vided by the electronic charge. The form of these expressions is chosen to di-
rectly show this relationship, and the perturbative effect of alloy compositional
changes, large doping effects,and recombination effects. Note that the majority
charge densities Qn and Qp and the effective diffusivities Dn and Dp continue
to directly influence the current transport. The perturbation due to the recom-
bination effect is generally small because the dividing factor is exponentially



252 4 Transport Across Junctions

proportional to the applied voltage. The expressions also directly show that
the recombination current density increases the current through the device, and
the corresponding Gummel numbers GN ′

n and GN ′

p are decreased. The effect
of changes in bandgap, such as through the alloy composition variation, occur
through the effect on the intrinsic carrier concentration, an exponential effect.
The effect on current under these conditions can thus become large, and is
considered in the next sub-section.

We now use these expressions in determining the current, with recombina-
tion, for the example of varying doping profile. We will assume a long diode,
unlike our earlier example that was for a varying doping profile in a short diode
and with no recombination. The treatment of the p-side is the same as before
for the case of a long diode with uniform doping profile. For the n-side, which
is non-uniformly doped, the treatment is different and the expressions need to
be reevaluated. The excess minority carrier density on the n-side is

p
′

(z) = pn0 (wn)

[
exp

(
qV

kT

)
− 1

]
exp

(
wn − z

Lp

)
, (4.217)

assuming the diffusion coefficient to be a constant. The generation–recombination
rate in the quasi-neutral n-type region is

R(z) − G(z) =
p

′

(z)

τp
(4.218)

for wn < z < zn. To determine the effective Gummel number, we need the
magnitude of the recombination current integral Jngr(z) only in this interval.
Hence,

Jngr(z) =
qpn0(wn)

τp

[
exp

(
qV

kT

)
− 1

] ∫ z

wn

exp

(
wn − z

Lp

)
dz

=
qpn0Lp
τp

[
exp

(
qV

kT

)
− 1

] [
1 − exp

(
wn − z

Lp

)]

=
qDppn0

Lp

[
exp

(
qV

kT

)
− 1

][
1 − exp

(
wn − z

Lp

)]
. (4.219)

To determine the effective Gummel number we need to determine the integral
using this Jngr(z), i.e., the effective Gummel number for calculation of the hole
current is

GN ′

n =
Qn
q

{
1 +

∫ zn

wn

[
nJngr(z)/qDpni2

]
dz

exp (qV/kT ) − 1

}−1

≈ Qn
q

{
1 +

pn0(wn)

ni2Lp
×

∫ zn

wn

[
1 − exp

(
−wn − z

Lp

)]
ND(0) exp

(
z − zn
`

)
dz

}−1
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≈ Qn
q

{
1 +

pn0(wn)

ni2Lp
`ND(0)

[
1 − exp

(
−wn − zn

`

)]
+

pn0(wn)

ni2Lp
`Lp
` − Lp

ND(0)

[
exp

(
wn − zn

Lp

)
− exp

(
wn − zn

`

)]}−1

.

(4.220)

Since (wn − zn) << Lp, the exponential involving this factor can be ignored,
and the effective Gummel number is

GN ′

n =
Qn
q

{
1 +

pn0(wn)ND(0)

ni2Lp

{
`

[
1 − exp

(
−wn − zn

`

)]
−

`Lp
`− Lp

exp

(
wn − zn

`

)}}−1

. (4.221)

Since the effective Gummel number is known, the hole current density at
the edge of the depletion region follows. The electron current can be similarly
derived, indeed it is the analog of this with ` → ∞. In a long diode, the total
width of the depletion region is relatively short compared to the two bases of
the diode. Therefore, we may ignore it, and hence determine the total current
density (see Problem 17).

4.5.4 Abrupt and Graded Heterojunction p–n Diodes

Use of p–n heterojunctions is central to the operation of both the heterostruc-
ture bipolar transistor and the heterostructure laser. In these structures, the
injection of carriers occurs through a heterojunction with the heterojunction
aiding in the selective suppression of the injection process of one of the carriers.
In abrupt heterojunctions, it occurs due to the existence of the discontinuity
in the conduction and valence bands, and in the graded heterojunction diode,
it occurs because the difference in bandgap appears predominately as a bar-
rier to injection of one of the carrier types. Examples of some variations of
the heterojunctions due to abruptness and grading of the alloy composition
at one-sided junctions are shown in Figure 4.24. This example considers the
Ga.7Al.3As/GaAs junction; the doping for the larger bandgap Ga.7Al.3As is
identified by the capital N or P for n-type and p-type doping. The graded
structures are formed using a grading length of 200 Å evenly distributed at the
metallurgical junction. The effect of this grading is to distribute the bandgap
change at the junction between the conduction and the valence band edges,
whose extreme example is the case of the abrupt heterojunction under simi-
lar doping conditions, i.e., the band edges in this graded case show a smaller
deviation then that caused by abrupt heterojunctions.

We need to establish how this band variation description comes about.
Maxwell’s equations continue to be valid, and to this point, we have only added
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Figure 4.24: Band edges in thermal equilibrium for one-sided abrupt and graded
heterojunctions of Ga.7Al.3As/GaAs, drawn to scale for various combinations
of doping on either side of the junction. The chained lines show the band edges
for the graded heterojunction with a linear alloy grading over 200 Å.
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the requirement that abrupt heterojunctions discontinuities in the conduction
and valence band edges have to be established experimentally. Thus, Pois-
son’s equation, which is a restatement of Maxwell’s second equation, continues
to be valid, and we have to incorporate variation in the dielectric constant.
Gauss’s law, which is a restatement of Maxwell’s second equation applied at
the interface, states that the difference in the displacement vector normal to
the interface must differ by the interface charge density. For heterojunctions of
interest, abrupt and graded, this is negligible. Thus, the displacement vector
normal to the interface is continuous.

We have thus established three rules for describing the electronic behavior
of abrupt heterojunctions: Poisson’s equation, Gauss’s Law, and the band edge
discontinuities at the interface. These, together with the boundary conditions
at the edges of the depletion region and the constancy of the Fermi level in
thermal equilibrium, are sufficient to determine the band edge for abrupt het-
erojunctions in thermal equilibrium. These rules were used in determining the
abrupt heterojunction band edges in Figure 4.24. As we remarked earlier, in
the discussion of isotype heterojunctions, there will exist in these structures a
discontinuity in the vacuum level and the electrostatic potential at the inter-
face. The discontinuity in the vacuum level indicates that electrons at the band
edge on either side of the interface require different energy to be removed into
vacuum. The materials have different characteristics and this discontinuity is
not unexpected. The difference in electrostatic potential has the same cause—
it comes about because the electrochemical potential includes the effect of the
material in the term that we have referred to as alloy potential.

The band edge variation changes when a bias is applied to the abrupt het-
erojunction. Under these conditions, the transport process has to be included
together with the rules of Poisson’s equation, Gauss’s Law, and band edge dis-
continuity to determine the new variation. If, e.g., transport is by drift-diffusion,
then we may continue to use the concept of quasi-Fermi energy as applied to a
displaced Maxwell–Boltzmann distribution, and the quasi-Fermi energies stay
continuous at the interface. The argument here is similar to the discussion of
isotype heterojunctions. The carrier distribution at either side of the interface
is very similar because of the small difference between drift and diffusion flux.
With the large mobility of electrons in most compound semiconductors of inter-
est, however, the transport of electrons at the interface is limited by thermionic
emission and the higher-energy field emission current. Thus, similar to our
discussion of isotype heterojunctions, the concept of quasi-Fermi energy is not
strictly valid within a few kT ’s of changes in band edge energy at the interface.
These must therefore be treated as fitting parameters in this region. Knowing
the transport mathematics, however, we may include the other rules from the
above and again derive the band edge variation in the abrupt heterojunction.

We have discussed the transport equations in slowly graded heterostruc-
tures, where the grading lengths are such that any band edge discontinuities
can be ignored and all compositional variations can be directly included in the
bandgap changes, in Chapter 3. Using this treatment of transport in graded
heterostructures, Poisson’s equation, and the boundary conditions at the edges
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of the depletion region, the band edge variation can be derived for the slowly
graded heterojunctions. So, the transport through such graded heterojunc-
tions, is determined using the modified drift-diffusion equation. The last of
our Gummel–Poon quasi-static model derivation can be applied to such graded
structures because it included variations in ni, variations which result from al-
loy composition variation. Thus, the slowly graded heterojunction case is fairly
straightforward and follows our discussion of homojunctions quite closely. We
will return to analysis of slowly graded heterojunctions later in this section.

First, we consider the transport through the anisotype abrupt heterojunc-
tions. In our discussion of isotype abrupt heterojunctions, we discussed the
thermionic emission behavior. This analysis can be extended for the case of
anisotype heterojunction diodes also. Consider the example of abrupt N–p+

junction shown in case (b) of Figure 4.24. It is chosen because it occurs in the
emitter-base junction of an abrupt heterostructure bipolar transistor. The base
in these structures is more heavily doped and takes advantage of the suppres-
sion of hole injection current. Our discussion follows a similar argument as in
the case of abrupt isotype heterojunctions. We will therefore be brief, with the
intent of considering the problem for practical application.

The injected carriers thermalize over few mean free paths in the base and
then drift-diffuse to the contact. In the analysis of which conduction mechanism
is dominant, we must consider the ability of the junction to thermionically
emit the carriers over the barrier and the ability of the semiconductor bulk in
the emitting and collecting regions to supply and collect these carriers. Due
to the use of a heterojunction, the ability to inject carriers has decreased by
the increase in the built-in junction voltage for that carrier without affecting
other transport characteristics. Therefore, it is this barrier transport that limits
the current across the junction. In our analysis of the isotype heterojunction,
we derived this thermionic current in a form where we can now ignore the
component from the smaller bandgap material. A significant barrier continues
to exist for the injection from the small bandgap material to the large bandgap
material throughout the bias range. In a first-order analysis, this injection from
the small bandgap material may be ignored. We can determine it, if needed,
by considering the transport via thermionic–drift-diffusion theory as well as via
field emission.

This thermionically injected current is given by

|Jth| = Am
∗

m0
T 2exp

[
− q

kT

Eg + ∆Ec + (ε1ND/ε2NA)Vn − Vp
1 + ε1ND/ε2NA

]
×

[
exp

(
q

kT

V

1 + ε1ND/ε2NA

)
− 1

]
for V � kT

q
,

(4.222)

where we have parameterized the pre-factor. In this equation, Jth is the
thermionic current density, A is the Richardson’s constant for a free electron
whose magnitude is 120 A.cm−2.K−2, m∗

e and m0 are the effective and free elec-
tron masses, ∆EC is the conduction band edge discontinuity, ε1 and ND and ε2
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and NA are the permittivity and doping of the two semiconductors, Vn and Vp
are the differences in potential between the Fermi levels and the conduction and
the valence band edge in the two semiconductors, and V is the applied potential
at the junction. The ratio ε1ND/ε2NA in this equation accounts for the parti-
tioning of the electrostatic potential across the depletion region. This does not
have to be considered in metal–semiconductor junctions where the thermionic
emission theory is usually applied.

This is a simplified equation; more rigorous equations similar in form to the
metal–semiconductor thermionic field emission and thermionic–drift-diffusion
equations can also be applied. Indeed, since those equations were derived by
considering the transport only in the semiconductor, they are well applicable
here for the specific transport directions if the correct meaning are ascribed
to the parameters. As an example of the thermionic–drift-diffusion equation
applied to this problem, the effective mass is for the correct orientation in the
large bandgap material, the effective density of states is the effective density of
states of the large bandgap material, the barrier height is the difference between
the Fermi level and the top of the conduction band edge, and the potential V
is the value of the partitioned quantity that occurs across the large bandgap
material. Similar comments apply to the modification of the thermionic field
emission equation for this problem.

Figure 4.25 shows behavior of the conduction band edge under forward bias
conditions for a graded junction at two different doping levels in the n-type injec-
tor/emitter region. The higher doped emitter is well behaved in the band edge
while the lower doped emitter shows a barrier at the higher injection conditions.
The formation of the barrier, due to variation in composition and associated al-
loy potential, will be subject of further discussion later in this chapter and
in Chapter 7. Our treatment here assumes that the conditions of monotonic
variation in band edge hold. This is usually the case for low-level injection.

Let us now consider the determination of the current in such graded aniso-
type heterojunctions. The application of the modified drift-diffusion equation
follows in a similar manner as the simpler form of the drift-diffusion equation
for transport. We will use a simple example of a heterojunction formed by com-
positional grading within the junction depletion region, and apply the modified
drift-diffusion equation and the extended Gummel–Poon model to evaluate the
currents.

Consider the analysis in one dimension of a short N–p heterojunction in
low-level injection, whose band edge schematic and some parameters are shown
in Figure 4.26. The composition in the quasi-neutral region is a constant in
this example, and like the homojunction in low-level injection, the quasi-Fermi
levels remain constant through the bulk of the device and the current transport
is limited by diffusion of minority carriers in the quasi-neutral regions. The
device is a short device, and we also consider recombination as being absent.
Thus, to determine the current, we need minority carrier current at the edge
of the depletion regions. In the absence of recombination, this current density
stays constant in the depletion region, and the total current is the sum of these
minority carrier current densities.
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Figure 4.25: Conduction band edge energy diagram of an N–p+

Ga.7Al.3As/GaAs heterojunction diode under low (V = 1.0 V), medium
(V = 1.2 V), and high (V = 1.4 V) forward bias. Two n-type dopings are
shown; the solid lines are for 8× 1017 cm−3 doping and the dashed lines are for
2 × 1017 cm−3 doping. The p+ doping is 5 × 1018 cm−3.
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Figure 4.26: A graded p–N heterojunction formed using a large bandgap ma-
terial (identified by 1), and a small bandgap material (identified by 2). The
alloy grading occurs within the junction depletion region, and like the homo-
junction analysis in low-level injection, the transport in the junction region is
not a limiting transport mechanism.
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The Shockley boundary conditions describe the minority carrier densities at
the edges of the depletion region as

np(−wp) = np0 exp

(
qV

kT

)

and pn(wn) = pn0 exp

(
qV

kT

)
, (4.223)

where np0 and pn0 are the concentrations of minority carriers in thermal equi-
librium in the two different materials. The current density due to electron and
hole transport in the junction quasi-neutral regions is described by the modified
drift-diffusion equations

Jn = qnµn

(
−dψ
dz

− φCn
dz

)
+ qDn

dn

dz

and Jp = qpµp

(
−dψ
dz

− φV p
dz

)
− qDp
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dz
. (4.224)

From these,

Jn(−wp) =
qnp0Dn
zp −wp

[
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(
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kT

)
− 1

]

and Jp(wn) =
qpn0Dp
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)
− 1

]
, (4.225)

and hence the total current is

J = Jn(−wp) + Jp(wn) =

(
qpn0Dp
zn −wn

+
qnp0Dn
zp −wp

)[
exp

(
qV

kT

)
− 1

]
. (4.226)

The equation has the same form as our earlier example of a homojunction,
but with the major difference that the thermal equilibrium minority carrier
concentration is different in a heterojunction. Thus, if ND and NA represented
the donor and acceptor doping densities, Eg1 and Eg2 the two bandgaps (Eg1 >
Eg2 in this example), NC1 and NC2 the effective conduction band density of
states, NV 1 and NV 2 the effective valence band density of states, and ni1 and
ni2 the intrinsic carrier concentrations in the two materials, then these are
related in the Boltzmann approximation as

np0 =
n2
i2

NA
,

pn0 =
n2
i1

ND
,

n2
i1 = NC1NV 1 exp

(
−Eg1
kT

)
,

and n2
i2 = NC2NV 2 exp

(
−Eg2
kT

)
. (4.227)
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The hole concentration in thermal equilibrium in the larger bandgap mate-
rial is significantly smaller compared to the electron concentration in thermal
equilibrium in the smaller bandgap material. This ratio is

pn0

np0
=
NA
ND

n2
i1

n2
i2

=
NA
ND

NC2NV 2

NC1NV 2
exp

(
−Eg1 − Eg2

kT

)
. (4.228)

The difference in bandgap decreases this minority carrier concentration expo-
nentially with the bandgap change. The corresponding hole current density
also decreases by the same exponential factor. On the other hand, the electron
current and the electron transport are not influenced by the presence of the het-
erojunction. Another way of looking at this follows arguments based on built-in
voltages. In Figure 4.26, the flat quasi-Fermi levels and bandgap grading leave
the barrier for injection of electrons unchanged from the homojunction case ex-
cept for the second order effects related to the effective density of states and its
influence on position of the Fermi level in the quasi-neutral region. However, the
hole barrier increases by this increase in the bandgap, and hence hole injection
is suppressed by a corresponding amount.

Thus, the presence of a heterojunction causes the built-in junction voltages
for the electrons and the holes to be different. The built-in voltage now rep-
resents the sum of two effects, the electrostatic potential, which we may still
define in terms of the variation of the vacuum level, and the alloy potential.
The latter changes at the junction due the compositional changes.

These built-in voltages follow from the drift-diffusion equations, applied at
thermal equilibrium where each of the current densities is zero and the Fermi
level is flat. For electrons, the junction built-in voltage is

ψjn =
kT

q

∫ n(wn)

n(−wp)

dn

n
=
kT

q
ln

(
NDNA
n2
i2

)
, (4.229)

and for holes, the junction built-in voltage is

ψjp =
kT

q

∫ p(−wp)

p(wn)

dp

p
=
kT

q
ln

(
NDNA
n2
i1

)
. (4.230)

The junction built-in voltage for holes increased by the difference in the bandgap.
Here, only low-level injection was considered. A high current density across

heterojunctions presents a particularly interesting problem because it is con-
comitant with a smaller space charge region (due both to the larger doping that
a larger current capability requires and to the forward biasing of the junction).
The smaller space charge region and decreased electrostatic field lead naturally
to alloy potential effects appearing in the conduction band. One may see this
as an example of the mixing of case (b) and case (d) for the graded case of
Figure 4.24. A small electrostatic field at the junction occurs near flat band
conditions. When this happens, the difference in alloy potential appears par-
tially in the conduction band and partially in the valence band. Looking at
the graded heterojunction examples of Figure 4.24, the difference in the alloy
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potential appears in the valence band edge in case (a) and case (b), and in
the conduction band edge for case (c) and case (d). The magnitude and di-
rection of the electrostatic field force the alloy potential effects to appear in
the conduction or the valence band, and when the electrostatic field becomes
small, such as in large forward bias, they cause the alloy effects to appear in
both the band edges. Appearance of the resulting barrier limits the current
density in the structure, and the junctions need to be designed to prevent this.
The alloy grading length needed to prevent barrier-limited transport effects in
the depletion approximation limit can be derived by consideration of the elec-
trostatic and alloy potential variation. If the electrostatic field remains larger
than the alloy field, the band bending remains monotonic, and no barrier exists.
Mathematically, this requirement can be summarized as

dψall
dz

< Ees, (4.231)

where Ees is the local electrostatic field and ψall is the alloy potential. For a
one sided p–n junction, this results in (see Problem 18),

zg >
∆Eg√

2kT (Eg − qV − 2kT )
>> λD , (4.232)

where zg is the grading length, ∆Eg the total bandgap change, q the electronic
charge, Eg the bandgap in the narrow bandgap material, V the applied bias, and
λD the extrinsic Debye length. The expression is derived assuming the depletion
approximation, and hence is inaccurate at high forward bias conditions, where
the mobile charge should be taken into consideration.

Graded heterojunctions are convenient to analyze using the extended Gummel–
Poon model. The derivation for current in the heterojunction example follows
directly; it is the same as the expression derived in our homojunction short diode
example using the Gummel–Poon model. We consider another short diode ex-
ample with a change in the alloy composition in one of the bases of the diode
to show the breadth of this approach. This example is similar to the example
of varying doping in the base of a short diode, except here doping is constant
and the intrinsic carrier concentration is allowed to change exponentially as

n2
i = n2

i0 exp

(
z −wn
`

)
for z > wn

and n2
i = n2

i0 for − zp < z ≤ wn. (4.233)

Figure 4.27 shows a schematic of this problem.
The general expressions for the electron and hole currents at the edges of

the junction are given by
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}
, (4.234)
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Figure 4.27: Band diagram of a p–n heterojunction with a base region with
exponentially decreasing intrinsic carrier concentration.

and
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Ignoring recombination in the short diode, and assuming low-level injection
and a hole diffusion coefficient that is a weighted constant Dp, we can evaluate
these currents. The minority carrier electron current density is

Jn(−wp) =

[
NA(zp − wp)

qDnn2
i0

]−1 [
exp
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kT

)
− 1

]
, (4.236)

an expression identical to the earlier expression. The minority carrier hole
current in the bandgap grading region is modified, and given by
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and the total current, which is the sum of the above two expressions, is given
by
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+
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2
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(4.238)
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The drift current due to the quasi-field for holes in the n-type bandgap
graded region is included in the above expressions. This drift field opposes the
motion of holes and hence suppresses the hole current as drawn in Figure 4.27.
Note that the hole concentration and the electron concentration at the edges
of the junction depletion region are still identical to the homojunction example
since we chose the bandgap change to occur only in the quasi-neutral n-type
region. Also, in the limit of ` → ∞, i.e., no bandgap and intrinsic carrier
concentration variation, this expression reduces to the expression for a short
uniformly-doped homojunction diode. More examples of the application of the
extended Gummel–Poon model are considered in the Problems, and we will also
consider it again in our discussion of heterostructure bipolar transistors.

4.6 Summary

This chapter developed the concepts and mathematical framework for treat-
ment of transport across junctions. We considered junctions between different
materials, i.e., junctions formed between metals and semiconductors or two dif-
ferent semiconductors, as well as junctions formed by a change in the type of
doping, i.e., p–n junctions. For the metal–semiconductor and heterojunctions,
we considered the contributions due to thermionic emission and field emission
in the region at the interface as well as due to other restrictions placed by
drift-diffusion transport in the bulk. We showed how, in the case of thermionic
emission, the consequences of Bethe condition relating the collision-less emission
of carriers at the interface and the momentum matching condition lead to an
unambiguous effective mass for the Richardson’s constant. In considering the
specialized case of heterojunctions, we also reviewed tunneling: the conventional
Fowler–Nordheim tunneling that considers wave function decay in a trapezoidal
barrier, and resonant Fowler–Nordheim tunneling, important at low tempera-
tures, and involving additional wave interference effects in the barrier region.
These processes are important in the near-ideal heterojunctions of compound
semiconductors for a variety of devices. As an extension of the analysis we
considered the formation of ohmic contacts, contacts that allow low resistance
bi-directional current flow in device structures.

We also considered in this chapter the approximations of p–n junction anal-
ysis and described the bulk effects occurring at high level injection conditions.
For graded p–n junctions, i.e., those lacking an abrupt barrier at the inter-
faces, we developed an appropriate criterion for grading. For predicting the
current, we developed a formal method of quasi-static analysis, the Gummel–
Poon method, that allows a description of diode behavior in a variety of practical
circumstances. This was applied to cases involving doping variation as well as
composition variation.
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Problems

1. Problems of thermionic injection encountered in metal–semiconductor junc-
tions involve injection from many complicated situations. Injection in
metal/n-Ga1−xAlxAs junctions, e.g., involves electrons in the anisotropic
L and X valleys. Injection in metal–p-Ga1−xAlxAs junctions, e.g., occurs
from valence bands with light and heavy hole mass. Consider the electron
and hole injection problem and determine the mass appropriate to the
determination of Richardson’s constant for

(a) injection from the L valley on (100), (110), and (111) surfaces,

(b) injection from the X valley on (100), (110), and (111) surfaces, and

(c) injection from valence bands.

2. We have considered the thermionic injection component and the tunneling
component of injection at a metal–semiconductor junction separately. In a
metal–semiconductor junction, thermionic injection occurs together with
tunneling of carriers. The tunneling of higher-energy carriers is favored
because these encounter smaller barrier energies and width. Show that
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when both of these processes dominate, the current can be expressed in
the form shown in Equation 4.37.

3. Show that the low temperature limit of thermionic field emission in a
metal–semiconductor junction can be expressed as

J = A∗E00
2

k2

qφB − qV − qVn
qφB

exp

[
− (2qφB)

3/2

3E00

√
qφB + qV − qVn

]
. (4.239)

4. Plot the carrier concentration and the velocity as a function of position
between z = 0 and z = zc for a GaAs metal–semiconductor junction on
1×1016 cm−3 doped material at thermal equilibrium at 300 K. The barrier
height from the metal to the semiconductor is 0.8 eV.

5. What is the ratio of the carrier concentration in the semiconductor at the
metal–semiconductor junction, if the Bethe condition is satisfied, and if
the quasi-Fermi level is assumed to be flat?

6. Show that Equation 4.57 follows from the application of current continuity
to the boundary of regions dominated by drift-diffusion transport and
thermionic emission transport.

7. Consider the application of Equation 4.57 to the metal–semiconductor
junction formed on 1 × 1016 cm−3 n-type GaAs. Consider a metal bar-
rier height of 0.8 eV, and an operating temperature of 300 K. Plot the
current density of this thermionic–drift-diffusion expression, as well as its
thermionic and drift-diffusion limit. Which component dominates? Now
consider the same structure at 77 K, and plot the three current densities.
Which component dominates?

8. Consider the application of the thermionic–drift-diffusion theory to an
n–n heterojunction. Compared to the metal–semiconductor junction the
differences include the partitioning of the electrostatic potential on the two
sides of the heterojunction and the injection of carriers of differing effective
mass, and requiring appropriate momentum matching as they traverse
the junction. Taking into account these differences, find an expression
similar to Equation 4.57, and derive the current voltage relationship for
thermionic–drift-diffusion transport.

9. An alternate, but simplistic, way of analyzing Problem 8 is to consider
transport as emission of a Maxwell–Boltzmann distribution across a bar-
rier with transmission coefficients T12 and T21 which are functions of en-
ergy. Using detailed balance, derive an expression for current transport
and compare it with the thermionic emission limit of Problem 8.

10. Using the complete solution of the triangular barrier tunneling transmis-
sion probability (Equation 4.77), derive the asymptotic form of Equa-
tion 4.79. Show that this asymptotic form follows directly from the use of
the WKB approximation.
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11. Using the current voltage relationships due to thermionic emission and
thermionic field emission of a metal–semiconductor junction, and field
emission in a triangular barrier, derive the expressions for the contact
resistance together with their pre-factors. Apply the appropriate rela-
tionship to an n-type metal–semiconductor junction on GaAs. Assume
a temperature of 300 K, a barrier height of 0.8 eV, and n-type dopings
of 1 × 1016 cm−3, 1 × 1017 cm−3, 1 × 1018 cm−3, 1 × 1019 cm−3, and
5 × 1019 cm−3.

12. For a field emission-dominated region of transport across a metal–semi-
conductor junction, show that the current can be expressed as shown by
Equation 4.94 and that the contact resistance follows as Equation 4.96.
Estimate the contact resistance resulting from this for Problem 11 at the
highest doping.

13. Consider the practical contact as a distribution of point contacts on the
semiconductor surface. Show that, if the spreading resistance of these
point contacts dominates, then the contact resistance must vary inversely
with doping.

14. Derive the expression for hole current density at zn (Equation 4.160) using
the hole quasi-Fermi level as basis for the calculation of current.

15. Consider a n+–p diode with a long p-type region where the doping varies
as ∆NA exp(z/`)+NA0. Derive the expression for electron current in such
a structure using the Gummel–Poon model.

16. Derive Equation 4.207 for electron current at the p-type contact using the
Gummel–Poon model.

17. Derive the current in a long diode by considering both the electron and
the hole current and ignoring the recombination in the depletion region.

18. Show that the requirement that the alloy field be maintained smaller than
the electrostatic field results in the following condition

zg >
∆Eg√

2kT (Eg − qV − 2kT )
>> λD (4.240)

to obtain an alloy-barrier free transport in a p–n junction.

19. Consider a uniformly-doped GaAs p–n junction with a doping of 1 ×
1017 cm−3 on either side. Assuming depletion approximation, what is
the junction depth in thermal equilibrium? Plot the capacitance C and
1/C2 as functions of reverse bias for the junction. Now consider a deep
donor trap density of 1×1016 cm−3 uniformly distributed throughout the
semiconductor. The trap energy is 0.75 eV below the conduction band
edge, and the degeneracy is 2. How does the junction depth change in
thermal equilibrium and what is the behavior of capacitance C and 1/C2
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Figure 4.28: Schematic of the Poole-Frenkel process.

with reverse bias? Can one determine the position and density of the
donor trap using such a measurement technique?

20. Solve Laplace’s equation in the presence of a conducting plane to show
that the lowering of energy described by the image charge leads to an
identical result for the energy of a charged carrier as a function of position
from the conducting plane.

21. The Poole-Frenkel effect is the lowering of barrier energy at a defect in a
dielectric, e.g., at a positively charged defect that can capture an electron
and has related Coulombic effects. The effect has parallels with the image
force lowering with the major difference being the absence of the conduct-
ing plane. Find an expression for the amount of barrier lowering due to
the Poole-Frenkel process described in Figure 4.28.

22. Following the previous problem, what electric field will give rise to a Poole-
Frenkel barrier lowering effect equal to the donor ionization energy in GaAs
(typically 6 meV)?

23. Barrier heights may be changed by incorporation of a limited amount of
dopants. The region of incorporated dopants is depleted under the biasing
conditions applied to the semiconductor junction. This can be employed
to either increasing or forming a low-energy barrier such as in planar
doped diodes, as well as to lowering barrier heights of metal–semiconductor
junctions.

(a) Consider a metal–semiconductor junction where the donor density is
increased to a value of ND2 in a region of width ` from the donor
density of ND1. Let ` be less than the Debye length. What is the
electric field as a function of position and the magnitude of image
force lowering?
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(b) Consider the same metal–semiconductor junction with an acceptor
layer of width ` and doping NA at the junction. What is the elec-
tric field as a function of position and the magnitude of image force
lowering due to the changed electric field at the interface?

24. Consider a GaAs n-type material of doping 1 × 1017 cm−3. What is
the barrier energy if one places a plane of acceptors of sheet density, 1 ×
1010 cm−2, 5×1010 cm−2, 1×1011 cm−2, 5×1011 cm−2, and 1×1012 cm−2

in it?

25. Consider a GaAs p+–n junction doped 2×1018 cm−3 in the p+ region and
1 × 1017 cm−3 in the n region. For base widths of 1 µm, at what lifetime
is the simplified expression that ignores recombination current suspect?

26. Consider an electric dipole layer of moment δ per unit area on either side
of a junction. Show that this results in a discontinuous change in the
electrostatic potential of δ.

27. A problem of particular interest in high-level injection is that of transport
and storage in a p–i–n diode. The i-region is doped lightly n-type and the
high injection condition exists in this lightly-doped region. Considering
the electron and hole carrier concentration to be similar in the i-region,
show that the carrier concentration at any position z in the i-region ref-
erenced to one of the junctions, for an i-region of width Wi, at a current
density J , is

n(z) =
LJ
2q

{
1

Dn
cosh(z/L)

sinh(Wi/L)
+

1

Dp
cosh[(Wi − z)/L]

sinh(Wi/L)

}
. (4.241)

In this equation, the diffusion length L =
√
Dτ where D is the ambipolar

diffusion length given as

D =
2DnDp
Dn + Dp

, (4.242)

and τ is the high-level injection lifetime given by τ = τn0 + τp0.

28. What is the ratio between the diffusion capacitances of one-sided wide-
base and narrow-base p–n junction diodes in terms of time constants?

29. Consider the analysis of p–n junctions, in low-level injection, but with the
Dirichlet boundary conditions at the ohmic contacts. Find the minority
carrier distribution for the homogeneously doped abrupt junctions. In the
p-type region, the electron concentration, e.g., is given by

n(z) = np0 +
Sτn sinh [(z + zp)/Ln] + Ln cosh [(z + zp)/Ln]
Sτn sinh [(zp −wp)/Ln] + Ln cosh [(zp + wp)/Ln]

. (4.243)

In short devices, i.e., with (zp−wp)/Ln � 1, show that the ohmic contacts
are inefficient and lead to increased storage and smaller current if

S <
Dn

zp −wp
. (4.244)
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Chapter 5

Metal–Semiconductor Field
Effect Transistors

5.1 Introduction

The simplest and most common form of a field effect transistor in GaAs utilizes
a metal gate to control the transport through the channel, and is called the
metal–semiconductor field effect transistor (MESFET). It is a close analog of
the junction field effect transistor and operationally similar in principle. The
depletion region of the metal–semiconductor junction is used as a means to con-
trol the conductivity of the channel region. Since the extent of the depletion
region can be modulated, the channel current can be modulated. It thus uses a
capacitive coupling between the metal gate and the conducting channel for the
modulation. Carriers flow from the source of the transistor to the drain of the
transistor. With increasing drain bias, for a gate bias that allows for channel
conduction, channel current and drain current saturate or change slowly. For
large gate-length devices, with relatively low fields, this current saturation is
associated with the pinching of the channel due to a gate-to-drain voltage that
depletes the doped channel region. For short gate-length devices, saturation
of the velocity of carriers is responsible for the current saturation. In either
of the cases, a drain current that is weakly dependent on the drain bias, i.e.,
exhibiting a high output resistance or a low output conductance, occurs. This
allows for a nearly constant drain current drive under quasi-static conditions
that can be modulated by a gate voltage. Capacitive coupling allows for high
input impedance, and current saturation results in a desirable current source.
The device can therefore be used in analog and digital applications, with the
compound semiconductors providing an improvement in the transport charac-
teristics of the carriers, generally electrons.

In all these, the device is operationally similar to the junction field effect
transistor. The metal gate, or the characteristics of the semiconductor, bring
perturbations which are of significance in the behavior of the device, and ulti-
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mately in our use of the device. Many effects are common between the MESFET
and the other field effect transistor of interest in compound semiconductors—
the heterostructure field effect transistor (HFET). Our discussion of many of the
characteristics, therefore, overlaps, and hence a few of the common phenomena
have been chosen for emphasis in the discussion here, and a few of these will be
discussed in the context of HFETs in Chapter 6.

Detailed differences in operational characteristics of different field effect tran-
sistors result from differences in junction characteristics, transport characteris-
tics, and characteristics of control of mobile charge in the channel. Examples of
differences in characteristics due to junctions include those due to the metal–
semiconductor junction for the MESFET, p–n junction for the junction FET, or
metal–insulator–semiconductor junction for the MISFET. Metal-semiconductor
junctions, e.g., have a lower built-in junction voltage, and hence begin to con-
duct current at smaller forward biases than either the p–n junction or the metal–
insulator–semiconductor junction. Examples of transport characteristics relate
to differences in low field and high field behavior of carriers. Electrons in com-
pound semiconductors generally exhibit large mobilities and, at low dopings,
negative differential velocities. The former causes increased emphasis on effects
related to saturation of velocity, and the latter leads to formation of accumula-
tion and depletion regions of carriers along the channel because of the decrease
in velocity with increasing longitudinal channel fields. Thus, a MESFET, which
is based on a doped channel, and a MISFET, which is based on carrier trans-
fer to a low doped channel region, exhibit differences resulting from the above.
Examples of control of mobile charge are more immediate. A MESFET, e.g.,
is based on removal of carriers which would otherwise be present under quasi-
neutral conditions in the material, while HFETs include examples of devices
where this conducting charge may be induced. The effect of this basis of op-
eration on parasitic resistances as well as on current continuity is very direct.
One important consequence, e.g., is that MESFETs tend to have a saturated
drain current that is closer in dependence to the square of the gate voltage while
HFETs have a closer to a linear dependence.

Two additional and particularly important effects unique to compound semi-
conductors that will be discussed are that of sidegating (also called backgating),
which is the ability of a potential distant from the device, arising from the trap-
ping characteristics of the substrate, the substrate surface, and the interfaces, to
influence the channel current; and the piezoelectric effect, which is the creation
of a position-dependent charge density due to stress (e.g., from metallurgies
and dielectrics) and the ionic character of compound semiconductors—an effect
which again results in shifts in the electrical characteristics. We will also em-
phasize some of the interesting aspects and implications of the accumulation
and depletion region that forms in the channel due to current continuity as well
as due to negative differential mobility.

First, however, we will discuss quasi-static models, useful in predicting current–
voltage characteristics and commonly applied in computer-aided design. We
will discuss the principles that these are based on to understand their limita-
tions, and we will selectively use rigorous small-signal high-frequency and two-
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dimensional analyses to emphasize their approximations. We will also discuss
the off-equilibrium and transient behavior of devices, both in the short-channel
limit, and emphasize the non–quasi-static aspects of operation in transient con-
ditions.

The appeal of the computer-aided design models is their analytic or numer-
ical simplicity, which brings together with it a more intuitive insight. However,
these models must always be used with caution and with an understanding of
their limitations.

We will discuss these models in order of increasing complexity and generality.
Our discussion, therefore, extends beyond the simplest of these models to predict
and evaluate the quasi-static behavior more accurately, and in the process also
assimilate the limitations of simpler models. We will begin our discussion of
computer-aided design models by discussing the long-channel device limit where
constant mobility is an adequate approximation, then discuss the short-channel
device limit where velocity is approximated as being constant along the channel,
and then develop a model where both of these limits are included.

5.2 Analytic Quasi-Static Models

We have remarked that the appeal of computer-aided design models is their
analytic or numerical simplicity, which brings together with it a more intu-
itive insight. The simplest form of such a model assumes a constant mobility
operation of the transistor. Thus, for a practical semiconductor, it implies op-
erating in a bias region where the electric fields remain low and approximately
in the constant mobility region of the semiconductor velocity-field characteris-
tics. Most semiconductors exhibit deviation from this behavior at electric fields
exceeding 1 × 103 V.cm−1. For operating voltages of a few volts, this requires
the device gate-length to be larger than 20 µm. This electric field, the channel
electric field, can of course be much smaller than the field in the depletion region
that modulates the channel width and hence conductance. A particularly useful
simplification in the analysis under conditions of a large difference in the elec-
tric field between the depletion and the channel region is the gradual channel
approximation.

5.2.1 Gradual Channel Approximation

Since the current flow in the FET occurs due to application of drain-to-source
voltage across the channel with the modulation of channel conductance by the
gate-to-source voltage, one would expect the problem to be complicated with
electric fields being two-dimensional in the structure. Real situations quite often
lend themselves to approximations which ease the description of the physical
problem. Figure 5.1 shows underneath the gate of a MESFET, in the mirrored
part of a symmetric configuration, the conduction band edge and the velocity
of carriers in the conducting part of the channel. The channel current flow
occurs between the source and the drain, and the gate potential controls the
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Figure 5.1: Surface plot of the conduction band edge of a 5 µm gate length
GaAs MESFET is shown in (a). (b) shows the band edge and the velocity of
carriers at a cross-section in the conducting part of the channel.
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Figure 5.2: A schematic of a long-channel device with geometric parameters
used in the long-channel model.

constriction of the channel and hence the conductance. The channel current
flow occurs in the z-direction, with the channel cross-section and the electric
field Ez varying with z. In addition, there is a component of the electric field
Ey due to the gate potential. In a symmetric structure, Ey goes to zero at
the center (shown at the 0.25 µm in in Figure 5.1(a)), but increases towards
the surface. If, in the conducting part of the channel, this electric field stays
very much smaller than Ez, then the equi-potential surfaces are planes nearly
orthogonal to z. The problem now reduces to one dimension, in the z-direction
of the channel, and in the y-direction in the depleted region underneath the
gate. An accompanying relationship of this one-dimensional framework, which
is referred to as the gradual channel approximation, is that the electric field Ez
should vary in the channel region slowly with z, and hence the carrier density
should also vary slowly in the channel.

5.2.2 Constant Mobility Model

We first consider a geometry where this approximation is very accurate, the case
of a device with a long gate-length, i.e., a long-channel device where the fields
are sufficiently small that a constant mobility may be assumed. Figure 5.2 shows
variation of the depletion region in our device. The figure also shows geometric
parameters to be used in our analysis. In the long-channel model, the gradual
channel approximation is valid because while the gate and drain voltages are
comparable, the channel length is significantly larger than the thickness of the
conducting layer. We can get closed-form solutions if we further assume abrupt
depletion and ignore diffusive current. The latter follows from a small channel
electric field, which implies small deviations from quasi-neutrality and therefore
a small gradient in carrier concentration. The depletion layer width h(z) varies
slowly along the channel. The electric field in the depletion region is along the
y-axis and the electric field in the channel region along the z-axis.

In the depletion region, using depletion approximation,

−d
2V

dy2
=
ρ(y)

εs
=
qND
εs

(5.1)
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for uniform doping, and hence the depletion region width h(z) at any position
z along the channel is given by

h(z) =

{
2εs [V (z) + VG + ψj0]

qND

}1/2

, (5.2)

where V (z) is the channel voltage at z w.r.t. the source, ψj0 is the built-in
voltage of the metal–semiconductor junction (ψj0 = φM − Vn), and VG is the
absolute gate voltage. The square-root dependence in voltage above, or other
similar parametric dependence in voltage, occurs quite often in these analytic
models in field effect transistors. We will encounter a similar form in cubic root
in our analysis of HFETs. These parameters form a convenient basis for deriving
and writing expressions for current. These parameters characterize identifiable
features of the device or their normalizations. h(z) can be used as a parameter
itself, or in its normalized form u(z) = h(z)/a, they are related to the width of
the depletion region underneath the gate. We have

h(z = 0) =

[
2εs(VG + ψj0)

qND

]1/2
(5.3)

at the source end, and

h(z = L) =

[
2εs(VD + VG + ψj0)

qND

]1/2
(5.4)

at the drain end. In a constant mobility long-channel model, the highest electric
fields are limited. For example, 5 V across a 100 µm channel leads to an average
field of 500 V.cm−1, which is sufficiently small that a constant mobility may be
assumed throughout the device. The saturation of the current in such a device
occurs when the drain end of the gate pinches off, and is depleted of carriers.
This condition, termed channel pinch-off, occurs when

h(z = L) = a =

[
2ε(VD + VG + ψj0)

qND

]1/2
. (5.5)

The pinch-off voltage therefore, is defined as the parameter Vp, where

Vp =
qNDa

2

2εs
. (5.6)

This is the magnitude of the voltage between gate and source to shut off current
flow in the channel, since the extent of the gate-source depletion width is now
a, and hence carriers do not enter the channel. It is also the voltage between
the gate and the drain when current saturation occurs, because it pinches off
the drain opening in the channel. These voltages are identical due to constant
mobility and gradual channel approximation. In general, such as for the models
we discuss later, these voltages can be different. The gate voltage required
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to shut off current flow is usually referred to as the threshold voltage, and
the voltage required to saturate the current is usually referred to as pinch-off
voltage. We will return to the questionable practice of referring to this as a
pinch-off voltage, later in our discussion of the combined constant mobility and
constant velocity model.

In a first-order approximation, at any position z along the channel, we can
evaluate the drain current assuming that the diffusion current is negligible.
This is quite valid over much of the channel, but not at the drain end of the
gate. A pinch-off of the channel maintains current continuity because a large
diffusion current flows through this region. The gradient of carrier concentration
is large at the drain end. We assume that this condition is met to satisfy current
continuity. In other parts of the device under the gate, drift current is dominant,
and hence one may write

ID = qNDµW [a − h(z)]
dV

dz
(5.7)

where the drain current enters the device. Since

h2(z) =
2εs(V + VG + ψj0)

qND
, (5.8)

we obtain

2hdh =
2εs
qND

dV, (5.9)

and hence

ID = WqNDµ(a − h)
qND
εs

h
dh

dz
. (5.10)

We now employ the continuity of this current in the channel to eliminate the
position-dependent variable h(z) by integrating over the local variable. This
is a common technique that is useful in problems involving current continuity,
e.g., it will also be applied in HFETs and in the collector depletion region of
a bipolar transistor. Application of it along a path where current continuity is
maintained allows for elimination of a local variable. Continuity allows one to
obtain as a result the current in terms of variables at the source or drain end in
this problem. Integrating,

∫ L

0

IDdz =
(qND)

2
µW

εs

∫ h(L)

h(0)

(a− h)hdh, (5.11)

and

ID =
Wµq2ND

2a3

6εsL

{
3

a2

[
h2(L) − h2(0)

]
− 2

a3

[
h3(L) − h3(0)

]}
. (5.12)

This is the form of the current, in constant mobility and long-channel approx-
imation, in terms of structural variables and h(0) and h(L), which depend on
biases applied at the terminals and parameters of the device.
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The expression above can be written in terms of voltages and other normal-
ized parameters, to make it appear more direct. Using the normalizations,

Inorm =
Wµq2ND

2a3

6εsL
, (5.13)

and

u =
h(z)

a
=

(
V + VG + ψj0

Vp

)1/2

,

u(0) =
h(0)

a
=

(
VG + ψj0

Vp

)1/2

,

and u(L) =
h(L)

a
=

(
VD + VG + ψj0

Vp

)1/2

, (5.14)

we can express the drain current as

ID = Inorm
{
3
[
u2(L) − u2(0)

]
− 2

[
u3(L) − u3(0)

]}

= Inorm

{
3
VD
Vp

− 2

Vp
3/2

[
(VD + VG + ψj0)

3/2 − (VG + ψj0)
3/2
]}

.

(5.15)

These expressions relate the current up to the point of pinch-off of the channel.
At this bias, which occurs when h(z = L) = a or equivalently u(y = L) = 1,
the drain current saturates and then remains constant independent of the drain
bias. This current IDSS is given by

IDSS = Inorm

[
1 − 3

(
VG + ψj0

Vp

)
+ 2

(
VG + ψj0

Vp

)3/2
]
, (5.16)

which occurs at a drain-to-source voltage VDSS given by

VDSS = Vp − VG − ψj0 =
qNDa

2

2ε
− VG − φM +

kT

q
ln

(
NC
ND

)
. (5.17)

The quasi-static expression for drain current in terms of the gate and drain
biases is complete, and we may determine the quasi-static device parameters
using these expressions. As an example, the transconductance follows from this
analysis as:

gm =
∂ID
∂VG

=
2WµqaND

L
[u(L) − u(0)] , (5.18)

and the output conductance follows as

gd =
∂ID
∂VD

=
2WµqaND

L
[1 − u(L)] (5.19)
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in the bias region before the channel pinches off. This region is sometimes
referred to as the triode region of operation because of its poorer output con-
ductance. For biases beyond channel pinch-off, i.e., for drain voltages exceeding
VDSS (VDSS being dependent on the gate bias), the transconductance in this
model stays constant, and the output conductance is zero. Because of the latter,
the output characteristics beyond current saturation are said to be pentode-like.
The transconductance can be found by finding its magnitude at VDSS . So, in
the triode region, the transconductance

gm =
2WµqaND

L

[(
VD + VG + ψj0

Vp

)1/2

−
(
VG + ψj0

Vp

)1/2
]
, (5.20)

and in the pentode region, the transconductance

gm =
2WµqaND

L

[
1 −

(
VG + ψj0

Vp

)1/2
]
. (5.21)

Note that in the constant mobility assumption, the derivation of the behavior
is quite straightforward, and even for complicated impurity distribution func-
tions (e.g., Gaussian, complementary error function, etc.) simple results can be
derived. However, these are valid only as long as the constant mobility assump-
tion is a good one. For GaAs devices, this requires maintaining electric fields
below 1000 V/cm. So for a device with 5 V drain bias the gate-length should
be maintained at 5/1000 = 50 µm. Devices used in circuits are significantly
smaller than this.

We will therefore consider the other limit of the behavior of devices—that
based on a constant high field velocity throughout the channel. This follows our
discussion in the introduction.

5.2.3 Constant Velocity Model

For shorter gate-lengths, with average fields exceeding 3 × 103 V.cm−1, the ve-
locity of the carriers is similar to or larger than the saturation velocity vs, as
shown in Figure 5.3. Thus, carriers transit with a velocity that is on an average
higher than the saturated velocity. The simplest method of analyzing this prob-
lem would be to assume a source end velocity v

′

s, which is close to the saturation
velocity or slightly exceeding it, because the field is the smallest at the source
end and below the peak-velocity field. We may also ignore diffusive currents
because the gradient in carrier concentration remains low; velocity saturation
in a constant-channel cross-section requires the absence of gradient in carrier
concentration. The consequence of this nearly constant carrier concentration is
that even though this velocity occurs in a region where the linear velocity–field
relationship is largely maintained, since it does not change appreciably any fur-
ther, we may incorporate a constant velocity v

′

s in evaluating the current. Thus,
for gate-lengths ≈ 1µm of interest, instead of a constant mobility assumption,
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Figure 5.3: Surface plot of the conduction band edge in a 1 µm gate length
5 × 1017 cm−3 doped GaAs MESFET is shown in (a). The conduction band
edge and the velocity of carriers is shown in (b) in a conducting part of the
channel. This figure should be compared with the 5 µm gate length MESFET
shown in Figure 5.1. Both devices are biased under identical conditions and
have similar threshold voltages.
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we now resort to a constant velocity assumption to crudely estimate the current.
This current I is

I ≈ qnv
′

s [a− h(0)]W. (5.22)

Under quasi-static conditions this particle current is continuous, and hence this
is also the drain current of the device.

IDS ≈ qWv
′

s [a− h(0)]ND

∝ Inorm

[
1 −

(
V

Vp

)1/2
]
. (5.23)

This expression is appealing in simplicity and extendable to obtain the transcon-
ductance of the device, since the dependence of the source-end depletion width
h(0) is known as a function of gate-source bias. Note that the current changes
with a square-root power dependence on voltage because of the direct effect of
the modulation of the width of the channel.

We have assumed that a field exists at the source end that is sufficient to
cause a large velocity, comparable to the saturated velocity, even though it is
largely in the constant mobility region of the device. The accuracy of this con-
stant velocity model is limited by the extent of this constant mobility section.
So long as it is short, the analysis is meaningful. However, if the extent of this
region is large, the velocity in the drift current expression is an abstraction of a
hypothetical average, meaningful only as a fitting parameter following an exper-
iment, and limited in the predictive ability desired from models. So, this is an
approximate relationship, and is only applicable in the region of device opera-
tion where the drain current has saturated. However, it serves well to relate the
approximate variation expected in the drain current in response to a change in
gate voltage for an arbitrary doping profile within the channel, or for variations
of other parameters such as the velocity v

′

s ≈ vs. For many digital circuits,
there is a preference to have devices with constant but large transconductance.
Hence, there has historically been an interest in doping profiles that give linear
IDS–VG characteristics. From the above relationship, it can be seen that this
is connected with how the depletion width h(0) changes with the gate voltage.
A smaller change in the depletion width with bias leads to a smaller change in
the transconductance also. As we shall see later, HFETs based on inducing the
conducting charge in a two-dimensional electron gas channel come quite close to
having a constant transconductance because of the nearly constant depth and
the linear dependence of this charge through capacitive coupling of the gate.
For MESFETs, this would require a large doping of small width at the edge of
the depletion region with a small doping everywhere else. This kind of doping
pattern is referred to as planar doping. The device is fully turned on when
this region is undepleted and turned off when it is depleted. Since the position
of the depletion edge does not change substantially between these two,1 the

1Screening is of particular importance to this problem. It was been shown earlier that
a plane of doping leads to a carrier distribution with exponential tails characterized by the
Debye length. This Debye length also characterizes the shape of the carrier distribution at
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transconductance is nearly constant. Problem 2 considers the behavior of the
transconductance for various channel doping profiles.

Because of the constant velocity assumption, different doping profiles in the
channel should lead to a transconductance–voltage relationship which follows
the behavior of capacitance–voltage relationship, which relates the controlled
charge to the gate bias. Thus, the gate-to-source capacitance dependence on
gate bias is related to the transconductance behavior or the dependence of
drain current on the gate bias. A constant capacitance implies a linear charge
control in voltage, and hence when the charge moves with a constant velocity,
a linear IDS-VG characteristic is obtained. The example of planar doping pins
the depletion region at the doping plane and hence leads to the nearly constant
capacitance–voltage and transconductance–voltage behavior. In order to assure
pinch-off of the channel of the device, only a limited amount of charge compatible
with the breakdown voltage of the gate can be placed in the doped region. The
drawback of such a profile is that it leads to large source and drain resistance
because the undoped region cladding the doped planar region makes it difficult
to form low access regions to the source and drain of the device. HFETs,
which we commented on as another example of linear transconductance devices,
have the desired attribute of forming this planar region using a two-dimensional
carrier gas, along with a simplified low resistance implementation.

5.3 Constant Mobility with Saturated Velocity

Model

We have now developed an approximate description of the behavior of the MES-
FET under two conditions: under a low longitudinal electric field in the channel
where we applied the constant mobility model together with the gradual chan-
nel approximation, and under a high longitudinal electric field in the channel
where we applied a constant velocity model. To develop a general framework
we must include both of these in a unified model so that it may have a general
applicability for various gate-lengths as well as for various bias conditions. Even
for small gate-lengths our approximate constant velocity model is still limited
to conditions of high fields and hence large drain bias conditions in the device.
It does not, therefore, predict the current–voltage relationship before the onset
of current saturation. At low voltages and hence low electric fields, the constant
mobility model would be more appropriate. So, we now go a step further and
combine the constant mobility and constant velocity assumptions in a single
device. Since this would develop a model that incorporates both the low-field
constant mobility feature and the high-field constant velocity feature of carrier
transport, it should have more general application.

We now consider the entire velocity–field behavior of the carrier by making
a constant mobility and constant velocity approximation of the two limits of the

the edge of the depletion region. Hence the order of change in the depletion width between
the on and off conditions for planar doping is of the order of Debye screening length.
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Figure 5.4: Device cross-section (a) and the assumed velocity–field curve (b)
for the PHS model as an approximation to the velocity–field curve at typical
channel dopings exceeding mid-1017 cm−3 in GaAs. In region I of both parts,
constant mobility is assumed. In region II of both parts, a constant velocity is
assumed.

behavior. This approximation of the velocity–field curve and transport behavior
in the channel is shown in Figure 5.4. Thus, we will assume the constant mobility
to be an adequate approximation in the part of the device channel at the source
end where the fields are low, and we will assume the constant velocity to be an
adequate approximation at the drain end of the channel where the fields are high.
Our discussion follows the analysis of Pucel, Haus, and Statz, and will be referred
to as the PHS model.2 The saturation in channel current occurs when the field
towards the drain end becomes high enough that the carriers begin moving
with a constant high field limit velocity—the saturated velocity. The channel
current saturation, or equivalently the drain current saturation, occurs due to
the saturation in the velocity of carriers. Recall that in the constant mobility
model it occurs due to the pinching of the channel. These are quite different
in nature. Current saturation, with a constant cross-section for flow of carriers,
implies a constant carrier distribution for current continuity in the former and
a constant carrier gradient in the latter. The latter is important in long gate-

2R. A. Pucel, H. A. Haus, and H. Statz, “Signal and Noise Properties of Gallium Arsenide
Microwave Field-Effect Transistors,” in Advances in Electronics and Electron Physics, 38,
Academic Press, N.Y. (1975) also has a treatment of noise and a historic introduction to early
MESFET models for computer-aided design. The PHS model is an example of quasi-static
model. For a lucid discussion of the general approach that is the basis of PHS model see the
treatment on junction field effect transistors in R. S. C. Cobbold, Theory and Applications

of Field-Effect Transistors, Wiley-Interscience, N.Y. (1970). Cobbold’s book also contains a
detailed treatment of small-signal modelling.
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length devices where the current density is small and hence the gradient in
carrier concentration is feasible without violating the particle velocity limits
from the characteristics of the semiconductor. In small gate-length devices, the
fields at the drain end are large enough, the gradual channel approximation is
no longer applicable, and the carriers move with velocities close to the saturated
velocity. Once this channel current saturation occurs, the gate depletion width
accommodates itself longitudinally, towards the source and the drain, to allow
for the drain current to flow through the undepleted part of the channel.

We will consider the device geometry shown in part (a) of Figure 5.4. We
ignore the current in the substrate of the device as well as its effect on the flow
in the channel itself by considering a symmetric section of a device with the
second half being a mirror reflection of the bottom edge of the device. In our
earlier analysis, we had ignored the substrate boundary; implicitly, this is the
geometry that we analyzed. Our velocity–field curve is a two section model
(Figure 5.5) that is an approximation of the semiconductor velocity–field curve.
This figure also shows the variation in channel opening, Here, at low fields a
constant mobility is used, and at fields E > Es a constant velocity is used. We
obtain continuity in the slope of the derived characteristics by matching the
boundary conditions at the point at which E = Es. This will also serve for us
as a demonstration of the use of boundary conditions in matching sections with
the constraint of current continuity. Among other parameters for the device, a
is the channel thickness, b is the channel opening, and V is the a normalized
potential.

In the region of length L1, where E < Es, gradual channel approximation
is assumed to be valid; this field is low enough that it is significantly smaller
than the transverse gate field and we employ a constant mobility. In the region
beyond, of length L2, the carriers are assumed to move with their limit velocity,
the saturated velocity velocity vs. The point L1, therefore, defines the spatial
point of onset of velocity saturation. We will denote the potential of this point
by Vp, in conformity with the earlier analysis, since drain current saturation is
intimately related to this velocity saturation.3 We assume the source at ground
potential. The potential of the channel referred to the gate is

V(z) = Vsg + φM − V (z). (5.24)

This is a translated variable, whose magnitude at the source end, the drain end,
and the point at which the carrier velocity saturates are

Vs = Vsg + φM ,

Vd = Vsg + φM − Vsd,

and Vp = Vsg + φM − Vp. (5.25)

3In the constant mobility model, the current saturation occurs due to a pinch-off of the
channel where few carriers exist, and current transport occurs via diffusion in this pinched
region. In the constant velocity model, the channel does not physically pinch off. The velocity
saturates and a large carrier density exists that supports the drift current. These are distinctly
different. The subscript p, whose origin is in this “pinch-off” term, should not be confused
with a physical pinch-off of the channel.
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Figure 5.5: (a) shows the channel opening (ξ(z)) as a function of channel posi-
tion, (b) shows the electric field (E(z)) as a function of position, (c) shows the
velocity of carriers (v(z)) as a function of position, and (d) shows the normalized
potential (V(z)) as a function of position along the channel. These figures are
shown schematically for a doping of 2.5× 107 cm.s−1.
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In the constant mobility model, we employed a variable h proportional to the
square root of potential—this term represented the depletion depth. It is useful
to employ a similar square-root term here. We will employ a normalization
factor of the channel thickness a. These normalization factors, the reduced
potentials,4 are the following at the source end, the drain end, and at the point
of velocity saturation:

ξs =

( Vs
V00

)1/2

,

ξd =

( Vd
V00

)1/2

,

and ξp =

( Vp
V00

)1/2

, (5.26)

with the reduced potential at any position z along the channel as

ξ(z) =

(V(z)

V00

)1/2

. (5.27)

In these expressions, the normalization potential is the potential

V00 =
qND
2εs

a2, (5.28)

which is the potential associated with full channel depletion in gradual channel
approximation.

Note that because of the square root of V , the terms ξs, ξd, ξp, and ξ(z)
correspond to the depletion region width normalized by the channel thickness,
since, in the depletion region, the fields largely terminate on the gate electrode
irrespective of the behavior in the channel region. The parameter ξ, therefore,
corresponds to the parameter h used in our earlier constant mobility calcula-
tions. The manner in which we assure current continuity, and include velocity
saturation and hence the existence of large longitudinal fields in the channel,
prevents it from being identical, and allows us to include the velocity saturation
effect. In the constant mobility section of the device, using gradual channel
approximation,

V(z) = V00

[
1 − b(z)

a

]2
(5.29)

and

ξ(z) = 1 − b(z)

a
. (5.30)

4We employ the symbol ξ for this. It should not be confused with the symbol for quasi-
Fermi energy.
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Also, at any cross-section, the current I, which is also the drain current ID
because of current continuity, is given by

I = ID = b(z)Wqµ0ND
∂V
∂z
, (5.31)

where W is the gate width. This gives, in the constant mobility section of the
device,

∫ L1

0

IDdz = 2aqµ0NDWV00

∫ ξp

ξs
(1 − ξ)ξdξ. (5.32)

Note,

b(z) = a [1 − ξ(z)] ,

and 2ξ(z)dξ(z) =
dV(z)

V00
, (5.33)

so

ID =
aqµ0NDWV00

L1

[
ξp

2 − ξs
2 − 2

3

(
ξp

3 − ξs
3
)]
. (5.34)

This relationship is identical to that derived for the constant mobility model
since it is based on identical assumptions. The difference between the present
model and the constant mobility model is that the latter assumes constant
mobility is valid over the entire channel length. We may introduce go as a
conductance parameter per unit width,

go = aqµ0ND , (5.35)

giving

ID =
g0WV00

L1

[
ξp

2 − ξs
2 − 2

3

(
ξp

3 − ξs
3
)]
. (5.36)

In the second region, where the constant velocity assumption is applied,

vs = µ0Es. (5.37)

Since velocity is constant and the field in the conducting section is longitudinal,
in the presence of a constant channel thickness and hence constant depletion
region width, current continuity can only be maintained by a constant carrier
concentration. The current at the point of velocity saturation is

ID = qµ0EsNDWa(1 − ξp) = goWEs(1 − ξp)

= Inorm(1 − ξp). (5.38)

The normalized current Inorm = qvsNDWa is the drain current if the channel is
completely open and carriers move at saturated velocity. This is the maximum
current that can be obtained from the device. Current continuity between the
constant mobility and constant velocity sections implies

goWV00

L1

[
ξp

2 − ξs
2 − 2

3

(
ξp

3 − ξs
3
)]

= goWEs(1 − ξp), (5.39)
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and hence the length L1 is given by

L1 =
V00

Es(1 − ξp)

[
ξp

2 − ξs
2 − 2

3

(
ξp

3 − ξs
3
)]
. (5.40)

We write this as

L1 = L
1

α(1 − ξp)

[
ξp

2 − ξs
2 − 2

3

(
ξp

3 − ξs
3
)]
, (5.41)

where

α =
EsL
V00

(5.42)

is a dimensionless potential parameter that the PHS model calls saturation
index. It is inversely related to the degree of importance of saturation of velocity
in the determination of the device behavior. Recall that V00, for a constant
mobility model, is the voltage for current saturation. For large α, the parameter
V00 � EsL; hence typically applied voltages are less than the voltages required
to achieve velocity saturation across a significant fraction of the channel lengths.
So, a large α results in constant mobility–dominated behavior of the device. If
α is small, EsL < V00, and hence, for potentials typical of current saturation, in
a substantial part of the device, the carriers travel at saturated velocities.

Let us now consider the channel potential for a given current ID through
the device. Consider the first section of the device, where the gradual channel
approximation is applicable. The potential in the channel at the point of onset
of velocity saturation is

Vp = −(Vp − Vs)
= −V00(ξp

2 − ξs
2). (5.43)

The field in the depleted region is transverse, and the field in the channel with a
constant mobility conduction is longitudinal. In the second section, both in the
depleted and constant velocity conduction region, the fields are two-dimensional.
For this section, the potentials can not be derived in as straightforward a fashion,
since gradual channel approximation is no longer applicable. We may not use
the one-dimensional Poisson’s equation applied in the conducting region of the
first section, which followed from the existence of only a longitudinal field in
the constant mobility section. In the constant velocity section, the fields are
two-dimensional, and the electrostatic potential ψ is a function of both y and
z. A rigorous solution would require us to solve the problem subject to the
boundary conditions of continuity in potential and field at the intersection of the
constant mobility and constant velocity regions for all y’s and also to satisfy the
appropriate approximations of boundary conditions at the gate–semiconductor
interface, at the drain contact interface with the second region, and at the line
of mirror symmetry at the bottom.

Our solution will be approximate. We break the problem in two parts, em-
phasizing the two electrostatically distinct parts. Let ψ2 be the electrostatic
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potential associated with the large charge density qND of the depletion region
lacking in mobile charge, and let ψ1 be the electrostatic potential associated with
the conducting region filled with mobile charge. The superposition of these two
potentials, ψ = ψ1 + ψ2, is the electrostatic potential of the second region with
ψ1 dominating in the conducting channel part and ψ2 in the depletion region
part. The potential ψ2 is still approximately parabolic in y because the de-
pletion charge still largely terminates on the gate electrode. In the conducting
region of the channel, carriers move at the constant saturated velocity, carrier
concentration is constant to maintain current continuity, and hence the longi-
tudinal electric field is associated with charge at the drain electrode. So, in the
conducting part of the second region,

−∇2ψ1 =
q

ε
(ND − n) ≈ 0 for L1 < z < L, (5.44)

i.e., ψ1 satisfies Laplace’s equation. We employ the boundary conditions of
continuous longitudinal electric field and potential at z = L1, and vanishing
transverse field at y = 0, the central cross-section of the device. Mathematically,

ψ1(z = L−
1 ) = ψ1(z = L+

1 )

and
∂ψ1

∂z

∣∣∣∣
z=L−

1

=
∂ψ1

∂z

∣∣∣∣
z=L+

1

. (5.45)

For the general case, the solution to Poisson’s equation for the above problem
is the sum of the solution to Laplace’s equation (ψ1) and the solution to Poisson’s
equation with fixed ionized charge (ψ2). The solution to Laplace’s equation is a
sum of products of exponentials in the two orthogonal directions. Since, in the
y-direction, the field vanishes at the surface, and since it builds up towards the
drain electrode (the charge on the drain electrode sustains this field), intuitively
one would expect the solution to be a harmonic function that peaks at y = a
and vanishes at y = 0, i.e., a cosine function, and an exponential function in the
z direction. The solution for potential should be of the form

ψ1(y, z) =

m=±∞∑

m=0

Am(−1)2m+1 cos

[
mπ(y − a)

2a

]
exp

[
−mπ(z − L1)

2a

]
+ B,

(5.46)
where the Am’s and B are constants.

Strictly speaking, we should have tried to force the cosine function to zero
at the depletion region edge since the mobile charge nearly vanishes there. This
would lead to a very complex analytic formulation. In this approximate solution
we wish to emphasize the accuracy at y = a so that we may calculate the
potential accurately along this line of symmetry. The calculation of the potential
at y = a does not get severely affected by the approximation in the cosine
function. So, an approximate result for the potential drop and length of the
region can be found by considering the behavior at y = a. In the above series,
the terms corresponding to m = 0 and m = ±1 have the largest contribution
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for this cross-section of symmetry. This contribution,

ψ1(y, z) = −2a

π
Es cos

[
π(y − a)

2a

]
sinh

[
π(z − L1)

2a

]
+ ψ(L1), (5.47)

where ψ(L1) is the potential of the channel derived as a solution from the
analysis of first region, may be seen as the part of the solution that corresponds
to a point drain contact at y = a and z = L, and the resultant variation in
ψ(y, z) is most accurate at the cross-section of symmetry with large deviations
occurring further away. At y = a and z = L1, the longitudinal electric field is Es
and the potential is ψ(L1). Since the potential is symmetric in the y-direction
around y = a, the transverse field vanishes at y = a. Also, because of the cosine
term, the longitudinal field drops off towards the depletion region edge and
into the depletion region. The approximation here is clear; in the conducting
region, while we actually expect the potential variation in the y-direction to
be negligible, this potential describes it as changing appreciably. However, at
y = a, this potential is quite accurate. So, this potential should be considered
as the approximate solution in the conducting undepleted region at y = a, and
we will make appropriate evaluations of voltage drops, etc., at y = a only.

In the depletion region, the electric field is mostly transverse, the charge is
N+
D , and the total potential (sum of contribution from the depletion region and

the conducting region) increases parabolically towards the gate. Our rationale
in adopting the above approach to obtain relatively simple results is that if we
model behavior at y = a accurately enough, maintaining current continuity,
then the results will not be too different from an analysis considering more
terms in the harmonic series expansion. Were we to adopt the latter approach,
we could also consider the potential contribution of the charge in the depletion
region too, by considering the boundary conditions in terms of equi-potential
surface at the gate, no orthogonal field at y = a, continuity of potential and
electric field at z = L1, and equi-potential surface at the drain electrode. This
would be unwieldy.

The longitudinal channel voltage drop in our present approximation can now
be obtained as follows

VII = −V00
2

π

( a
L

)
α sinh

(
πL2

2a

)
, (5.48)

hence,

Vsd = −V00(ξp
2 − ξs

2) − 2

π
V00

a

L
α sinh

(
πL2

2a

)

= −V00

[
(ξp

2 − ξs
2) +

2

π

( a
L

)
α sinh

(
πL2

2a

)]
, (5.49)

where

L1 = L
ξp

2 − ξs
2 − 2

3(ξp
3 − ξs

3)

α(1 − ξp)
, (5.50)
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and

L2 = L− L1. (5.51)

Given Vsd, Vsg, and L, we know the source end opening a(1 − ξs). Device and
material parameters imply knowledge of the long-channel pinch-off normalized
potential V00, the saturation index α, and the channel thickness a. This allows us
to determine the drain end opening a(1−ξp). From this the device characteristics
follow.

Figure 5.6 shows the output characteristics of GaAs MESFETs with 1µm
and 10 µm gate-lengths. The dashed lines of this figure show the output char-
acteristics in the constant mobility limit for zero gate bias. The PHS model
shows the lowest current and a finite output conductance throughout the bias
range. The constant mobility model shows zero output conductance in the cur-
rent saturation region, and a much higher current. Since this model ignores any
velocity saturation effect, it overestimates the velocity at this short gate-length
and hence overestimates the current too. Clearly, a self-consistent inclusion of
constant mobility and constant velocity conduction is important in predicting
the device characteristics.

Let us now look at some of the device parameters and get a feel for the degree
of importance and implications of the saturation of velocity. A plot of opening
in the channel at the source and drain ends (a(1−ξs) and a(1−ξp)) as functions
of the drain current is shown in Figure 5.7. In this figure, at a constant current,
the openings are a function of the aspect ratio (L/a). Small aspect ratios and
small gate-lengths mean nearly identical source and drain openings (the source
opening is slightly larger because of smaller velocities) because carriers transit
at saturated velocities through much of the device.

Note that because of velocity saturation, the channel can be fully open at
high gate biases even when high drain biases occur. The saturated velocity
forces the drain end of the channel to remain significantly open even at high
drain biases in order to maintain the large drain currents.

The source opening is bigger but not significantly. At 1/10th the full channel
current, it may be about 30–40% percent bigger for the longest aspect ratio
device of L/a = 10. For a smaller aspect ratio, e.g., a 1.0 µm gate-length with a
0.3 µm channel thickness, the source opening is within 5% of the drain opening.
The depletion region is essentially parallel to the surface—which also indicates
the quite good validity of gradual channel approximation.

While the differences in fractional openings at source and drain ends are
insensitive to the current being driven or the drain voltage, the fractional length
of the velocity saturated region is very sensitive, with L2/L increasing rapidly
with Vsd. Figure 5.8 shows an example of this dependence for our model device
at various aspect ratios, with the smaller aspect ratio showing the larger effect.
The smaller the aspect ratio of the device, the less is this region—but for shorter
gate-lengths at a potential equal to the long-channel pinch-off potential V00, e.g.,
for the device with L/a = 3, almost the whole longitudinal section may have
carrier transport at saturated velocity. This is also seen from a plot with α as
a variable shown in Figure 5.9. Notice that as the saturation index decreases.
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Figure 5.6: Output characteristics for a 1 µm gate length GaAs MESFET are
shown in (a) following the PHS analysis. (b) shows the output characteristics
for a 10 µm gate length GaAs MESFET following the PHS analysis. Both
figures show, using dashed lines, the current for zero gate bias assuming no
velocity saturation, i.e., assuming that a constant mobility is valid throughout
the operation.
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Figure 5.7: Source (solid lines) and drain (dashed line) end openings of MESFET
channel derived from the PHS model at different aspect ratios with Vsd/V00 = 1
and α = 0.1. The normalization parameter for current is Inorm. After R.
A. Pucel, H. A. Haus, and H. Statz, “Signal and Noise Properties of Gallium
Arsenide Microwave Field-Effect Transistors,” in Advances in Electronics and

Electron Physics, 38, Academic Press, N.Y. (1975).



294 5 Metal–Semiconductor Field Effect Transistors

Figure 5.8: Relative length of the velocity saturated region L2/L as a function
of the normalized source-to-drain voltage Vsd/V00 for different aspect ratios,
ID/Inorm = 0.5, and α = 0.1. After R. A. Pucel, H. A. Haus, and H. Statz,
“Signal and Noise Properties of Gallium Arsenide Microwave Field-Effect Tran-
sistors,” in Advances in Electronics and Electron Physics, 38, Academic Press,
N.Y. (1975).
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Figure 5.9: The normalized length of the saturated velocity region L2/a, as a
function of the aspect ratio L/a for varying saturation parameters. Vsd/V00 = 1,
and ID/Inorm = 0.5. After R. A. Pucel, H. A. Haus, and H. Statz, “Signal and
Noise Properties of Gallium Arsenide Microwave Field-Effect Transistors,” in
Advances in Electronics and Electron Physics, 38, Academic Press, N.Y. (1975).

the transport effects in the saturated region become dominant.

Since we can predict the output current–voltage relationship, we can also
derive secondary parameters of interest (such as transconductance, output con-
ductance, etc.) in the quasi-static approximation. We can also derive simplified
limits of the capacitances by considering the electrostatics of the problem. These
are considered next.

5.3.1 Transconductance

We again use quasi-static approximation and find gm through perturbation of
the drain current.

gm = − ∂ID
∂Vsg

∣∣∣∣
Vsd

= goEsW
∂ξp
∂Vsg

∣∣∣∣
Vsd

=
goEsW
2ξsV00

dξp
dξs

. (5.52)
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This gives

gm =
Inorm
V00

(1 − ξs) cosh (πL2/2a) − (1 − ξp)

[2ξp(1 − ξp) + α (L1/L) cosh (πL2/2a) − 2ξp(1 − ξp)]
. (5.53)

Note when L2 → 0, i.e., when there is no velocity saturated region,

gm ≈ goW

L
(ξp − ξs), (5.54)

which is our earlier long-channel expression. In the other limit of L2 → L, i.e.,
velocity saturated conduction throughout the channel, ξp ≈ ξs, and

gm ≈ Inorm
V00

1

2ξp
, (5.55)

because the cosh term dominates, and

gm ≈ Inorm
2V00

1

1 − ID/Inorm
. (5.56)

This follows from our constant velocity expression (see Problem 1). Note
that these expressions predict an increasing transconductance at smaller gate-
lengths.

5.3.2 Output Conductance

The output conductance is defined as

gsd = − ∂ID
∂Vsd

∣∣∣∣
Vsg

. (5.57)

Following our expression for current, this can be derived as

gds =
Inorm
V00

1 − ξp
[2ξp(1 − ξp) + α (L1/L)] cosh (πL2/2a) − 2ξp(1 − ξp)

. (5.58)

When, L2 → 0, i.e., no velocity saturated region,

gds =
Inorm
V00

(1 − ξp)
V00

EsL

=
go(1 − ξp)W

L
. (5.59)

When the aspect ratio L/a gets smaller, the output conductance increases and
the output characteristics of the device show higher slope. This was shown in the
two separate plots for the long-channel and short-channel devices of Figure 5.6.

For short gate-length structures,

gds ≈
α

π

a

L

Inorm
|Vsd|

1

ξp
, (5.60)
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from our expressions. The most inaccurate small-signal parameter in this model
for predicting characteristics of real devices is this resistance, because the ide-
alized geometry does not include injection into the substrate and modifications
resulting from that in the device—a very important consideration under short-
channel conditions. We show implications of some of these effects in later sec-
tions.

5.3.3 Gate-to-Source Capacitance

Since the depletion region charge also responds to changes in bias, this calcula-
tion is quite complicated. The total gate charge Qg is (see Problem 3)

Qg ≈ 2qNDaW

[
2
3
(ξp

3 − ξs
3) − 1

2
(ξp

4 − ξs
4)

(ξp
2 − ξs

2) − 2
3
(ξp

3 − ξs
3)

+ ξpL2+

α

π

a2

L

(
cosh

(
πL2

2a

)
− 1

)]
, (5.61)

and the gate-to-source capacitance, following definition, is

Cgs =
∂Qg

∂Vsg

∣∣∣∣
Vsd

. (5.62)

The gate-to-source capacitance increases with increased current.

5.3.4 Gate-to-Drain Capacitance

In our analysis of device behavior at biases beyond those at which the channel
current saturates, we obtained an output conductance that came about because
essentially the device acts as if it has a shorter gate-length which has a higher
current capability. This “shortening” of gate-length, in the case of long devices
where the electric field does not reach the values necessary to achieve velocity
saturation, occurs via channel pinch-off. We encountered this phenomenon in
our long-channel constant mobility analysis. The effects that give rise to channel
length shortening also give rise to drain-to-gate capacitance effects.

First consider the non–current-saturation region of operation. The charge
underneath the gate terminates at the gate, and the depletion region edge re-
sponds to both the source and the drain bias. If the two are at identical po-
tentials, the depletion region is symmetric in both source and drain and the
gate-to-source and gate-to-drain capacitances are identical. If, now, a drain
bias is applied in excess of the source bias, the depletion region at the drain
extends farther, and at the source end it responds to the requirements of con-
serving channel current for the quasi-static conditions. As a result of application
of drain bias in excess of source bias, however, the capacitance and the charge
that can directly be modulated by the drain decrease. The source capacitance
increases because a larger part of the charge underneath the gate can be directly
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Figure 5.10: The equi-potential lines in a very lightly doped GaAs substrate
due to bias applied between two metal electrodes on the surface. Electric field
lines are orthogonal to these equi-potential lines.

modulated. Another way of viewing this is that a higher electric field that nat-
urally forms towards the drain as a result of the application of this drain bias
results in screening of the channel and source regions. As a result, a larger and
larger fraction of the depletion region underneath the gate can be associated
with the source electrode and hence the gate-to-source capacitance. The net
consequence, irrespective of the reason for channel current saturation, is that
the drain-to-gate capacitance decreases.

If there were no conducting channel, there would still be a capacitance asso-
ciated with the drain-to-gate as well as the drain-to-source electrodes because of
mutual termination of fields (see Figure 5.10). This capacitance really can not be
calculated independently because the presence of a conducting channel changes
the field profile. However, a calculation based on a semi-insulating medium with
planar electrodes on the surface gives a lower bound for the capacitance of the
structure. This capacitance Cdg,si is approximately given by

Cdg,si = (εs + ε0)W
K
(√

1 − k2
)

K (k)
, (5.63)

where K(k) and K(
√

1 − k2) are Elliptic integrals of the first kind, and k is
given as

k =

(
Ldg

Ldg + L

)1/2

. (5.64)
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In these expressions, Ldg is is the drain-to-gate spacing and the drain length is
assumed to be the same as that of the gate.

5.3.5 Drain-to-Source Capacitance

The drain-to-source capacitance is generally the smallest of capacitances and
occurs to a large extent due to the fields through the substrate. The drain
is usually isolated from the source by the high field regions in the channel.
Hence, the approximation above for inter-electrode capacitance gives a better
approximation for this capacitance.

Cds,si = (εs + ε0)W
K
(√

1 − k2
)

K (k)
, (5.65)

where K(k) and K(
√

1 − k2) are Elliptic integrals of first kind, and k is given
as

k =

(
(2Ls + Lds)Lds

Ls + Lds

)1/2

, (5.66)

where Ls is the source length assumed to be the same as the gate and Lds is
the drain-to-source spacing.

We have now determined a number of elements associated with the ports of
the MESFET using perturbation on the quasi-static analysis: gm to represent
the variation of drain current with gate bias, Cdg to represent the change in as-
sociated storage between drain and gate electrodes, Cgs to represent the change
in storage associated with gate-to-source electrode, Cds for the fringing effects
between drain and source electrodes, and gds for output effects. The channel
region charging the capacitance Cgs has associated with it a finite resistance.
Later on, we will see how this naturally appears as a result of a direct small-
signal analysis from the small-signal transport equations. Here we will introduce
it ad hoc as a resistance Ri that represents the intrinsic resistance associated
with the integrated effect of channel conductance in the gate-source region.
The resulting equivalent circuit, a quasi-static equivalent circuit, is shown in
Figure 5.11. This figure includes three resistances, Rs, Rd, and Rg, to represent
the ohmic effects in the extrinsic regions of the device.5

5.4 Accumulation–Depletion of Carriers

In the PHS model, a nearly flat depletion region occurs as a consequence of
velocity saturation, and the carrier concentration in the conducting region is
nearly constant to maintain current continuity. This is not a good general
description of real devices. The most important reason for this inadequacy is
that the analysis entirely ignores diffusive currents, a current component that
can be quite important. For example, in the long gate-length limit, this is the

5In equivalent circuit representation, we adopt the use the hat symbol to represent small-
signal. Thus, V̂gs is the small-signal gate-to-source voltage.
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Figure 5.11: Quasi-static small-signal equivalent circuit for a MESFET based
on elements derived as part of perturbation analysis on the PHS model.

dominant current in the pinched region of the channel. It can be important in
short gate-length devices also, depending on the design of the device and the
bias conditions. Large electric fields exist in this region; they are the reason for
velocity saturation, and hence these large electric fields can support and exist
with deviations from quasi-neutrality.

Models incorporating diffusion current can be quite complicated. We will
consider a model that includes diffusion current in the analysis of HFETs in
Chapter 6. Here, a more suitable way of exemplifying the deviations from quasi-
neutrality in the form of an accumulation-depletion region is by considering a
full two-dimensional model based on drift-diffusion transport6 of our 1 µm with
a 5 × 1017 cm−3 doped channel MESFET example. Results of the variation in
electric field and the carrier density along the channel are shown in Figure 5.12.
Note that diffusion currents tend to be small at the source end but get larger in
the high field region because of the rapid changes in the carrier concentration.

There are two other important features in the results associated with this
phenomenon. One is that the depletion region is not entirely flat in the high
field region where carriers do move with essentially a constant velocity (see Fig-
ure 5.1). This is connected to the changes in the diffusion current. Current
continuity requires that the sum, drift and diffusion, be a constant following
integration over the cross-section. A changing cross-section can still accommo-
date current continuity with diffusion currents present. The presence of diffusion
current also implies the presence of a concentration gradient in the conducting
region with high fields. Thus, depletion depth changes, carrier concentration

6i.e., the use of a two-dimensional simulator that finds the solution of the drift-diffusion
equation, the continuity equation, and Poisson’s equation throughout the device cross-section
subject to the boundary conditions. Such simulators are usually based on finite element
analysis. They solve by dividing the device into many small but finite sized elemental volumes
and by assuring continuity at their interfaces and with the device surfaces. Simulators can
also be based on the use of the BTE approach or the Monte Carlo approach as discussed in
Chapter 3.
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Figure 5.12: Electric field and carrier density for a 1 µm gate-length GaAs
MESFET with a 5 × 1017 cm−3 doped channel biased into current saturation.
The formation of the accumulation-depletion region is shown in proximity of
the drain electrode.

changes, and diffusion currents can all be present in MESFETs, and the PHS
model does not include them. However, its inclusion would be very difficult
numerically within the framework of the model. Indeed, making it significantly
more complex would remove its attractiveness as an intuitive model. One might
as well, then, employ a complete two-dimensional model.

The change in carrier concentration, shown in Figure 5.12 is of particular
interest since it brings out an additional consideration. Current continuity, in
the presence of a decreasing channel cross-section and high electric fields, results
in an accumulation of carriers. If the change in channel cross-section takes
place over a sufficiently large distance, then the associated diffusion current
is small, and the accumulation of carriers is a direct consequence of current
continuity alone. Eventually, when the drain is reached, the conducting channel
may expand and hence a depletion of carriers may also occur. So, the large
longitudinal field in the region of velocity-saturated transport occurs together
with a change in the net charge density. For most short gate-length structures,
employing relatively large channel dopings, current continuity is the main source
of this accumulation–depletion. It occurs in all materials at appropriately short
gate-lengths where velocity saturation may occur.7

A phenomenon similar to this, of accumulation–depletion, also occurs due to
the negative differential mobility in the velocity–field characteristics of electrons

7i.e., it occurs in silicon FETs also; see D. P. Kennedy and R. R. O’Brien, “Computer-Aided
Two-Dimensional Analysis of the Junction Field-Effect Transistor,” IBM J. of Research and

Development, 14, No. 2, p. 95, 1970.
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in a variety of compound semiconductors. An example is GaAs. But, for this
negative differential mobility to be significant, the channel doping has to be kept
low—in the low-1017 cm−3 range for GaAs. This formation of an accumulation-
depletion of charge in the channel region of the GaAs MESFET is shown in
Figure 5.13 for a low-doped GaAs MESFET of 1 µm gate length. As carriers
travel along from the source edge of the channel to the drain they encounter
higher fields beyond the field corresponding to peak velocity. Following the
velocity–field curve, this initially leads to a decrease in velocity and hence an
increase in carrier density, the channel cross-section effects being secondary. As
the carriers move further down the channel, near the drain, they encounter
lower electric fields. The carriers accelerate and hence a depletion of charge
occurs to maintain current continuity. Thus, along the channel, an accumulation
and depletion region forms in the conducting channel region. In PHS model,
a constant velocity is assumed in the high field region. This accumulation-
depletion region would have formed in this part of the device underneath the
drain edge of the gate, had we included the specific velocity–field curve with
negative differential mobility.

Short gate-length devices are usually made with channel dopings in the range
of mid-1017 cm−3; at such doping levels, the effect of negative differential mobil-
ity is weaker since peak velocity is smaller, however, the similar effect of current
continuity is larger. Note that a nearly constant channel cross-section is impor-
tant to arguments regarding this dipole. The PHS model considers a symmetric
cross-section for the device and entirely ignores substrate injection effects, a rea-
son why it is inadequate in modelling output conductance features. Substrate
injection is also important because of its effect on the formation of the dipole.
If carriers can spill over into the substrate, the cross-section can stay larger.
Large electric fields from drain-to-source, both transverse and longitudinal, aid
this injection into the substrate and hence mitigate substantially the formation
of dipole layers. Figure 5.14 shows an example similar to Figure 5.13 in the
presence of substrate injection. Note the decrease in the dipole formation. The
effect is much more substantial in the case of the first type of dipole because
channel cross-section is very central to the dipole’s formation. Substrate and
back interfaces are usually designed to suppress injection away from the gate-
channel region. Any current path farther away from the gate leads to poorer
control by the gate. So, for most designs of MESFETs, irrespective of the cause,
some dipole effect is present in the high field region of the conducting channel.
The effect is larger at smaller doping levels, and its implications are significant
at very high frequencies because its principle consequence is a capacitive feed-
back from the output. For computer-aided design models of current–voltage
characteristics, this may be neglected with an acceptable error; for quasi-static
capacitance models, this may or may not be acceptable depending on the doping
level and other structural features of the device.

A complete inclusion of the implications of the accumulation-depletion re-
quires an elaborate numerical calculation, since the complex velocity–field curve
does not allow for analytic or simple numerical analysis. We will, however, see
how a simpler analysis may be used to incorporate first-order effects of this
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Figure 5.13: Surface plot of the conduction band edge for a 1 µm GaAs MESFET
with a 1 × 1017 cm−3 doped channel biased into current saturation. (b) shows
the electric field and the carrier concentration as a function of position along a
conducting cross-section of the channel.
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Figure 5.14: Surface plot of the conduction band edge is shown in part (a)
for a 1 µm GaAs MESFET with a 1 × 1017 cm−3 doped channel biased into
current saturation. This example allows for injection into the substrate. Part
(b) shows the electric field and the carrier concentration as a function of position
along a conducting cross-section of the channel. This figure should be compared
with the previous figure which assumed a symmetric boundary condition at the
interface between the channel and the substrate.
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dipole region, by considering the negative differential mobility–induced dipole
as an example. The objective of this exercise is to serve as an example of how a
complex phenomenon may be analyzed within a section of a device in order to
include its important consequences for device behavior. As we have remarked
before, though, this particular source of dipole is relatively weak in the short
gate-length heavily-doped channels.

Mathematically, the current continuity equation for the channel carrier trans-
port8 is

J = q

[
nv(E) +

d (nD(E))

dz

]
, (5.67)

where D(E) is the diffusion coefficient of electrons as a function of electric field.
If ND is the background donor concentration,

dE
dz

= − q

εs
(n−ND) , (5.68)

and just outside the dipole region, where the channel is quasi-neutral,

J = qNDv1, (5.69)

giving
d(nD)

dE =
εs
q

nv(E) −NDv1
n−ND

. (5.70)

Here we have utilized the approximations of the velocities in the high field region
of the device.

The solution of this differential equation is found as follows, with the per-
turbation of the diffusive term, a small term, ignored:

∫ n

ND

n
′ −ND
n′

dn
′

=
εs
q

∫ E

E1

v −NDv1/n

D(E ′

)
dE ′

, (5.71)

or
n−ND
ND

− ln

(
1 +

n−ND
ND

)
=

εs
qND

∫ E

E1

v −NDv1/n

D(E ′

)
dE ′

. (5.72)

We now consider only limited deviation from quasi-neutrality, i.e.,

|n−ND | /ND � 1, (5.73)

appropriate for low-1017 cm−3 or higher doped devices in GaAs. If the dipole
forms over a region of many Debye lengths, i.e., exceeding 0.1 µm, then the
limited deviation from quasi-neutrality also implies a diffusion current density

8Here we follow arguments discussed in detail in T. J. Fjeldy, “Analytical Modeling of the
Stationary Domain in GaAs MESFETs,” IEEE Trans. on Electron Devices, ED-33, No. 7,
p. 874, July, 1986. We stress, however, that at doping levels of interest in practical MESFETs,
this is of secondary, not primary importance. It occurs together with the other cause of dipole
already discussed. It is probably of larger significance in HFETs where the background doping
is much lower and hence the negative differential mobility is significantly stronger.
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much smaller than drift current density. This justifies the prior assumption of
this analysis.

(
n−ND
ND

)2

=
2εs
qND

∫ E

E1

(
v − ND

n
v1

)
1

D(E ′

)
dE ′

. (5.74)

At the peak field Em in the domain,

∫ Em
E1

v − v1

D(E ′

)
dE ′

= 0, (5.75)

because n = ND . This allows us to determine the maximum field Em—the
maximum electric field in the dipole region—and hence a reduction of variables.

The total voltage drop in the dipole region Vdip, assuming symmetric accu-
mulation and depletion, is

Vdip = 2

∫ Em
E1

(E − E1)dz

= 2

∫ Em
E1

(E − E1)
εs

q(n−ND)
dE , (5.76)

using Poisson’s Equation. The total sheet charge density in the dipole region
Qdip, using Gauss’s Law, is

Qdip = εs(Em − E1), (5.77)

and hence the capacitance associated with this charge, Cdip, is

Cdip =
∂Qdip

∂Vdip
= εs

[
∂Vdip

∂ (Em − E1)

]−1

. (5.78)

In the limit of large field in this dipole domain region, one can determine a
parameter R for a given D(E) and v(E) characteristic, whose magnitude in the
high field or high voltage limit is given by

R =

∫ Em
E1

v(E) − v1
D(E)

dE

≈
∫ ∞

Es
v(E ) − vs
D(E)

dE , (5.79)

since, at the high field end (Em → ∞), v1 approaches the saturated velocity
vs. At the low field end E → Es = vs/µ0, because a constant mobility may be
assumed.

Under this assumption of a large dipole domain voltage, it can be shown
that the dipole voltage reduces to (see Problem 4)

Vdip =
4
√

2

3
λD

(
µ0

D0R

)1/2

(Em − Es)2. (5.80)
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Figure 5.15: The origin of elements of a quasi-static small-signal MESFET
model (a) including intrinsic and extrinsic elements derived in the quasi-static
approximations. The developed model is shown in (b).

where R is a constant ≈ 5.5 × 107 V.cm−2 for a doping ND = 1017 cm−3 in
GaAs and D0 is the diffusion coefficient in the absence of field. The dipole
capacitance follows as

Cdip =
3ε

8λD

(D0R
2µ0

)1/2
1

Em − Es
. (5.81)

Based on this analysis, we may now infer a quasi-static equivalent circuit
model for the GaAs MESFET, by including in it the features related to current–
voltage dependence, the parasitic resistances and capacitances, and the intrinsic
resistances and capacitances. A model with a broad range of applicability under
quasi-static conditions is shown in Figure 5.15.

The equivalence between the cross-sectional parameters and the equivalent
circuit elements is quite intuitive. The intrinsic device is the part of the device
used in the analysis of channel charge transport and control. Extrinsic elements
are those required to link this intrinsic device to the stimulus we apply to or
sample from the device. Source resistance Rs, drain resistance Rd, and gate
resistance Rg (which is usually negligible due to high metal conductivity but
non-negligible at very short gate-lengths due to small cross-section area) are
examples of extrinsic resistances. Pads used to connect the device are also
extrinsic elements. The intrinsic elements are related to the functioning of
the device whose operational basis is incorporated in our model. Ri is the
resistance that results from conductance effects of the channel region, and it
emphasizes in a lumped element the effects of the source end of the channel.
The gate-to-source capacitance Cgs, the drain-to-gate capacitance Cdg , and the
drain-to-source capacitance Cds have been derived before. The capacitance due
to accumulation and depletion of the charge in the channel Cdip is incorporated
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in the channel path between the drain and the source. The output resistance
Rds is incorporated to account for effects of channel modulation by the drain
bias, and the transconductance gm is incorporated through the current source.
This is a quasi-static equivalent circuit model, and we will show later that it is
useful up to moderate frequencies. Significantly more complex circuits, or even
network parameters, based on a direct small-signal analysis or experimental
measurements at the frequencies of interest, are necessary for modelling effects
at higher frequencies. This model will also be used as a basis in HFETs, the
operation of the devices being similar in basis. The variation in magnitudes of
the elements, may, however, be significantly different because of the nature of
the charge control process itself. The model itself is quite similar and shows
very similar current gain–frequency dependence and other features of interest.

5.5 Sub-Threshold and Substrate Injection Ef-

fects

The bias-dependent high fields result in injection of carriers into the substrate.
This is certainly very strong in the sub-threshold region where most conduction
takes place due to injection of carriers from the passive regions related to access
to the channel. This injection region, with lower carrier densities, also has large
changes in carrier densities. Thus, diffusive effects are large in this bias region
of device operation. Since the injection is over a barrier, it has a characteristic
exponential behavior with the gate bias. This sub-threshold behavior is quite
similar in all FETs irrespective of how they operate in the conducting region.
The reason for this is behavior is that sub-threshold conduction largely takes
place in the substrate and injection and collection occur in the access regions
of the source and the drains. All these regions are quite identical in FETs. We
will discuss sub-threshold current in more detail in Chapter 6.

The injection of carriers into the substrate can also be very strong even
when the channel is conducting. This injection is particularly strong when the
device is in the saturated current mode of operation. The high fields push the
conduction towards the channel–substrate interface and beyond from the doped
region of the device, and the high field region related to formation of the dipole
domain can make this effect stronger. Injection into the substrate occurs along
longer path lengths and further away from the gate. It acts effectively as a large
gate-length parasitic device and hence results in a device that is intrinsically
slower and has poorer operational characteristics, such as transconductance,
output conductance, etc.

Band bending in the substrate is dependent on the characteristics of the
substrate material; the electric fields in the device together with this barrier
result in the injection into the substrate. The problem is therefore complicated
and intrinsically two-dimensional in nature. It also becomes particularly strong
at small gate-lengths. Our discussion in the following section, coupled with the
sub-threshold and injection behavior, addresses this in more detail, together



5.6. SIDEGATING EFFECTS 309

with analytic and one-dimensional models for intuitive understanding and two-
dimensional solutions for rigorous understanding of the injection problem.

5.6 Sidegating Effects

We now look at important problems in the use of compound semiconductor
FETs—HFETs and MESFETs—in circuits. The first of these is the phe-
nomenon of backgating or sidegating—a general term describing a change in
device characteristics caused by changes in applied potentials at other than the
device terminals themselves. An example of this is the effect of logic signals
carried by metal lines in the vicinity of a device. Ideally, any signals other than
those applied to the device should have no effect on the device characteristics
because the substrate, such as that of GaAs, is semi-insulating. Semi-insulating
substrates should be expected to effectively shielded at distances of µm’s away
from the line, resulting in very small effects on the characteristics. Without spe-
cific precautions in the technology, however, it can actually be quite substantial.
We will call the collection of such effects sidegating effects since we are most in-
terested in those resulting from biases on lines, etc., on the same surface. These
effects are also sometimes referred to in the literature as backgating effects.

Sidegating effects can result from causes related to the semiconductor sur-
face as well as the substrate. The direct effect of sidegating on the device occurs
through changes in the depletion region at the substrate–channel interface, but
effects can also occur, if device geometrical and functional considerations al-
low, due to changes in surface–channel interfaces. A change in the depletion
region does not require any significant current flow because significant changes
in device currents can occur with small changes in the depletion region, both
for moderately forward biased and reverse biased substrate–channel interfaces.
These small changes in the depletion region occur with small changes in the
bias voltage across it. Thus, the important cause of sidegating is changes in the
bias voltages across the substrate and surface junctions. These small changes
in potential drops can occur without need for significant conduction, and the
propagation of the voltage via the substrate is a requisite to sidegating. It
should be emphasized that this propagation can also occur via surface effects
because of local changes in trap concentrations in the surface region as well as
at the surface itself. The subject is complicated because such propagation is
two-dimensional in origin, and because this electrostatic voltage propagation in
a semi-insulating substrate depends on the mechanism that leads to the semi-
insulating character, this may, in reality, be position-dependent because of the
processes involved in fabrication of structures.

Our discussion therefore looks at conduction mechanisms in semi-insulat-
ing material first, both without and with the deep traps and shallow levels that
occur in a balance, which result in the semi-insulating character of the substrate.
Most device structures are designed so that there is no source of holes, and hence
unipolar considerations are sufficient in a preliminary analysis. However, hole
effects can occur from small-barrier metals or the presence of p-type regions
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due to thermally-induced conversion of the surface, and hence may need to be
included too. We will do this using only illustrative examples. In all such
structures, where a source of holes may exist, bipolar transport considerations
will apply. Using these, we will study the propagation of voltages in the presence
of traps and relate it to the behavior of currents in devices.

5.6.1 Injection and Conduction Effects

As a preliminary exercise, we will look at conduction currents in one dimension
in semi-insulating substrates for both trap-free and trap-dominated cases. The
former is a case study for a very pure material such as that grown epitaxially,
intrinsic GaAs, e.g., is semi-insulating. The latter is, however, more generally
the case of substrate material. Quite often, here, the semi-insulating character
is achieved by over-compensating the residual shallow acceptors, such as carbon,
by a deep donor, such as a trap level called the EL2 level. EL2 is believed to
be a native defect in GaAs. The semi-insulating material is obtained without
intentionally introducing an impurity in the crystal. Shallow donors and other
deep traps, both acceptor-like and donor-like, may also exist in GaAs, and
these may be employed to obtain, by alternate means, semi-insulating GaAs.
An example is that of obtaining semi-insulating GaAs through compensation of
shallow donors and a deep acceptor such as chromium. In this latter case, the
densities of traps and shallow levels are larger because these are intentionally
introduced into the crystal. The energy band schematic for these various means
of achieving semi-insulating GaAs is shown in Figure 5.16. The EL2 compensa-
tion scheme relies on a dominant shallow acceptor (e.g., C, Be, Mg, Mn) being
present, while the chromium compensation scheme relies on a dominant shallow
donor (e.g., S, Si, Se, Te, Ge) being present. We will discuss our trap model us-
ing a shallow acceptor and deep donor example; its implications can be derived
using symmetry arguments for the shallow donor and deep acceptor case. The
causes of sidegating can vary depending on the behavior of these traps. We will
discuss some of these unusual characteristics that result due to the propagation
of electrostatic potential to the device junctions in a later section. Before that,
we will discuss the behavior of current in the presence of deep donor traps with
larger electron capture rates than hole capture rates. These characteristics are
important, since, at thermal equilibrium, the substrate is semi-insulating, and
the bulk currents that flow under bias are space charge–limited.

First consider a trap-free n+–ν–n+ structure as shown in Figure 5.17 and
its behavior with and without bias; the current transport in this structure is
largely by electrons, because the contacts, with a mid-gap barrier height, can
only provide electrons in significant numbers assuming that avalanching does not
occur in these structures. The current in the structure, carried by the electrons
injected and collected at the contacts, is largely by drift in the constant mobility
regime; we are restricting applied voltages to less than EsL for a sample of length
L. For the 5 µm sample of Figure 5.17, this would mean that for voltages less
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Figure 5.16: An energy-band model for obtaining semi-insulating GaAs using
shallow donor and deep acceptor (Cr) is shown in (a) and using shallow accep-
tors, shallow donors, and deep donor (EL2) is shown in (b).

than 1.5 V, this current is given by

J = qµnE = µεsE
dE
dz
. (5.82)

The field is negligible at z = 0 at the edge of the depletion region of the injecting
contact, and hence

E(z) =

√
2Jz

µεs
, (5.83)

the potential is

V (z) = −
∫ z

0

Edz = −
√

8J

9εsµ
z3/2, (5.84)

and hence the relationship in terms of terminal parameters is

J = −9

8
µεs

V 2

L3
. (5.85)

The current in trap-free material, in the constant mobility drift-dominated re-
gion, follows a direct dependence on the square of the applied voltage and an
inverse dependence on the cube of the sample length. This is sometimes referred
to as the trap-free square law or the Mott-Gurney law. Figure 5.17 shows the
dependence on a wider voltage range than the limit of validity of this law.

Now consider this problem in the presence of shallow acceptors and deep
donors as shown in Figure 5.18. This problem analyzes a geometry similar to
that of Figure 5.17. Poisson’s equation for this problem is
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Figure 5.17: The band edges and electron quasi-Fermi level of a n+–ν–n+ struc-
ture in GaAs with and without bias is shown in (a). (b) shows the associated
electron densities as a function of position. (c) shows the current–voltage char-
acteristics of the structure.
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Figure 5.18: The band edges and electron quasi-Fermi levels of a n+–ν–n+

structure containing shallow acceptors and deep donors (1015 cm−3) in GaAs is
shown in (a) with and without bias. (b) shows the associated trap density that
is charged as a function of bias. (c) shows the current–voltage characteristics of
the structure. This figure should be compared with the previous figure where
no traps were present.
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−d
2V

dz2
= − q

εs

(
n+NA −N+

T

)
. (5.86)

Using a convention similar to that in the HSR recombination problem, with
nT as an electron concentration when the quasi-Fermi level coincides with the
trap level, and with the assumption that the shallow acceptor concentration is
smaller than the deep donor concentration, thus imparting the semi-insulating
character, we obtain

nT
n

=
NC exp [− (Ec −ET ) /kT ]

NC exp [− (Ec − ξn) /kT ]
= exp

(
ET − ξn
kT

)
. (5.87)

Since
N+
T

NT
=

1

1 + exp [− (ET − ξn) /kT ]
, (5.88)

we can write the identities under the Boltzmann approximation of

nT =
nN+

T

NT −N+
T

, (5.89)

and

N+
T =

NTnT
n+ nT

. (5.90)

In thermal equilibrium, for semi-insulating material with low carrier concen-
tration (i.e., neglecting the carrier concentration w.r.t. the acceptor concentra-
tion or nT ), we obtain

n0 = nT
NT −NA
NA + nT

. (5.91)

We can now solve Poisson’s equation, again assuming constant mobility trans-
port and neglecting the nT carrier term w.r.t. the free carrier term,

d2V

dz2
=

q

εs

(
n+NA − nTNT

n

)
. (5.92)

The first term in this equation, which is associated with the free carrier charge,
leads to the square-law behavior that we have already discussed for the trap-
free case. The second term, due to the ionized acceptor charge, gives a constant
term for the definite integral of voltage; this constant is given by

VTFL =
qL2NA

2εs
, (5.93)

a parabolic voltage term similar to that of the p–n junction problem. It corre-
sponds to the contribution of the ionized acceptor charge of density NA through-
out the insulating region. The last term results in

n(z) = − J

qµdV/dz
=

n0

1 − [1 − n0/n(0)] exp (−z/LT )
, (5.94)
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and

V (z) = − J

qn0µ

{
z − LT

(
1 − n0

n(0)

)[
1 − exp

(
− z

LT

)]}
, (5.95)

with n0 ≈ nTNT /NA because NT � NA � nT , and

LT = − Jεs
q2µn0NA

. (5.96)

In these equations, the carrier density at z = 0 is written explicitly to ac-
count for carrier enhancement provided by the contacts beyond the thermal
equilibrium value. The constant potential term due to the ionized acceptors be-
comes important when the other charge terms are either insignificant or closely
neutralize each other. For low bias voltages, i.e., with very small injected car-
rier density (electrons in our example) sufficient number of deep donors ionize to
compensate for the acceptor charge, the injected electron charge, and to support
the applied bias. The ionized donor density is approximately the same as the
acceptor charge density. The rest of the deep donor traps are neutral in much of
the semi-insulating region. At a bias of VTFL, sufficient electron charge density
has been injected in the semi-insulating region to saturate the deep donor levels,
most of which are now in the neutral state, and hence the ionized acceptors pro-
vide the net resultant charge, and the corresponding potential term is parabolic
in length akin to the depletion region of a p–n junction. The significance of this
potential VTFL is that at higher biases the deep donors remain neutral due to
the filling of the trap with electrons, and hence the term trap-filled limit used
as a subscript to this voltage. At higher biases, the material can be treated as
being trap-free, and should follow the square law in voltage. Figure 5.18 demon-
strates the break point that this trap-filling provides, as well as the power law
relationship following that.

We can make further analytic approximations in the analysis of this problem.
For large current densities, i.e., a significant enhancement of carriers at z = 0,
i.e., n0 � n(0) and z/LT � 1, the applied potential VA can be expressed using
the first term of the expansion of the exponential as

VA = V (z = L) = VTFL

(
1 +

2n0qµVTFL
3LTJ

)
, (5.97)

and hence the current density under these approximations is

J = − 2n0qµV
2
TFL

3LT (VTFL − VA)
. (5.98)

This equation is very approximate; however, it serves well to indicate that a
sudden rise in current should be expected at biases corresponding to the trap-
filled limit voltage. In the example of Figure 5.18, the acceptor doping was
1× 1015 cm−3, and sample length 5 µm, corresponding to a VTFL of 20 V. The
exact number is different because of the Debye tailing effect in the low-doped
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region and drift approximation in the calculation. Figure 5.18 also shows that
in addition to this threshold behavior at the trap-filled voltage, a significant
voltage drop can occur in the space charge region and a small voltage does drop
at the other junction. We would therefore expect sidegating effects to occur due
this conduction mechanism.

In deriving these analytic relations, and in analyzing the space charge effect,
we have considered unipolar transport even when traps were present. We have
mentioned that conditions may exist where hole transport may also occur in
addition to electron transport. In such situations, the capture characteristics
of the traps themselves become very important, since they are important to
the residual space charge in the “semi-insulating” region. Consider the charac-
teristics of the EL2 level: since it is a deep donor it has a significant electron
cross-section and a small hole cross-section. The consequence of this can be that
an EL2 trap can be compensated by electrons, and a simultaneous hole conduc-
tion can lead to a very efficient propagation of electrostatic potential, as shown
in Figure 5.19. We will visit this condition in greater detail later. Here, we
emphasize that there is now a negligible drop in the space-charge region. Most
of the voltage drop occurs at the junction, specifically at the reverse biased
junction. If this reverse biased junction corresponded to the channel-substrate
interface of an FET, clearly there would be a significant sidegating effect.

These two mechanisms of conduction and electrostatic propagation are quite
different. The first relies on trap filling at a threshold voltage for the propagation
of electrostatic potential, while the second relies on the significant differences in
the capture cross-sections for the two types of carriers. The second mechanism
propagates electrostatic potential extremely efficiently. It also does not have
a threshold voltage associated with it. Our discussion of the bulk-dominated
behavior of sidegating will be based on these two mechanisms.

5.6.2 Bulk-Dominated Behavior

We reiterate the basis of the semi-insulating character of GaAs substrates: it
occurs because of the presence of compensating acceptors and donors, both
shallow and deep, in the ≈ 1014 to ≈ 1016 cm−3 concentration range. Since the
traps are larger in concentration and are deep, the Fermi level is in the middle
of the semiconductor, and semi-insulating characteristics result because of the
relatively large bandgap of GaAs. However, this technique of obtaining semi-
insulating characteristics relies on compensation by traps that have differing
electron and hole capture cross-sections. In the case of trap-filled conduction
whose one-dimensional and single carrier theory we have looked at, the potential
drop occurs both in the bulk and at the substrate–channel junction. This leads
to one possible means of electrostatic propagation, and should have a threshold
feature associated with it corresponding to the trap-filled voltage. Although
we looked at a single carrier theory for this, it should also occur in ambipolar
conduction, provided the capture cross-sections are similar for both the carriers.
In the case of large differences in capture cross-sections of the carriers, and
provided both carriers are available, propagation of potential can occur due to
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Figure 5.19: (a) shows the energy band diagram under bias for the n+–ν–
n+ example with bipolar transport. The trap is assumed to have significantly
different electron and hole capture cross-section. (b) shows the carrier densities
as a function of position.
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equilibrium between one carrier and the trap—e.g., electrons and donor traps—
with the current being carried by the other carrier.9 Since the current density
is small, this allows most of the electrostatic potential drop to occur at the
substrate–channel interface, hence resulting in efficient sidegating. This is the
second possible mechanism for sidegating.

We discuss the first mechanism and possible means of reducing its impact
first. The effect of a sidegate leading to a perturbation of electric fields in the
vicinity of a device is shown in Figure 5.20. In this example, once sufficient
voltage is applied across the material, so that injected carriers saturate the
donor trap, ambipolar conduction determines the transport across the material.
The required voltage to fill the traps is the trap-filled voltage VTFL. We derived
an expression for this. In general, this is proportional to the nth power of
the spacing between the device and the sidegate where n is generally larger
than 3/2, depending on the characteristics of the trap. Once this trap-filled
voltage is reached, conduction occurs and the depletion width at the channel
substrate interface begins getting modulated, giving rise to a modulation of the
channel current of the FET. The current–voltage characteristics show a decrease
in current with the sidegate bias. A reverse bias is required for this conduction
process to begin. Figure 5.20 shows the onset of substrate conduction and how it
is affected by other potentials applied under different conditions. The two cases
show the signature of a rapid rise in sidegating current when a trap-filled voltage
is reached. The rapid increase in current in this example occurs at the VTFL
and following this rapid rise the current remains larger. It is also following this
rise that the drain current changes rapidly, hence the leakage current through
the substrate and associated potential propagation is directly responsible for
the sidegating effect.

If sidegating were to occur through this particular mechanism, one could en-
vision controlling it by providing a shielding of the sidegate potential and modu-
lation of the leakage current. Such a shielding could be provided by applying an
additional potential between the sidegate and the device using an ohmic contact,
a n+ region, or a metal–semiconductor junction, all of which are reverse biased.
In the ohmic and n+ region–based structures, since there is no voltage drop
across the contact—the current being small—all the voltage drop occurs across
the semi-insulating substrate and the channel–semi-insulating substrate inter-
face. This leads to a decrease in the device channel saturation current due to
the application of this shielding bias itself. The shield itself acts as an additional
sidegate, acting as a remote gate. It reduces the current flowing in the device;
since it now isolates the device from the actual sidegate potential, it also reduces
the effect of the sidegate voltage. In this case, the shield at the channel inter-
face acts just like a remote gate because of the depletion region for this applied
voltage. However, it shields the other sidegate voltage applied through other
metal lines. A more efficient means of providing a shielding for this sidegating
mechanism is through a metal–semiconductor barrier—similar to the metal lines

9For a discussion of this type of propagation, with one specific trap characteristic, see N.
Goto, Y. Ohno, and H. Yano, “Two-Dimensional Numerical Simulation of Sidegating Effect
in GaAs MESFETs,” IEEE Trans. on Electron Devices, ED-37, No. 8, p. 1821, Aug. 1990.
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Figure 5.20: (a) shows a surface plot of the conduction band edge of a MESFET
in the presence of modulation by a sidegate. The source of the device is located
near the origin, followed by the drain and the sidegate. The sidegate has the
large bias applied. (b) shows the current–voltage characteristics (drain-to-source
current (IDS) and sidegate current (ISG)) as a function of applied voltage at
the sidegate. Results due to two different trap densities are shown; these result
in different current–voltage response.
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Figure 5.21: Example of shielding of sidegating effect using a metal–
semiconductor junction. The figure shows a surface plot of the conduction band
edge. The source is at the origin, followed by the drain, the shield electrode, and
the sidegate electrode. The shield is shown to reduce the electrostatic potential
propagation from a sidegate.

that caused this problem in the first place. The metal–semiconductor diode has
a voltage drop across the junction and the semi-insulating regon instead of the
channel-substrate interface region (see Figure 5.21, which should be compared
with Figure 5.20). This capacitive shielding (ohmic and n+ contacts provide
resistive shielding) occurs without the modulation of the channel-substrate in-
terface, and hence the channel current continues to stay large. The use of a
metal–semiconductor diode does not change the device saturation current ap-
preciably, although it shifts the onset of backgating considerably. With an
ohmic shield, the saturation current changes substantially because of its con-
duction and proximity to the channel. Similarly, the doped region shield also
reduces the channel current.

There is another means by which this sidegating mechanism can be reduced
in useful circuits. This employs generation of a high concentration of traps,
such as by ion implanting in the vicinity of the device, since it would raise the
trap-filled voltage. The defects may be native defects, e.g., those created by
implanting ionized hydrogen (i.e. protons), isoelectronic species such as boron,
or inert species such as helium, argon, etc. In addition to native defects, one may
generate extrinsic deep levels by implanting other impurities such as oxygen.
This allows annealing away of the native defects while still maintaining the
efficacy of additional deep levels. Of the species mentioned, oxygen is among
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the heaviest, and is apparently among the most effective because of the nature
of the deep traps generated.

The trap-fill–limited sidegating phenomenon is dependent on the spacing of
the sidegate. None of these techniques is completely effective in suppressing
sidegating at the device-to-device spacings one would like to use in circuits,
which is approximately the pitch of metal lines. This dimension is too small for
the above techniques to be completely effective. In practice, with implantation
isolation, one employs a sufficiently large device-to-device spacing to limit the
worst-case drain current variations to an acceptable range; or, equivalently, the
threshold voltage and other device parameters to an acceptable range. Another
possible solution of this problem is the use of a sufficiently p-doped layer to
isolate devices by junction isolation. However, this also leads to an increase in
capacitance to the substrate and reduces the speed of circuits.

The trap-fill–limited conduction discussed so far depends on the distance
between the sidegating electrode and the device. Quite often, one encounters
instances where sidegating is not dependent on the distance, and a large modu-
lation of the channel can occur over very large distances, such as from the back
of the substrate. Such cases involve sidegating through a mechanism that is
obviously very different, because for substrate thickness, which is usually about
500 µm, the trap-fill–limited voltage would be very high. Here, the likelihood
of the second sidegating mechanism discussed in the beginning of this section is
most likely. In these cases the trap characteristics of large asymmetry between
the capture cross-sections for electrons and holes plays a very important role
and leads to the behavior of an otherwise semi-insulating material acting like a
conductor of the potential, although very little actual current flow occurs. The
reason is that electron and hole concentrations are very low for this conduction,
or for contribution towards band bending. The substrate potential distribution
is related to the charge on the trap, e.g., the deep donor trap due to EL2. This
charge depends on the statistics of occupation and is related to the capture cross-
sections. The deep donor trap has a significantly larger electron cross-section
and a small electron lifetime (≈ 10−9 s), and a small hole capture cross-section
and a large hole lifetime (≈ 2×10−5 s). This leads to local neutralization of the
trap throughout the substrate except at the channel-substrate interface. The
potential drop occurs at the channel-substrate interface, and hence, significant
sidegating that is independent of the distance occurs. Note that in this instance
the semi-insulating material acts as an n–p junction.

An example of this propagation of electrostatic potential is shown in Fig-
ure 5.22 for the deep acceptor shallow donor case. An example of a deep ac-
ceptor is Cr, together with Si or other shallow donor species. So, in this case,
the conduction occurs due to electrons, and the trap compensation is by holes.
This mechanism shows no threshold behavior. Cr, e.g., is one of the deep ac-
ceptors in Cr-doped semi-insulating substrates, where the substrate will behave
like a p-type region. The converse of this occurs with deep-donor EL2 and a
shallow acceptor. Additional extensions of these occur at the surface due to
temperature-induced changes in the deep and shallow level densities, and we
consider an example with EL2 compensated material for this variation.
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Figure 5.22: Surface plot of conduction band edge showing electrostatic poten-
tial propagation for a semi-insulating substrate consisting of a deep acceptor
and shallow donor due to local neutralization of acceptors by holes. The cur-
rent is carried by electrons. The figure, unlike the earlier surface plots, shows
the applied sidegate bias appearing nearly entirely at the channel-substrate in-
terface.
.
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5.6.3 Surface-Dominated Behavior

During the high temperature processing for fabrication of devices, EL2 depletion
can occur at the surface together with an accumulation of acceptors (such as
boron and carbon). This can lead to a very lightly compensated or even a p-type
layer at the surface. If the material is entirely p-type, electrostatic propagation
could occur with a process that is complementary of the previous example. Now,
the holes will carry the current and the electrons will equilibrate with the traps.

A surface can play a role in other ways, too. Due to the Fermi level pinning
at the surface, unoccupied trap concentration can become lower than in the
bulk, leading to a lowering of the trap-filled voltage limit, and hence to the
mechanism that we discussed earlier.

We have emphasized the role of traps and trap statistics in our discussion.
The role of carriers and carrier injection is also important, since the equilibrium
is achieved with carriers available. Avalanching at a large biased junction can,
e.g., cause both electrons and holes to be available. So, results from metal elec-
trodes, even if they are poor sources of holes at low bias, can be different at high
bias. Both these cases will show different sidegating behavior. It should be clear
from our discussion that sidegating can occur by a variety of means in different
materials due to differing compensation and surface conditions brought about by
the traps, the processing, and the geometry. The sidegating thresholds can be
raised by increased trap concentrations in some of the cases where trap-filling is
the dominant mechanism; these traps can be introduced using damage implan-
tation. However, these may have little effect in other cases where electrostatic
propagation occurs because of the trap characteristics and the polarity of the
material. In all these cases, one possible solution is to use sufficiently p-type
doped material so that junction isolation is achieved. This would isolate the
sidegating voltage from the substrate–channel interface by dropping across the
sidegate–substrate junction, but at the expense of an increase in capacitance.

5.7 Piezoelectric Effects

A second problem, unique to compound semiconductors, is related to their ionic
character. This ionic character leads to a piezoelectric nature of the crystal, and
an effect resulting from stress that is termed the piezoelectric effect. The basis
of this effect lies in stress-induced polarization in the crystal because of the ionic
charge and distortion of the lattice. The polarization can be viewed to result in
additional charge because

∇.(εsE + P) = ρ, (5.99)

where P is the polarization vector and ρ is the charge density.
The polarization results in additional charge and hence device parameter

variation because of stress10 in the material. This stress can occur in devices

10The problem of determining stress and its piezoelectric consequences is a subject inti-
mately related to finite element analysis and the theory of elasticity of solids. This section
is written as an introduction without undue reliance on the mathematical details of the de-
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Figure 5.23: Polarization effect in GaAs as a result of compressive stress. The
atoms are shown in one plane viewed from 〈111〉 direction.

because of different expansion coefficients of the materials employed; it may
result from the dielectric films employed on semiconductor surfaces or the met-
allizations of the gate and ohmic contacts which are in proximity to the device
active region.

We first show in a simple way how this polarization occurs in GaAs as
shown schematically in Figure 5.23. This figure is drawn in one plane. When a
compressive stress is applied, the angle between the bonds for the atoms away
from the center section increases and there is a net displacement of the positive
charge to the left and the negative charge to the right. Consequently, there
is now a net dipole moment in the crystal pointing towards the right and the
crystal is polarized. A shear stress, instead of compressive stress, would have
similarly resulted in a net dipole moment pointing upwards. This polarization,
caused by stress, can be determined in general by tensor analysis as

P = d × σ, (5.100)

scription of the problem. The interested reader is referred to S. P. Timoshenko and J. N.
Goodier, Theory of Elasticity, McGraw–Hill, N.Y. (1970); P. M. Asbeck, C. P. Lee, and M. F.
Chang, “Piezoelectric Effects in GaAs FETs and Their Role in Orientation-Dependent Device
Characteristics,” IEEE Trans. on Electron Devices, ED-31, p. 1377, 1984; J. C Ramirez, P.
J. McNally, L. S. Cooper, J. J. Rosenberg, L. B. Freund, and T. N. Jackson, “Development
and Experimental Verification of a Two-Dimensional Numerical Model of Piezoelectrically
Induced Threshold Voltage Shifts in GaAs MESFETs,” IEEE Trans. on Electron Devices,
ED-35, p. 1232 1988; and T. Onodera and H. Nishi, “Theoretical Study of Piezoelectric
Effect on GaAs MESFETs on (100), (011), (111)Ga, and (111)As,” IEEE Trans. on Electron

Devices, ED-36, p. 1580, 1989, for further details.
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Figure 5.24: Orientation nomenclature. We have treated y axis as pointed
towards the substrate. Thus, the surface of GaAs is (010). The figure also
shows the gate orientations in MESFETs.

where d is the piezoelectric tensor and σ is the stress tensor.
There is an additional requirement for this polarization to lead to a cumu-

lative charge effect and hence a macroscopic variation with position. This is
that the crystal be non-centro-symmetric. Non-centro-symmetry leads to the
accumulation of the polarization of the unit cells because the polarizations are
additive and have the same direction. Centro-symmetric crystals do not accu-
mulate the polarization of unit cells since they oppose in alternate unit cells.

Most of the elements of d are zero for compound semiconductors, except the
ijth component for which i 6= j. This results in a polarization vector




Px

Py
Pz



 = d




σxy

1
2 (σxx − σzz)

σyz



 , (5.101)

where d is the magnitude of the equal non-zero components, the x subscript
denotes the 〈101〉 direction, the y subscript denotes the 〈010〉 direction, and the
z subscript denotes the 〈101〉 direction, as shown in Figure 5.24.

Since the strongest effect occurs due to the surface dielectric and metal films
in close vicinity to the active region of the device, we need to assess the effect of
stress in geometries such as those shown in Figure 5.25. The effect from stress
due to the gate and the dielectric films may be present simultaneously. Both
the gate and the dielectric films can be under compressive or tensile stress, and
hence the effect can cause electric parameter (e.g., threshold voltage) change of
both signs. In addition, depending on the orientation of the gate or dielectric
lines, the polarization results are different. Si3N4, one of the dielectric films
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Figure 5.25: Two common sources of piezoelectric effects due to stress generated
by the mismatch of materials. (a) shows the effect occuring from the gate of
a MESFET, while (b) shows that due to dielectric films. Both of these effects
may be present simultaneously.

employed, is usually under compressive stress, while amorphous SiO2, another
dielectric employed, is usually under tensile stress. The resulting polarization
from the dielectric film is therefore of the opposite sign, and hence threshold
voltage variation is opposite. Using the stress tensor we can determine the
polarization. Knowing the polarization,

ρpol = ∇.P, (5.102)

the charge density associated with the polarization can be found for the bulk.
At the surface of the crystal, a surface charge density of Qpol is also induced,

Qpol = n̂.P, (5.103)

where n̂ is the unit vector normal to the surface. For a 〈010〉 surface, this
results in Qpol = Py. As an example, consider the geometry of Figure 5.25.
The maximum stress occurs at the corner of the substrate and the film. For
gates and dielectric films, the two corners are the logical choice for a coordinate
system (r1, r2), where the radial distance is measured from the the points of
highest stress. The resulting stress components can be written as
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π
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(
z1
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, (5.104)
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where t is the film thickness, which has also been assumed to be much smaller
than the substrate, ν is the Poisson ratio, and σf is the stress in the film.
Note that the maximum stress occurs at the substrate–film interface and that it
disappears for large distances into the substrate. This gives for the polarization
charge density in the bulk and at the surface:

ρpol = γbσf t

{
z1y

(
z2
1 − βy2

)

r61
− z2y

(
z2
2 − βy2

)

r62

}

and Qpol = γsσf t

(
1

z1
− 1

z2

)
. (5.105)

The magnitudes, for GaAs, are ν = 0.31, γb = 2d(4 + ν)/π ≈ 390 electron
charges per dyne, β = (2+ν)/(4+ν) = 0.53, and γs = d(1−ν)/π ≈ 40 electron
charges per dyne. An example of the piezoelectric charge distribution for the
〈101〉 oriented device in compressive stress is shown in Figure 5.26.

The piezo-charge gets stronger towards the center of the gate and away
from the surface, and is dependent on the angle. Near the tail of the doping
density, its effect can be substantial because of a reduction in dopant charge.
It can, therefore, significantly disturb the low current behavior of devices, i.e.,
it affects parameters such as threshold voltage and conductance at low biases.
The effect is strongly dependent on the orientation. For a device perpendicular
to this direction, the charge sign will actually reverse, and hence the electric
parameters will change in the opposite direction. This leads to the problem of
changes in threshold voltage in devices that are oriented differently on the same
wafer—a significant design constraint. In the example that we have looked at,
the threshold voltage shifts negative, and the device is more conductive at any
given bias because of the piezoelectric effect. However, devices perpendicular to
this device have a threshold voltage shift that is positive, with the device being
less conductive.

The threshold shift also becomes more pronounced with a decrease in dimen-
sions, i.e., shortening of the gate length. Shortening of the gate-length naturally
leads to an increase in the stress underneath the gate due to stress from dielec-
tric films. This gate-length effect is in addition to the effect of the short-channel
phenomenon. Figure 5.27 shows the threshold variation in an example of GaAs
MESFETs. Note the rapid increase in the shifts in the sub-5 µm range of gate
lengths. Thicker films lead to larger stress, and hence stronger shifts.

While these results are for compressive Si3N4 films, the results for SiO2 are
similar but of the opposite sign because those films are usually tensile in nature.

Interestingly, it turns out that variations due to such stress effects on (101)
oriented substrates with 〈101〉 or 〈101〉 oriented FETs are minimal because of the
symmetry of the piezoelectric charge distribution. It changes sign at the center
of the gate on either side of the plane through the substrate. Figure 5.28 shows
the piezoelectric charge distribution effects due to stress in gate metallurgy
placed on a (101) surface of GaAs. This results in a significantly lower threshold
voltage dependence on the gate-length for this substrate orientation.
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Figure 5.26: Normalized piezoelectric charge distribution due to compressive
Si3N4 film is shown in (a). (b) shows the charge density at the center of gate
and going into the substrate. After P. M. Asbeck, C. P. Lee, and M. F. Chang,
“ Piezoelectric Effects in GaAs FETs and Their Role in Orientation-Dependent
Device Characteristics,” IEEE Trans. on Electron Devices, ED-31, p. 1377,
c©1984 IEEE.
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Figure 5.27: A schematic variation of the threshold voltage shift due to compres-
sive stress in dielectric films as a function of gate-length for GaAs MESFETs.
Note the differing effect on two different orientations.

In GaAs, the (100) family of substrate surfaces is among the most difficult
surfaces to work with, due to the large piezoelectric effect. All other major
orientations show periodic modulation of charge, as in the above example, lead-
ing to smaller threshold voltage shifts. Figure 5.29 shows the gate orientation
dependence of threshold voltage with various crystallographic surfaces due to
stress caused by gate metallurgy. Effects similar to dielectric stress effects occur
due to gate stress. In addition, these stress effects show up as a function of
temperature, even if a device is fabricated to have a negligible stress for any
specific temperature of operation.

5.8 Signal Delay along the Gate

We now return to the modelling of the devices at high frequencies. Our quasi-
static analysis is strictly true only for moderate and low frequencies since it
ignores all dispersive effects and treats the problem as a steady-state problem.
The discussion in this and the following sections is related to understanding the
device operation from a high frequency perspective.

MESFETs are high frequency devices, and we have been analyzing them,
in quasi-static approximation, for phenomena underneath the gate between the
source and the drain. We have assumed the gate to be an equi-potential region
because it is usually made of metal. Both at high frequencies and for unusually
wide gate structures, these approximations break down. A metal line, such
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Figure 5.28: Piezoelectric charge distribution for a 〈101〉 oriented gate on a
(101) substrate. Contours correspond to electron density of 1015, 1016, and
1017 cm−3. After T. Onodera and H. Nishi, “Theoretical Study of Piezoelectric
Effect on GaAs MESFETs on (100), (011), (111)Ga, and (111)As,” IEEE Trans.

on Electron Devices, ED-36, p. 1580, c©1989 IEEE.
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Figure 5.29: Threshold voltage shift as a function of gate orientation on various
GaAs substrate surfaces. The angles are w.r.t. 〈101〉 orientation. The open cir-
cles are for (010) surface, the squares are for (101) surface, the normal triangles
are for (111) Ga surface, and the inverted triangles are for 111) As surface. The
periodic changes in the threshold voltage are the largest for the (010) substrate.
After T. Onodera and H. Nishi, “Theoretical Study of Piezoelectric Effect on
GaAs MESFETs on (100), (011), (111)Ga, and (111)As,” IEEE Trans. on

Electron Devices, ED-36, p. 1580, c©1989 IEEE.
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Figure 5.30: A schematic for transmission of signal along the gate for a long
gate-width MESFET together with lumped model representation of sections.

as the gate on a substrate, is actually a distributed transmission line in the
frequency range of interest to us (see Figure 5.30). Thus, a signal fed into the
gate is delayed and decreases in amplitude as it transmits further down the gate.
Depending on the termination at the end of this gate line, reflected waves may
also be set up. We do not wish, here, to describe the complexity of this problem.
But we do wish to show the limits of validity of frequency analysis due to the
distributed nature of the problem. As Figure 5.30 shows, the gate itself may be
modelled as a transmission line network; the per unit length inductance Lg and
capacitance Cg are related through the gate’s characteristic impedence Zg. Both
the capacitance and the impedence are bias-dependent. If the resistive drops
(ignored in the above) were also important, the amplitude of the signal would
change during the transmission along the gate. The characteristic impedence
Zg is related by

Zg =

(Lg
Cg

)1/2

. (5.106)

The phase delay in the drain current as a result of this propagation, assuming
that the drain electrode, of the same form as the gate, is fed from the opposite
end, is:

θg = ω(LgCg)1/2W. (5.107)

Problem 7 analyzes an approximate way of understanding the limits that
this poses to the frequency of operation. Since transmission-line effects are
dominant at long gate widths, terminations at the end of the gate and drain
lines can also have a significant impact on the predicted results, and a clever use
of such a termination together with appropriate modification of the gate and
drain transmission lines can be used to advantage in getting specific frequency-
dependent gain characteristics.
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5.9 Small-Signal High Frequency Models

We have estimated most of the basic elements that characterize the operation
of the transistor. This has been based on a quasi-static formulation, since
we did not employ the small-signal transport equations. Small-signal analysis
based on solution of the static and small-signal transport equations is a diffi-
cult proposition because the practical MESFET problem is inherently a two-
dimensional problem. Solutions based on a one-dimensional approximation of a
two-dimensional or three-dimensional problem are inherently more inaccurate.
An analogy would be that our analysis using gradual channel approximation
was relatively accurate for the static device characteristics, i.e., we could make
predictions of the static currents that would flow under static bias conditions.
Our predictions from this quasi-static analysis of the perturbational quantities
such as output conductance were relatively more inaccurate. A first-order model
should not be expected to predict a second-order parameter. Even if we could
make an accurate quasi-static second-order model that included two-dimensional
effects, etc., and applied perturbation analysis to it, it would be valid only under
quasi-static conditions, i.e., at frequencies quite lower than the limit frequen-
cies of the device. In devices that are dominated by time constants resulting
from charging of capacitances that are lumped in nature, such as the extrinsic
elements, the quasi-static approximation is generally a good one even for pre-
dicting these limit frequencies. This is so because the lumped representations of
these resistors and capacitors still remains valid, and hence they continue single
pole roll-off beyond the frequencies where the validity of quasi-static models is
questionable. Should lumped representation be questionable, such as for very
wide gates where there is a phase delay effect resulting from transmission of the
signal down the gate, the modelling approach becomes entirely invalid.

Our discussion here points out that a true small-signal representation can
thus be derived only from small-signal equations, which would include disper-
sive, i.e., frequency-dependent signal transmission effects. For a two-dimensional
geometry this discussion points to using network parameters as a small-signal
model for the device. We may derive equivalent circuits from these network
parameters by physical insight, however, the equivalent circuits are approxima-
tions that represent the modelled or measured small-signal characteristics of
the device. The problems related to equivalent circuit representation based on
physical insight of the storage and transport processes occurring in a device
relate to issues of charge partitioning. Associating a capacitance between two
terminals is to make use of linear independence of charge partitioning, which is
not always valid in a multi-terminal device. Thus, equivalent circuits are not
unique. However, equivalent circuits are very useful because their valid use in
a range of operating conditions allows ease in the designing of circuits, and, if
physically correct, an insight into the operation of the device.

While we have made these comments for frequency domain characteristics,
they are equally valid for time domain characteristics. The charge partitioning
problem arises in time domain as a charge non-conservation problem. Since ca-
pacitances are represented between nodes to model the charges, and the charge
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Figure 5.31: Cross-section of an incremental part of the gate-controlled channel
region of the MESFET in gradual channel approximation. The capacitor and
resistor model the effect of the incremental section.

itself is partitioned based on physical insight from specific regions of the device
at specific bias points, the calculated charges are path-dependent in a multi-
terminal device. This is to say that while charge is the unique variable, use
of capacitance to represent its effect results in a non-unique (although still rel-
atively accurate) solution for a change from one state to another state. The
capacitances are path dependent, and hence non-unique solutions may result.

The coupling of the small-signal response to an equivalent circuit with a
range of validity is valuable, if physical in basis, and if the limitations are clearly
understood. We will elaborate on an approach to the small-signal analysis of the
MESFET by considering the small-signal transport equation—the transmission
line equation in gradual channel approximation, and at the end of this section we
will relate this to the equivalent circuit referred to in our quasi-static analysis.
The network response of the two port network with the gate as the input port
and the drain as the output port is

[
Ĩg
Ĩd

]
=

[
ygg ygd
ydg ydd

]
×
[
Ṽg
Ṽd

]
, (5.108)

where all the small-signal currents flow into the port.
Figure 5.31 shows a model of the incremental cross-section, where we as-

sume that gradual channel approximation and the constant mobility assump-
tion holds. We will make several simplifying assumptions, some already com-
mented on, regarding this analysis, which is a high frequency equivalent of the
quasi-static analysis. It employs equations that are similar in basis11 but with

11The interested reader may wish to refer to J. A. Geurst, “Calculation of High-Frequency
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frequency-dependent variables. We will derive it for the bias condition under
which the channel current just saturates as a result of carrier velocity satura-
tion. This occurs at the field Es. So, the electric field becomes Es at the position
z = L. We can thus employ the low field constant mobility model over the entire
channel and derive an equivalent circuit at the channel current saturation point,
giving a solution that we may apply in the current saturation region within a
limited approximation.

In the low field model, the drain current of one half of the symmetric struc-
ture is given as

I = qnµaW

(
1 − h(z)

a

)
∂V

∂z
, (5.109)

where h(z) is the depletion width at position z along the channel and only drift
current is considered. This equation is also written as

I = qnµaW

[
1 −

( V
V00

)1/2
]
∂V
∂z
. (5.110)

Both V and I are time-dependent quantities in the above if a time-dependent
signal is applied, V is given by

V = ψj0 + Vg − V, (5.111)

where both Vg and V are time-dependent terms. This notation is the same as
employed in the discussion of the PHS model; V00 is the potential associated
with full channel depletion in gradual channel approximation. In order to bring
the equation to a simple form, it can be written in terms of normalized quantities
defined as follows:

ξ =
z

L
,

θ =
t

t0
,

χ =
V
V00

,

and ι =
I

Inorm
, (5.112)

where

t0 =
εs
qnµ

(
L

a

)2

and Inorm =
aqµnV00

3L
. (5.113)

Characteristics of Field-Effect Devices,” Solid-State Electronics, V8, p. 563, 1965 from where
we have adopted details of this analysis.
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Using a transformation κ = 2
√
χ− 1, where

χ =
ψj0 + Vg − V

V0
, (5.114)

one can rewrite the current equation as

ι =
3

4

(
1 − κ2

) dκ
dξ

=
dη

dξ
, (5.115)

where

η (κ) =
3

4

(
κ− κ3

3

)
. (5.116)

The time-dependent continuity equation, assuming no generation and recombi-
nation since there is negligible minority carrier density, is

∂I

∂z
= −∂ρ

∂t
=

∂

∂t

[
qNDaW

( V
V00

)1/2
]
. (5.117)

This may be written as

∂

∂ξ

[(
1 − κ2

) ∂κ
∂ξ

]
=

4

3

∂κ

∂θ
. (5.118)

The use of superposition of steady-state and time-dependent parts for the
normalized variables κ and ι,

κ (ξ, θ) = κ (ξ) + κ̃ (ξ, θ)

and ι (ξ, θ) = ι (ξ) + ι̃ (ξ, θ) , (5.119)

leads to the steady-state solution of

ι = η (κd) − η (κs) , (5.120)

with

ξ =
η (κ) − η (κs)

η (κd) − η (κs)
(5.121)

in terms of the magnitude of κ at the source and the drain end. The transcon-
ductance for the steady-state term, using this, is

gm =
qµNDaW

L
(κd − κs) , (5.122)

which agrees with the quasi-static transconductance derived before.
The time-dependent part of the equation is

∂

∂κ

(
1

1 − κ2

∂υ̃

∂κ

)
=

3

4ι2
∂υ̃

∂θ
, (5.123)
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where

υ̃ =
∂η (κ)

∂κ
κ̃,

and ι̃ =
4

3

ι

1 − κ2

∂υ̃

∂κ
. (5.124)

Using

υ̃ = υ̂ exp (jωt) = υ̂ exp (jω1θ)

and ι̃ = ι̂ exp (jωt) + ι̂ exp (jω1θ) , (5.125)

where ω1 = ωt0, and introducing additional variables α and ν through

z = ακ where α =

(
3ω1

ι2

)1/4

exp

(
j
3π

8

)
, (5.126)

and

ν =
α2

4
− 1

2
, (5.127)

we can write
d

dz

(
1

ν + 1
2 − 1

4z
2

dυ̂

dz

)
+ υ̂ = 0. (5.128)

This is a simplified form of the control equation for small signals in the
channel of the MESFET using normalized parameters. This equation is similar
to Weber’s equation, which is generally written in the form

d2w

dz2
+

(
ν +

1

2
− 1

4
z2

)
w = 0. (5.129)

Our control equation can be solved numerically, using the known solutions of
Weber’s equation, following further compaction. Approximate solutions can also
be obtained for it using Taylor series expansion (see Problem 8). This Taylor
series expansion technique could also have been applied in the original form of
the time-dependent current continuity equation.

The major reason for using this technique is to show that if desired, complete
solutions of the differential equations involved in one-dimensional approxima-
tions of time-dependent behavior can be found.12 Intuitive understanding of
the behavior, however, is lost because of the complexity of the form of these
solutions. Thus, approaches involving iterative procedures to evolve series ex-
pansion solutions can be particularly rewarding. We will address the latter tech-
niques later in this section. First, we establish a compact form of the solution
to y-parameters based on the Weber-like equation. Let w1 and w2 be the two

12We will employ a similar procedure to show small-signal equations and their solutions in
specific instances for HFETs in Chapter 6 and HBTs in Chapter 7.
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independent solutions of Weber’s equation13 (parabolic cylinder functions are
particular solutions of Weber’s equation). We can now write the y-parameters
from the solution of these equations. The common-gate parameters are easier
to write because the channel transport equation is written from source end to
drain end. These can be subsequently changed to common-source parameters
using the network parameter transformations described in Appendix A. The
evaluation of different y-parameters and their subsequent transformation to the
more desired form is a technique of convenience that will be applied to bipolar
transistors also. In the common-gate mode these y-parameters, with overdots
representing derivatives, are

yss = gm
α3ι

6∆
(1 − κs)

∣∣∣∣
w1 (ακs) w2 (ακs)
ẇ1 (ακd) ẇ2 (ακd)

∣∣∣∣ ,

ysd = −gm
α3ι

6∆
(1 − κd)

∣∣∣∣
w1 w2

ẇ1 ẇ2

∣∣∣∣ ,

yds = −gm
α3ι

6∆
(1 − κs)

∣∣∣∣
w1 w2

ẇ1 ẇ2

∣∣∣∣ ,

and ydd = gm
α3ι

6∆
(1 − κd)

∣∣∣∣
w1 (ακd) w2 (ακd)
ẇ1 (ακs) ẇ2 (ακs)

∣∣∣∣ , (5.130)

where ∆ is the determinant

∆ =

∣∣∣∣
ẇ1 (ακs) ẇ2 (ακs)
ẇ1 (ακd) ẇ2 (ακd)

∣∣∣∣ . (5.131)

The common-source y-parameters now follow using the matrix transformations
described in Appendix A. This is the rigorous method of determining the y-
parameters within the gradual channel approximation and using the drift equa-
tion. It is unwieldy, so attempts have been made to describe this by either
breaking the channel in various cross-sections or by making a Taylor series ex-
pansion as part of the solution to the current continuity equation. The accuracy
of the solution from series expansion depends, then, on the number of terms of
expansion considered.

As an example of this technique, we will consider Hauser’s general treat-
ment14 for small-signal modelling of field effect devices. This analysis is appli-
cable to the MESFET as well as the HFET with some approximations. Here,
we will describe it and use it; the use in the HFET case will be left as an exercise
where we should obtain similar results as we will in the case of our small-signal
treatment in Chapter 6.

13See, e.g., M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables, U.S. Government Printing Office, Washington,
D.C., p. 358 (1964) for a summary of Weber’s equation and Weber functions. Weber functions
are Bessel functions of the second kind.

14J. R. Hauser, “Small-Signal Properties of Field-Effect Devices,” IEEE Trans. on Electron

Devices, ED-12, p. 605, 1965. An extension of this into the saturated current region of
operation is suggested in P. L. Hower and N. G. Bechtel, “Current Saturation and Small-
Signal Characteristics of GaAs Field-Effect Transistors,” IEEE Trans. on Electron Devices,
ED-20, No. 3, p. 213, 1973.
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Our equations for transmission of the signal along the channel will be writ-
ten as a general model composed of conductances and capacitances. The con-
ductance, at any cross-section, where there exists a channel potential V , is
influenced by the applied gate potential and the channel potential. Gradual
channel approximation allows us to write this as the difference between the two
potentials, i.e., the conductance G per unit length is

G (V, Vg, z) = G (V − Vg , z) . (5.132)

Similarly the capacitance of any control section C per unit length is given by

C (V, Vg, z) = C (V − Vg , z) . (5.133)

The corresponding transmission-line equations are

∂I

∂z
+
C

L

∂ (V − Vg)

∂t
= 0

and
∂ (V − Vg)

∂z
+

1

LG
I = 0. (5.134)

In their integral forms, these equations are

∫ L

z

C

L

∂ (V − Vg)

∂t
dz

′

= −
∫
dI = − (−Id − I) = Id + I

and

∫ Vd−Vg

V−Vg

Gd (V − Vg) = − 1

L

∫ L

z

Idz
′

, (5.135)

where we use the drain as a reference and the convention for the drain current
is into the drain port. A similar set of integral equations with the source as a
reference is

∫ z

0

C

L

∂ (V − Vg)

∂t
dz

′

= −
∫
dI = − (I − Is) = −I + Is

and

∫ V−Vg

Vs−Vg

Gd (V − Vg) =
1

L

∫ z

0

Idz
′

. (5.136)

We can derive the static and sinusoidal components of these equations in
order to relate the two using the substitution for currents and voltages. First
we use this method for the drain reference equations.

I = I + Ĩ = I + Î exp (jωt)

and V = V + Ṽ = V + V̂ exp (jωt) .
(5.137)

For the drain reference set of integral equations, we obtain

I + Id = 0

and

∫ V d

V

GdV = − 1

L

∫ L

z

Idz
′

(5.138)
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for the static equations with all time dependences set to zero, and

Î + Îd =
jω

L

∫ L

z

C
(
V̂ − V̂g

)
dz

′

,

and
(
V̂d − V̂g

)
Gd −

(
V̂ − V̂g

)
G = − 1

L

∫ L

z

Îdz
′

(5.139)

for the sinusoidal equations. Combining the static equations,

Id

(
1 − z

L

)
=

∫ V d

V

GdV, (5.140)

which lets us write the position z as

z = L

(
1 − 1

Id

∫ V d

V

GdV
′

)
. (5.141)

Evaluating at source end (z = 0), we obtain

Id =

∫ V d

V s

GdV, (5.142)

and a transformation between position and potential may be obtained by using

dz = − L

Id
GdV, (5.143)

where we have employed the results of the static integral equations. Similarly,
combining the sinusoidal equations,

(
V̂d − V̂g

)
Gd −

(
V̂ − V̂g

)
G =

− 1

L

∫ L

z

{
−Îd +

jω

L

∫ L

z′

[(
V̂ − V̂g

)
C
]
dz

′′

}
dz

′

, (5.144)

or
(
V̂ − V̂g

)
G =

(
V̂d − V̂g

)
Gd − Îd

(
1 − z

L

)
+

jω

L2

∫ L

z

{∫ L

z′

[(
V̂ − V̂g

)
C
]
dz

′′

}
dz

′

. (5.145)

We transform position to potential as a variable using Equations 5.143 and
5.141, giving

(
V̂ − V̂g

)
G =

(
V̂d − V̂g

)
Gd −

Îd

Id

∫ V d

V

GdV
′

+
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jω

L2

∫ V d

V

{∫ V

V ′

[(
V̂ − V̂g

)
C
GL

Id

]
dV

′′ LG

Id

}
dV

′

.

(5.146)

We write the sinusoidal potential at any position in the channel as

(
V̂ − V̂g

)
=

(
V̂d − V̂g

) Gd
G

− Îd

IdG

∫ V d

V

GdV
′

+

jω
1

I
2

dG

∫ V d

V

G

[∫ V

V ′

(
V̂ − V̂g

)
GCdV

′′

]
dV

′

, (5.147)

which has the form (
V̂ − V̂g

)
= Θ + jωΩ, (5.148)

where Θ is a function of the conductances and Ω is the operator on
(
V̂ − V̂g

)
.

Our definitions of these are

Θ (V ) =
(
V̂d − V̂g

) Gd
G

− Îd

IdG

∫ Vd

V

GdV
′

(5.149)

and

Ω [Θ (V )] =
1

GI
2

d

∫ Vd

V

G

[∫ Vd

V ′

Θ
(
V

′′

)
GCdV

′′

]
dV

′

. (5.150)

The equation has been recast in this form in order to allow an iterative series
expansion of this integral equation as

(
V̂ − V̂g

)
=
[
1 + jωΩ + (jωΩ)

2
+ · · ·

]
Θ. (5.151)

Increasingly accurate approximations may be obtained using an increasing num-
ber of terms in the expansion. These terms are multiple integrals that may be
evaluated, at least numerically. Evaluating this expansion at the source end
results in

(
V̂s − V̂g

)
=

(
V̂d − V̂g

) Gd
Gs

[
1 +

jω

jω11
+

(
jω

ω12

)2

+ · · ·
]

−Îd
[
1 +

jω

jω01
+

(
jω

ω02

)2

+ · · ·
]
, (5.152)

where ω11, ω12, . . . and ω01, ω02, . . . are characteristic frequencies that may be
evaluated from the static equations. Following the above, these characteristic
frequencies can be derived as

(
1

ω1n

)n
= O1n

(
V s
)
, (5.153)
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with
O10 (V ) = 1, (5.154)

and

O1(n+1) (V ) =
1

I
2

d

∫ V d

V

G

[∫ Vd

V
′

CO1n

(
V

′

)
dV

′′

]
dV

′

, (5.155)

and similarly, (
1

ω0n

)n
= O0n

(
V s
)
, (5.156)

with

O00 (V ) =
1

Id

∫ Vd

V

GdV
′

, (5.157)

and

O0(n+1) (V ) =
1

I
2
d

∫ V d

V

G

[∫ Vd

V ′

CO0n

(
V

′′

)
dV

′′

]
dV

′

. (5.158)

The small-signal drain current phasor may now be written as:

Îd = −
(
V̂s − V̂g

)
Gs

1

1 + (jω/ω01) + (jω/ω02)
2

+ · · ·
+

(
V̂d − V̂g

)
Gd

1 + (jω/ω11) + (jω/ω12)
2 + · · ·

1 + (jω/ω01) + (jω/ω02)
2

+ · · ·
. (5.159)

This establishes the forward and output admittance parameters for the common-
gate configuration. In order to establish the other two, we need to determine

the small-signal source current phasor as a linear function of
(
V̂s − V̂g

)
and

(
V̂d − V̂g

)
. We may do that in the same way as the derivation of the small-

signal drain current phasor. We derived the drain current using Equation 5.135.
Similarly, using Equation 5.136, we can derive the series expansion for small-
signal source phasor. This problem is left as an exercise in this chapter (see
Problem 9). The small-signal source current phasor is given by

Îs =
(
V̂s − V̂g

)
Gs

1 + (jω/ω21) + (jω/ω22)
2

+ · · ·
1 +

(
jω/ω

′

01

)
+
(
jω/ω

′
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)2
+ · · ·

−
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)
Gd

1
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(
jω/ω

′
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(
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′
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)2
+ · · ·

. (5.160)

Here, as in the small-signal drain current phasor case,

(
1

ω2n

)n
= O2n

(
V d
)
, (5.161)

with
O′

20 (V ) = 1, (5.162)



5.9 Small-Signal High Frequency Analysis 343

and

O2(n+1) (V ) =
1

I
2
d

∫ V

V s

G

[∫ V
′

Vs

CO2n

(
V

′′

)
dV

′′

]
dV

′

, (5.163)

and similarly (
1

ω
′

0n

)n
= O0n

(
V d
)
, (5.164)

with

O′

00 (V ) =
1

Id

∫ V

V s

GdV
′

, (5.165)

and

O′

0(n+1) (V ) =
1

I
2
d

∫ V

V s
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′
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CO′
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(
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′′
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′′

]
dV

′

. (5.166)

Thus, the common-gate admittance parameters may be written as

ygss = Gs
1 + (jω/ω21) + (jω/ω22)

2
+ · · ·

1 +
(
jω/ω

′

01

)
+
(
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′
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)2
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,

ygsd = −Gd
1

1 +
(
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′
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)
+
(
jω/ω

′

02

)2
+ · · ·

,

ygds = −Gs
1

1 + (jω/ω01) + (jω/ω02)
2 + · · ·

,

and ygdd = Gd
1 + (jω/ω11) + (jω/ω12)

2
+ · · ·

1 + (jω/ω01) + (jω/ω02)
2

+ · · ·
. (5.167)

The common-source y-parameters follow from Appendix A using matrix
transformation. Obviously, this is an unwieldy method, with any intuitive inter-
pretation lost. We may, however, obtain some understanding of the significance
of the small-signal high frequency effects by looking at the small-signal behavior
in an intermediate frequency range where only the first-order frequency term is
important. The y-parameters for common-gate reduce to

ygss = Gs
1 + (jω/ω21)

1 + jω/ω
′

01

,

ygsd = −Gd
1

1 + jω/ω
′

01

,

ygds = −Gs
1

1 + jω/ω01
,

and ygdd = Gd
1 + jω/ω11

1 + jω/ω01
. (5.168)

The above equations show a common pole at the characteristic frequency
ω01, ω

′

01, which are actually the same. This can be shown by manipulation of



344 5 Metal–Semiconductor Field Effect Transistors

Figure 5.32: A common-gate equivalent circuit for intermediate frequencies de-
rived as an approximation from the small-signal solution.

the corresponding integrals (see Problem 10). We will refer to this characteristic
frequency as ω0; it is given by:

1

ω0
=

1

I
2

d

∫ V d

V s

G

[∫ Vd

V ′

C

(
1

Id

∫ Vd

V ′′

GdV
′′′

)
dV

′′

]
dV

′

(5.169)

in terms of the quasi-static parameters.
These y-parameters serve as an ideal basis for deriving equivalent circuits and

establishing the quasi-static equivalent circuit (and its variations) derived earlier
on a rational basis. The y-parameters that we have derived, and their truncated
first-order forms above, are representations of resistances, capacitances, and
current sources. An equivalent circuit, modelling the truncated form of the
admittance parameters for common-gate configuration, is shown in Figure 5.32.
The most common use of the devices is in common-source configuration, where
we may write the y-parameters following Appendix A as (see Problem 11)

ysgg = Gs
jω/ω21

1 + jω/ω0
+Gd

jω/ω11

1 + jω/ω0
,

ysgd = −Gd
jω/ω11

1 + jω/ω0
,

ysdg = Gs
1

1 + jω/ω0
−Gd

1 + jω/ω11

1 + jω/ω0
,

and ysdd = Gd
1 + jω/ω11

1 + jω/ω0
. (5.170)

An equivalent circuit corresponding to this is shown in Figure 5.33. The simi-
larity between these equivalent circuits and the quasi-static form derived earlier
is clear. The current sources have a single pole repsponse in the common-source
form. This serves as a basis to explain the use of an exponential delay factor in
the current source of exp (−jωτ ) in many common forms of equivalent circuit.
The cause of this is the characteristic frequency ω0, which models the signal
delay in the channel transmission-line.
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Figure 5.33: An equivalent circuit, valid at intermediate frequencies, following
the y-parameter derivation, in the common-source mode.

Our theory, so far, has actually ignored current saturation. We wish to
include it as an extension of our analysis. First we will show how the saturated
velocity forms a basis for this exponential phase-delay term. Consider a device
in which carriers are moving at a constant velocity v. The source-to-drain
current per unit width flowing through this device, using the source-end channel
opening, is

J = qND

{
a −

[
2εs (ψj0 − V )

qND

]1/2}
v, (5.171)

where a is the epitaxial thickness, ψj0 is the built-in potential of the barrier,
and v is the velocity. No current flows through the space charge region because
it is assumed depleted. Similarly, the charge per unit length in any incremental
cross-section is

∆Q = qND

[
2εs (ψj0 − V )

qND

]1/2
∆z. (5.172)

The continuity equation requires that in the incremental cross-section of length
∆z,

∂ (∆Q/∆z)
∂t

=
∂I

∂z
, (5.173)

leading to, for the time-varying terms,

−qND
1

2

(
2εs
qND

)1/2
1

(ψj0 − V )
1/2

∂Ṽ

∂t̃
= qND

1

2

(
2εs
qND

)1/2

×

1

(ψj0 − V )
1/2

∂Ṽ

∂z
v,

(5.174)

i.e.,
∂Ṽ

∂t
= −v∂Ṽ

∂z
. (5.175)
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For a sinusoidal signal Ṽ = V̂ exp (−jωt), the solution as a function of position
is

V̂ = V̂0 exp
(
−jω z

v

)
, (5.176)

where V̂0 is independent of position. Corresponding to this, we may write the
small-signal voltage phasor as

Ṽ = Ṽ0 exp
(
−jω z

v

)
, (5.177)

and the current phasor, by perturbative expansion, as

Ĩ = qND

[
2εs
(
ψj0 − V

)

qND

]1/2
Ṽ0 exp (−jωz/v)

2
(
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)

=
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qεsND

2
(
ψj0 − V

)
]1/2

Ṽ0 exp
(
−jω z

v

)
, (5.178)

which shows a phase delay of z/v from the origin to the position z. Thus,
the phase delay in the current generator, commonly implemented in the small-
signal models, arises from the transmission-line delay associated with carrier
transport.

We now derive some of these frequencies for the case of the gradual channel
constant mobility model of MESFETs, to note how they differ from quasi-static
models. Our derivation is for the intermediate frequencies with only first-order
frequency terms being considered. The quasi-static drain current is

Id =

∫ V d

V s

GdV, (5.179)

where

G = G0

[
1 −

(
V − V g
Vp

)1/2
]
, (5.180)

where
G0 = qNDµa (5.181)

is the open channel conductance and Vp is the threshold voltage of the device.
The capacitance per unit length is given by

C = C0

(
ψj0

V − V g + ψj0

)1/2

, (5.182)

where C0 is the capacitance per unit length at thermal equilibrium. The drain
current, using this, is given by

Id = G0Vp

(
ξd − ξs −

2

3
ξd

3/2 +
2

3
ξs

3/2

)
, (5.183)
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where the ξ’s are normalized parameters,

ξs =
V s − V g − ψj0

Vp

and ξd =
V d − V g − ψj0

Vp
. (5.184)

The characteristic frequency ω0 is related, following integrations, as (see
Problem 12)
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(5.185)

Similarly, the two other characteristic frequencies may be derived as
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and
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In the region where drain voltage is very small, the MESFET behaves as a
linear resistor ξd ≈ ξs and the characteristic frequencies tend to the limit

1
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,

1

ω11
,

1

ω21
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(
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∝ εs
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(
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. (5.188)

These frequencies are related to the dielectric relaxation frequency (∝ σ/εs)
together with a proportionality constant related to the device geometry. This
is intuitively expected since majority carrier devices have ultimate limitations
placed by this frequency. At the onset of current saturation, near which devices
are usually operated, these frequencies are somewhat more compact and are

1
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27

35
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,
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1
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We have thus evaluated the elements of the equivalent circuit model because
all the parameters have been determined. They are not precisely their values of
the quasi-static model because of the dispersion effects at the higher frequencies.
The method derived here, in terms of conductances, etc., is similarly valid for
the case of HFETs in the same general form. Since the capacitance per unit
length and conductance are also determinable as here, a similar model follows
for HFETs. While our discussion of small-signal behavior of HFETs will follow
an alternate approach mainly because of its simplicity, we will leave this as an
exercise for the curious.

This method of analysis is general, however, the steady-state equations that
we employed are strictly valid only for biases below the point of current satura-
tion. Let us now consider how this may be extended to include effects of current
saturation. Our PHS model incorporated both a low field constant mobility and
a saturated velocity transport behavior. The saturation of the current occurred
when the field reached a critical electric field of Es in the channel. So the current
saturation occurred when the electric field reached Es, and this is quite a good
approximation of the behavior of devices when negative differential velocity ef-
fects do not dominate. This condition for saturation allowed us to write the
length L1 and the current as

L1 = L
1

α(1 − ξp)

[
ξp

2 − ξs
2 − 2

3

(
ξp

3 − ξs
3
)]
, (5.190)

ID =
aqµ0NDWV00

L1

[
ξp

2 − ξs
2 − 2

3

(
ξp

3 − ξs
3
)]
. (5.191)

In both these equations, ξ is the channel opening factor. This allows us to write
the current relationship as

Idsat = G0Vpα
(
1 − ξ

1/2
sat

)
, (5.192)

where α as defined earlier is the ratio EsL/V00—the saturation index. When
higher voltage than this is applied, the electric gate length shrinks. We will
ignore that effect here and consider only the consequences of current saturation.
Thus, the current can be obtained by the simultaneous satisfaction of the above
two equations, which gives us the value of ξsat. Under these assumptions, the
saturation current is now a function only of the potential at the source end of
the channel, i.e., of the function ξs. Our earlier general small-signal analysis can
now be employed, with the modifications coming about due to the saturation
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of velocity at Es. Note, we do not include the effects of gate-length shrinkage,
i.e., L2 of our earlier quasi-static analysis. The drain current change due to a
change in the normalized saturation potential using the above equation yields

Îd = − G0α

2ξs
1/2

(
V̂d − V̂g

)
. (5.193)

Substituting this in the first order current equations yields the related y-
parameters, e.g.,

Îg = V̂gGs

[
jω/ω21

1 + jω/ω0
+
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1 + γ
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, (5.194)

and
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and
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1/2
s
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) . (5.197)

In the drain current expression, the ratio term of the source end conduc-
tance is the intrinsic quasi-static value of the transconductance. The saturation
brings together with it modifications through the factors ξsat, α, and γ in the
expressions above. The frequency ωγ is the modification to the effect of ω0 due
to saturation. It may be seen as the 3 dB drop-off frequency for the transfer
admittance in the common-source configuration. It occurs before ω0. Since this
analysis is for a one pole approximation, we can actually drop the second-order
term that would come about if ω0 were also included together with ωγ in the
expression for the gate current phasor above.

We can see some of the modifications that occur as a result of these changes
due to incorporation of saturation effects. The input admittance, from the
expression for the drain current phasor, can be approximated by a capacitance
and series resistance as

Cgs = Gs

(
1

ω21
+

γ

1 + γ

1

ω11

)
, (5.198)

and

Ri =
1

ωγCgs
. (5.199)

This is the basis for the intrinsic resistance introduced in our quasi-static equiv-
alent circuit.
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5.10 Limit Frequencies

Since the objective of a large body of compound semiconductor devices is to
operate at high frequencies or with high switching speeds, it is pertinent to
relate much of the discussion on small-signal analysis, quasi-static modelling,
and equivalent circuit models with these applications. Network parameters,
if known as a function of frequencies, characterize the expected behavior of a
circuit incorporating the device, since any mismatches in impedances at input
and output, and any feedback effects, can be accounted in the calculation. Thus,
any circuit’s performance can be predicted. In order to understand the ability
of the device to operate and function at high frequencies, it is naturally useful
to look for characteristic frequencies that are not dependent on specific circuits,
and that take an idealized approach of the best possible condition for operation.

Since power gain is one natural area of use of these devices, a power gain
frequency figure of merit is of interest. The most common one of interest is the
frequency at which the unilateral power gain of the device goes to unity, or 0 dB.
A unilateral power gain is the gain from the device in an amplifier made using
only non-lossy, passive, and reciprocal matching networks. It therefore assumes
the use of idealized matching conditions at the input and at the output, and
a feedback circuit, all of which have the above characteristics. The resulting
ratio of the power into the load to the power into the input of the device is the
unilateral power gain. One can derive the unilateral power gain knowing the
network parameters, and some of the expressions for various network parameters
are summarized in Appendix A. The frequency at which this gain is unity is
the maximum frequency at which the devices still provide a power gain. It is,
therefore, also the highest frequency at which an ideal oscillator made using
the device will still be expected to operate. Thus the frequency at which the
unilateral power gain goes to unity is known as the maximum frequency of
oscillation (fmax).

For practical reasons, two other power gains are also in use—one is the
maximum available power gain, which occurs only if the device is stable, and
the other is the maximum signal gain, which is a characteristic useful in the
case of unstable devices. Some of these are summarized in Appendix A.

Another figure of merit in frequency of interest is the frequency at which the
current gain in a common-source (or common-emitter in case of a bipolar tran-
sistor) configuration becomes unity for short-circuit conditions at the output.
This is referred to as the unity current-gain frequency (fT ). Again, knowing
network parameters, one can calculate the current gain under short-circuit con-
ditions (it is h21), and hence one can find the unity current-gain frequency for
the device.

Both power gain and current gain, once they begin to roll off as a function of
frequency, usually follow a 6 dB/octave slope. Note that in dB’s, the unilateral
power gain (U) is given as 10 log(U), and the current gain (h21) is 20 log(h21).
Since extrinsic lumped elements usually are the dominant effects, single pole
effects dominate (we will consider deviations from this in Chapters 6 and 7, and
in our small-signal analysis we have shown higher order frequency terms also),
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Figure 5.34: A simplified equivalent circuit with capacitance-dominated behav-
ior under conditions of short circuit at the output.

due, at the least, to the role played by parasitics. The parasitics can usually be
adequately modelled by simple lumped resistors and capacitors and hence they
generally contribute only simple pole effects.

At its simplest, the high frequency operation of a transistor is dominated
by capacitive effects. In the common-source configuration, the gate-to-source
capacitance Cgs and the drain-to-gate capacitance Cdg dominate, and a simple
equivalent circuit (see Figure 5.34) can be drawn. The current gain can then be
written as

Îd

Îg
=

gmV̂gs

(jωCgs + jωCdg) V̂gs
. (5.200)

The radial frequency at which this gain becomes unity is

ωT =
gm

Cgs + Cdg
, (5.201)

and hence the unity current gain frquency for this simple equivalent circuit is

fT =
gm

2π (Cgs +Cdg)
. (5.202)

This is, of course, a highly simplified analysis; output drain to source re-
sistance, drain resistance, and source resistances are significant in small gate-
length devices where capacitances begin to scale to low values. A higher-order
modification to the equivalent circuit may then be described by Figure 5.35.
Calculations for this problem get quite unwieldy; a simplification of this, with
output shorted, is

Îd

Îg
=

1

gm

[
ω (Cgs + Cdg)

(
1 +

Rd + Rs
Rds

)
+ ωCdggm (Rd + Rs)

]
, (5.203)
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Figure 5.35: An equivalent circuit of the MESFET incorporating drain-to-source
resistance, and drain and source resistances.

which gives an approximation for the unity current gain frequency as

fT =
gm
2π

[
(Cgs + Cdg)

(
1 +

Rd + Rs
Rds

)
+Cdggm (Rd + Rs)

]−1

. (5.204)

An important term in the above is the ratio (Rd + Rs) /Rds; its origin is the
division of return current between the paths provided by Rds and the parasitic
resistances of the transistor Rs and Rd. Also, the effect of the feedback term is
increased by the Miller feedback gain factor of gm (Rd + Rs). Note therefore that
parasitics do degrade the current gain of a transistor. A similar approximation,
for low parasitic resistances, is

fmax =
gm

2π (Cgs +Cdg)
×
{

4
Rg + Rs + Ri

Rds
× [1 + 4πfTRdsCdg×

(
1 +

Rs
Rg +Rs +Ri

+
2πτ

(Rg +Rs +Ri)Cgs

)]}−1/2

, (5.205)

where fT follows from Equation 5.204.

While we have incorporated the parasitic resistances in these equations one
may also wish to understand the effects related to any dipole capacitances. A
simplified equivalent circuit, excluding the parasitics which usually dominate, is
shown in Figure 5.36. In this simplified equivalent circuit we have included the
effect of internal resistance Ri, a channel capacitance Cdc, and the phase delay
factor of the current source. All these are therefore additional perturbations of
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Figure 5.36: A simplified equivalent circuit including the effect of internal re-
sistance Ri, a channel capacitance Cdc, and the phase delay factor τd of the
current source.

earlier analyses. The unilateral gain for this structure15 is given as

U =
g2
mRds

(
1 + ω2R2

iC
2
dc

)

4CgsRi [Cgs − gmRdsCds cos (ωτd)]ω2
. (5.206)

In the above expression, Cdg does not figure because it can be tuned by an ideal
passive loss-less inductor. The expression with the control source across Cgs
and Ri is similar in form,

U =
g2
mRds

[
1 + ω2R2

i (Cgs +Cdc)
2
]

4CgsRi [Cgs − gmRdsCds cos (ωτd)]ω2
. (5.207)

So, inclusion of the resistance effectively increases the input capacitance by the
amount Cdc; the feedback capacitance Cdg can still be tuned out. The inclusion
of parasitics in addition to this capacitance is not straightforward; it is best
dealt with by using network parameter equations—a procedure we will use in
the discussion of small-signal properties of bipolar transistors.

The significance of the above is that the second term in the denominator is
negative. At high frequencies, the contribution of the cosine term leads to a
vanishing denominator at

fr =
1

2πτd
arccos

(
Cgs

gmRdsCdc

)
, (5.208)

a resonance frequency. Figure 5.37 shows this resonance for an idealized small
gate-length device. This behavior is, however, conditioned on negligible para-
sitics and high output impedance, which are practically difficult to achieve in
small device structures.

15See H.-O. Vikes, “Note on Unilateral Power gain as Applied to Sub-Micrometer Transis-
tors,” Electronic Letters, 24, No. 24, p. 1503, 24th Nov. 1988.
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Figure 5.37: Unilateral gain as a function of frequency for the intrinsic part of
1µm gate length MESFET assuming a nominal phase delay.

5.11 Transient Analysis

Based on our small-signal analysis, some general comments can be made re-
garding the transient behavior of the device also. The quasi-static equivalent
circuit representation serves as a poor basis for describing the transient effects
due to sudden changes in voltage if these changes take place on a very fast time
scale, since such a change has frequency components that are closer to limit fre-
quencies where the quasi-static equivalent circuit has limited validity. However,
if changes are slower, and logic gates driving other logic gates have this occur
naturally due to the loading effect of other gates and capacitances, then the
quasi-static circuits that are valid at intermediate frequencies would be appli-
cable. The modifications that we have to make to these equivalent circuits is to
represent, by diodes, conduction paths such as that between the gate and the
source and drain, or equivalently a bias dependent resistance and capacitance.

The fast transient process resulting from a sudden change at the input or
output is, however, of considerable interest, since it, like the limit frequencies,
describes a limit of operation. Fast transients also have rapid changes in elec-
tric fields associated with them, hence, one would expect displacement effects
to also play a substantial role in them. One term that was associated with
displacement effects is the phase delay in the current source. It arose out of
the transmission-line gate delay, the charging of the gate capacitance through
the resistive channel. In a transient response, this would reflect in the output
response of the device as a lagging term in the drain current versus the source
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current. When the gate of the device is turned on,16 the displacement current
flowing through the gate depletion region occurs together with the particle cur-
rent in the source region. Some displacement current also flows in the source,
but this is much smaller. Figure 5.38 shows such a transient response due to a
a gate turn-on pulse.

As carrier build-up occurs in the channel, with a time-delay that is related to
the phase delay in the current-source, and once the carriers reach the constricted
channel region, drain current begins to build up. Following this, further delay
arises mostly from the time constants associated with the gate-to-drain and the
drain-to-source capacitances.

5.12 Off-Equilibrium Effects

In a discussion of very short channel devices, one needs to include the effect of
velocity overshoot as an example of off-equilibrium effect and its relationship
with the device performance. This is also a natural place for discussion of how
results of calculations which incorporate the off-equilibrium effect compare with
the results from a drift-diffusion analysis.

We consider the latter question first. Figure 5.39 shows some of the param-
eters for various gate lengths for GaAs MESFETs that have a 250 Å channel
thickness with 1.2×1018 cm−3 channel doping, a gate-to-source voltage of 0.5 V
and a gate-to-drain voltage of 1.0 V.

Note that at the edge of the gate towards the drain, the electric field is the
highest, and in the longer channel devices it is quite small over a fair fraction of
the channel. The large gradient in electric field occurs at the drain edge, where
the channel pinch-off occurs, and corresponding to which a lower carrier density
is observed. The pinch-off is stronger and the carrier density in the pinch-off
region correspondingly lower for the largest gate-length device. Corresponding
to the large gradient in electric field in this region, in all these devices, velocity
overshoot occurs, and nearly to the same velocity.

We discussed velocity overshoot in Chapter 2 as a consequence of the higher
relaxation rate of momentum compared to energy. The carrier does not gain
all the energy required to bring it in equilibrium with the local electric field
over the short spatial scale. As a result, it has a lower scattering rate cor-
responding to its lower energy even though it is transiting in a high electric
field region. The velocity is therefore higher than the velocity that would oc-
cur in a long sample with the same field under steady-state, or as seen in the
steady-state velocity–field curves such as those of Chapter 2. Even though this
velocity overshoot occurs in the 0.75 µm gate-length device, the velocity over
a large fraction of this device is low, and the kinetic energy closer to a few
kT , i.e., near the thermal value. The overshoot is only in a small fraction of

16For a systematic discussion of two-dimensional aspects of the device operation during
transient conditions, see J. V. Faricelli, J. Frey, and J. P. Krusius, “Physical Basis of Short-
Channel MESFET Operation II: Transient Behavior,” IEEE Trans. on Electron Dev., ED-29,
No. 3, p. 377, Mar. 1982.
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Figure 5.38: Transient of the drain current, the gate current, the source current
due to a rapid change in gate bias for a 0.5 µm gate length GaAs MESFET is
shown in (a). The device is 100 µm in width and is biased positive by 0.25 V on
the gate from near-threshold condition. (b) shows the electron density along a
cross-section in the conducting part of the channel at various instances of time
in pico-seconds. The source is on the left and the drain is on the right.
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Figure 5.39: Conduction band edge (a), electron kinetic energy (b), electron
density (c), and electron velocity (d) as a function of position along a cross-
section in the channel for devices with gate-lengths of 0.15 µm, 0.25 µm, 0.5 µm,
and 0.75 µm. After S. E. Laux, M. V. Fischetti, and D. J. Frank, “Monte Carlo
Analysis of Semiconductor Devices: The DAMOCLES Program,” IBM J. of

Research and Development, 34, No. 4, p. 466, July 1990.
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the channel region, the average velocity corresponding to both drift and diffu-
sion in the 1µm channel is still just a little higher than 1 × 107 cm.s−1. This
velocity is between the saturated velocity of ≈ 1 × 107 cm.s−1 and the peak
velocity of ≈ 1.5 × 107 cm.s−1 at the corresponding carrier density. Thus, use
of the assumptions inherent in the drift-diffusion approach is largely justified at
0.75 µm. At 0.5 µm the assumptions are clearly beginning to break down, and
drift-diffusion is clearly not adequate in modelling the 0.15 µm device where
overshoot occurs over a large fraction of the channel. This brings into question
prediction of channel currents, frequency response, etc., in small gate-length
devices. Note, though, that the relative changes will still occur as predicted by
drift-diffusion formalism. Off-equilibrium effects bring into question quantita-
tive accuracy, a question that exists for the Monte Carlo method also because
of its reliance on numerous parameters that can not be independently experi-
mentally measured. Note, however, that many effects of importance, such as
sub-threshold effects, or output conductance effects due to substrate injection
effects, are still relatively immune to the off-equilibrium phenomenon.

In the case of GaAs, the reduction in kinetic energy occurs when the carriers
begin transferring to the L valley. Such a transfer can occur after carriers have
acquired an energy of 0.36 eV (the Γ–L inter-valley transfer threshold energy).
When such a transfer can occur, because the carrier has acquired the requisite
energy, the carrier scattering rate becomes larger, and the carriers begin to lose
energy. The Γ–L transfer of carriers takes place in a time scale of at most 100 fs,
and hence the carriers can still transit distances corresponding to this, ≈ 300 Å
before energy begins to reduce.

Obviously, such a transfer could be prevented by lowering the drain voltage.
With the drain degenerately doped (Fermi energy in the drain for nominal
1 × 1018 cm−3 doping is ≈ 0.1 eV; the drain bias should therefore be nearly
0.2 V), this is a bias condition which is of no practical use. Even though the
kinetic energy is lowered because of the lowering of the bias, the overshoot is
nearly identical. The group velocity in GaAs in the Γ valley, at the L valley
energy, is approximately 6 × 107 cm.s−1. At both these biases, this maximum
velocity is being nearly reached.

Considering that band structure does play an important role, as evidenced by
the above, it is instructive to compare various compound semiconductor mate-
rials with their differing band structures. Figure 5.40 shows some of the param-
eters of interest at identical bias conditions of VGS = 0.5 V and VDS = 1.0 V in
MESFETs of GaAs, InP, and Ga.47In.53As. InP has a higher scattering rate and
higher effective mass at lower energies than either GaAs or Ga.47In.53As, and
hence its velocities are lower towards source end. However, at higher carrier en-
ergies, its velocity overshoot is higher than that of GaAs, because GaAs exhibits
a larger scattering rate corresponding to the inter-valley transfer. Ga.47In.53As
has the most favored overshoot characteristic because of its lower scattering rate
and large inter-valley transfer threshold.

We end by looking at distributions of which valleys the carriers are at for
different positions in the device. We use the 0.75 µm and 0.15 µm GaAs MES-
FETs as examples for VGS = 0.5 V and VDS = 1.0 V bias (see Figure 5.41). At
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Figure 5.40: Conduction band edge energy (a), kinetic energy (b), and and
velocity (c) in 0.15µm gate-length GaAs, InP, and Ga.47In.53As MESFETs at a
bias of VGS = 0.5 V and VDS = 1.0 V. The solid lines are for GaAs, the short
dashed lines are for InP, and the long dashed lines are for Ga.47In.53As.
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Figure 5.41: Fractional occupation of valleys along the channel in 0.75 µm
(a) and 0.15µm (b) gate-length GaAs MESFETs. The Γ, L, and X valley
populations are shown as solid , short dashed, and long dashed lines.
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the source end, most carriers are in the Γ valley. 60% of the carriers are still in
the Γ valley in the 0.75 µm device at the point of maximum velocity overshoot.
In the 0.15 µm device, however, a significantly smaller number stays in the Γ
valley. Thus, a significant transfer of carriers occurs to secondary valleys and
this is particularly strong at shorter gate lengths.

5.13 Summary

This chapter discussed the theory of operation of MESFETs and other phe-
nomena that are important to the use of these devices. First, we developed a
simple but intuitive long-channel model where we assumed that the mobility
in the device was a constant. An important underlying approximation for this
analysis was the gradual channel approximation which allowed us to decouple
the electric field in the conducting region of the channel from the electric field
in the depletion region of the gate. Compound semiconductors have large mo-
bilities, hence, long-channel models are of limited utility since they are strictly
applicable to only those devices exceeding a minimum gate-length for a specific
low field mobility and saturated velocity. As another extreme we considered
the constant velocity model, which assumes that the carriers enter the channel
region under the gate at a high velocity, which is approximately equal to the
velocity with which they traverse the channel. Finally, we combined the con-
stant mobility and constant velocity approximations of the above two models in
different parts of one device, and derived quasi-static characteristics. We also
considered the effects of current continuity and the negative differential mobil-
ity to the operating characteristics and the channel capacitances of the device.
Both of these cause formation of a dipole region at the drain end of the channel.
The specific design of the device and the operating conditions determine which
one of these effects dominates.

In using a MESFET, several parasitic phenomena become important—one
is due to the effect of remote potentials in a semi-insulating substrate, and
another is due to the effect of strain in a compound semiconductor piezoelectric
crystal. The former results in propagation of potential in the crystal and hence
influences the current flowing in the device. The latter results in additional
charge, which causes a change in the threshold voltage of the device, an effect
that becomes increasingly important at short gate-lengths. We also considered
the effects of signal delay along a gate in a MESFET, its effect on the operating
frequency of the device, and methods to prevent this from becoming important.
We also analyzed, at length, methods to perform small-signal analysis without
the quasi-static approximation, and applied them to deriving the small-signal
behavior of MESFETs. Finally, we concluded with a study of transients in the
device and of off-equilibrium effects at short gate lengths.
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Problems

1. Starting from the expression for current in the constant velocity approxi-
mation, derive the relationship for the transconductance gm as a function
of the normalizing current Inorm, the normalizing voltage V00, and the
drain current ID. Show that this expression, as expected, is identical to
the expression for the transconductance of the PHS model in the limit of
L2 → L.

2. Find the transconductance behavior, in the constant velocity approxima-
tion, for a GaAs MESFET with a threshold voltage of −1.5 V. Assume a
gate barrier height of 0.8 eV. Consider a uniform doping of 1×1017 cm−3,
a Gaussian doping profile with a peak doping of 2 × 1017 cm−3 with the
peak occurring 1000 Å below the surface, and a plane of dopants 1000 Å
below the surface.

3. The gate charge is the excess charge of the gate electrode that terminates
in the depletion region and the conducting region, towards the source,
channel, and the drain. Gauss’s law tells us that this is given as Qg = εsEy
at the interface between the gate metal and the semiconductor. The elec-
tric field in region I of the PHS model follows from the partial derivative
of potential in gradual channel approximation, and the electric field in re-
gion II follows from the approximation, using the first term, of the Fourier
series expansion. Show that

Qg ≈ 2qNDaW

[
2
3(ξp

3 − ξs
3) − 1

2(ξp
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4. Consider our approximate treatment of formation of a stationary dipole in
lightly doped, thick-channel MESFETs operating under conditions where
the channel is largely open. This is the region of operation where our
treatment is least approximate. Considering only a small perturbation
from quasi-neutrality, show that the voltage drop across the stationary
domain region can be derived as

Vdip =
4
√

2

3
λD

(
µ0

D0R

)1/2

(Em − Es)2, (5.210)

where R is a constant ≈ 5.5× 107 V.cm−2 for a doping ND = 1017 cm−3

in GaAs.

5. We derived the Mott-Gurney law for space charge–limited current in semi-
conductors in the text. Derive the relationship for space charge–limited
current in vacuum,

J =
4

9
ε0

(
2q

m0

)1/2
V 3/2

L2
. (5.211)

This is the Langmuir-Childs law.

6. Consider the distortion of single-crystal quartz under shear stress, and
show that it results in a dipole moment perpendicular to that of compres-
sive stress.

7. Estimate the frequency response and the effect of phase delay due to sig-
nal propagation along a gate of a GaAs MESFET for a gate metal with
resistance of 10 Ω/2 for the following conditions:

(a) 1.0 µm gate length and 100 µm gate width,

(b) 1.0 µm gate length and 10 µm gate width,

(c) 0.1 µm gate length and 100 µm gate width, and

(d) 0.1 µm gate length and 10 µm gate width.

8. Consider the modified time-dependent control equation for current conti-
nuity,

d

dz

(
1

ν + 1
2 − 1

4z
2

dυ̂

dz

)
+ υ̂ = 0. (5.212)

Consider the Taylor series expansion of the solution for υ̂ as a function
of z and find the coefficient of the first two powers of z. Show that the
term of first power in frequency is identical with that following Hauser’s
analysis discussed in the text.
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9. Our derivation of the drain current phasor, which was used as the basis for
deriving output and transfer admittances, employed an iterative procedure
on the integral form of the drain current equation (Equation 5.135). A
similar integral form of the source current equation has been shown in
Equation 5.136. Use a similar iterative procedure to show that the source
current phasor can be expressed in the form

Îs =
(
V̂s − V̂g

)
Gs
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2

+ · · ·
1 +
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, (5.213)

where the symbols have the meaning defined in the text. Show that the
input and reverse transfer admittances follow.

10. Using the integral expansions of the pole frequencies ω01 and ω
′

01, show
by using separation of variables that the frequencies are identical and may
be replaced by the frequency ω0.

11. We derived the common-gate admittance parameters using the drain and
source current phasors as a function of voltage phasors referenced to the
gate. Transferring of these parameters to other common ports is an exer-
cise in matrix manipulation. In the case of definite two-port parameters,
this is relatively straightforward and discussed in Appendix A. Using re-
sults presented there, derive the common-source admittance parameters
(Equation 5.170) from the common-gate parameters considering only those
terms important to the first power in frequency in the final result.

12. Using the approximations of the constant mobility model of the operation
of a MESFET, show that the characteristic frequency ω0 is related as
shown in Equation 5.185.

13. Explain, using simple physical arguments, why the gate-to-drain capac-
itance should decrease and the gate-to-source capacitance should either
increase or stay constant with increasing drain-to-source bias for a con-
ducting FET.

14. Estimate the gate width for a 1 µm gate-length GaAs MESFET beyond
which transmission-line effects due to signal propagation along the width
of the device should be included for 8 GHz operation.

15. Consider the effects of formation of a dipole in a MESFET. It can arise
as a consequence of the negative differential mobility, as well as due to
the requirement of current continuity in a channel of varying conducting
thickness (even in the absence of negative differential mobility).

(a) Should the dipole domain capacitance of a MESFET arising from
negative differential mobility in velocity–field characteristics decrease
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with increased doping in the channel and should this result in a re-
duced or increased output conductance with doping?

(b) What would be the dipole effect on output conductance arising from
current continuity in the conducting channel?

(c) Now consider design of MESFET structures for digital logic, i.e., de-
signed for large current drive, or for high-frequency operation, i.e.,
designed for large limit frequencies. Which should be important for
digital logic, and which should be important for high frequency op-
eration?

(d) What are the implications of scaling on the relative importance of
the two causes of dipole domain formation?

16. Should the strain that gives rise to the piezoelectric effect in a GaAs
MESFET also lead to increased piezoelectric scattering?

17. Show that for one carrier space charge–limited current, the current density,
at very low voltages, can be written as

J =
3µεskT

L3q
V =

3D
L3

V. (5.214)

18. Should the piezoelectric charge distribution also lead to a change in the
local ionized impurity scattering?

19. Consider the 1 µm gate-length GaAs MESFET with a 1 × 1017cm−3

doped channel which is 0.25 µm thick. The metal–semiconductor barrier
height is 0.8 eV. We will ignore the effects of signal delay along the gate.
Using our small-signal analysis, find the characteristic frequencies and the
equivalent circuit at the point of onset of current saturation at a gate bias
of 0 V. What is the effect of velocity saturation?
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Chapter 6

Insulator and
Heterostructure Field
Effect Transistors

6.1 Introduction

In Chapter 2, we discussed the improvements in in-plane transport behavior re-
sulting from a variety of causes associated with the use of heterostructures, the
most important being low ionized impurity scattering and screening of Coulom-
bic scattering effects by carriers in the channels formed at heterostructure in-
terfaces. Heterostructure field effect transistors are field effect devices that take
advantage of these improvements. There are additional intrinsic advantages in
the control and transport of carriers in HFETs compared to MESFETs. MES-
FETs employ doped channels and have a difficult problem of threshold control,
and gate leakage current during forward bias of the gate due to limited metal–
semiconductor barrier heights—both cause limitations in operating range of
voltages and of integration. This is a subject of significant interest, since it
places constraints on the use of increasingly smaller devices in digital circuits.
We will discuss this question in depth in Chapter 9. HFETs, particularly those
based on semiconductor–insulator–semiconductor structures, offer certain ad-
vantages from this digital perspective. They exhibit improvements in threshold
voltage control; gate leakage current improvements also come about in many
HFET implementations due to the smaller thermionic emission and tunneling
components of the current. Additional operational improvements result from
the controlled and nearly constant depth of the sheet charge at the heterostruc-
ture interface, which results in a more linear control of the current by the gate,
as discussed in Chapter 5. All these features are appealing in both digital and
analog usage of the devices.

In many respects, our discussion of HFETs is a continuation of the treatment

367
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of MESFETs. The details of the modelling may be different, because of the
differences in control of charge, transport of charge, and parasitic conduction;
however, the underlying principles embodied in gradual channel approximation,
the effects of negative differential velocity and low saturation fields, and small-
signal effects, such as that of gate transmission line, are still similar. These
are all issues related to the intrinsic operation of the device. In our discussion
of MESFETs, we emphasized sidegating effects and piezoelectric effects as two
important phenomena arising from inadequacy of the substrates or consequences
of strain in a non-centro-symmetric crystal. These also exist in HFETs. There
are additional effects in HFETs; a particularly important one that occurs in
n-type Ga1−xAlxAs is due to DX centers, which have unusual emission and
capture characteristics for carriers. The DX abbreviation arose, historically, to
denote a donor complex, although conventional wisdom suggests that it does
not have to be a complex, and may just be due to distortion of lattice. Similar
to the discussion of sidegating and piezoelectric effects, in Chapter 5, we will
discuss the effect of DX centers on the operation of devices.

The discussion of the intrinsic device is divided in two broad parts. First
we will consider heterostructure devices where the insulator will be treated as
a perfect insulator and we will assume that Boltzmann statistics describe the
charge control adequately. The adequacy and inadequacy of this latter assump-
tion, in different bias ranges, together with that of Fermi–Dirac statistics with
three-dimensional and two-dimensional density of states distributions will be dis-
cussed later, and the assumptions will be compared. The Boltzmann treatment
will let us discuss the basic physics of field effect transistors based on channels
formed by inversion unencumbered by a variety of effects that are unique to
compound semiconductors and heterostructures. In this respect, the treatment
of the devices will be similar to that of silicon metal–oxide–semiconductor field
effect transistors. The prominent attribute of the oxide in the silicon struc-
tures is that it provides an ideal insulator with an ideal interface for charge
control with the semiconductor. While better interfaces for transport can be
obtained in compound semiconductors using lattice matched and slightly mis-
matched compositionally different compound semiconductors, these are at best
semi-insulating in character, with approximately 1010 Ω.cm as the maximum re-
sistivity. Silicon dioxide, on the other hand, can be for most practical purposes
treated as a perfect insulator.

Thus, our insulator field effect transistor analysis will need additional mod-
ifications to incorporate the effect of conduction in the large bandgap barrier
materials. This subsequent analysis will also allow us to include a variety of
effects that are unique to or become more important in compound semicon-
ductors. This modification of the treatment will include size quantization and
related band and band-occupation effects in the two-dimensional channel of
carrier gas. The differences in details of channel charge control and transport
result in differences in details of the small-signal operation, transient operation,
and off-equilibrium effects. We will include this in our discussion in a form
similar to that adopted for MESFETs. We begin with a general treatment of
heterostructures, continuing from the discussion in Chapter 4.
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Figure 6.1: Bandgap versus lattice constant for compound semiconductors. Leg-
end in the figure describes the key to the lowest valley in the various combina-
tions of materials.

6.2 Heterostructures

One of the unique attributes of compound semiconductors, exploited in many
specialized device structures, is the rich selection of various semiconductors that
form heterojunctions of the same lattice constant yet differing in bandgap, thus
allowing for a broader selection and tuning of desired characteristics. Two fig-
ures pertinent to this are Figure 6.1, which describes the bandgap change of
compound semiconductors as a function of the lattice constant, and Figure 6.2,
which describes the conduction and valence band discontinuity of semiconduc-
tors with lattice constant. Figure 6.1 allows us to show those compound semi-
conductor systems that are lattice matched or slightly mismatched to allow
pseudomorphic1 growth, and hence allow the fabrication of structures where
bandgap changes take place. Figure 6.2 is an approximate description, based on
observed bandgap discontinuities, of the expected conduction and valence band
discontinuities if one were to make an ideal interface between two semiconduc-
tors. The lines connecting have been drawn to follow the behavior of Figure 6.1
for the conduction band edge. The figure is approximate and should be used
with caution.

Ga1−xAlxAs remains closely lattice matched at all mole fractions of alu-

1A pseudomorph is a mineral that possesses the external form characteristic of another
mineral. When a semiconductor is grown on another semiconductor, the grown semiconductor,
if it is crystalline, takes the in-plane lattice periodicity of the basis semiconductor. It is said
to be pseudomorphic.
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Figure 6.2: Discontinuities at heterostructure interfaces for various semiconduc-
tor systems, plotted as a function of lattice constant. This figure is approximate
and should be used with great caution. It has been assembled using available
and reliable discontinuity data, most of which are for unstrained interfaces. The
strained data have also been incorporated approximately, and hence the behav-
ior described by this figure should be considered an approximate description
of what one might expect if one were to make an ideal interface of two sets of
materials.
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minum arsenide and gallium arsenide (approximate lattice mismatch remains
less than 0.1% to both GaAs and AlAs). Ga1−xInxP, GaPxSb1−x, etc., lattice
match only at specific mole fractions. For a limited thickness of the mismatched
layers, however, the resulting strain can be accommodated. Thus, materials with
close match only at specific mole fractions can still be grown with a fair degree of
reproducibility. Examples of these of interest are Ga.47In.53As and Al.48In.52As
to InP, and Ga.51In.49P to GaAs. The ability to grow such structures allows
one to tune the characteristics of the semiconductor medium to achieve desired
characteristics in the devices. A differing barrier height than that of a metal–
semiconductor junction can be achieved by the use of heterostructures; low
barrier heights being useful in microwave detection, large barrier heights being
useful in suppressing gate leakage current in field effect transistors. The changes
in bandgap can be used in suppressing injection characteristics of one particu-
lar carrier through a suitable use of grading and doping, as in heterostructure
bipolar transistors. A major usage of the changes in bandgap at a spatially
abrupt interface has been in obtaining two-dimensional channels of carriers for
operation in field effect transistors, the subject of this chapter.

Practical limitations quite often arise from our ability to grow lattice mis-
matched semiconductors. Lattice strain prevents growth of semiconductors with
large mismatch because of energy considerations. Thermal energy provides the
requisite barrier energy for this relaxation process and the lattice regains its
unstrained lattice constant. A lattice with high strain relaxes by generating
defects such as dislocations, etc. A low temperature of growth allows one to
make structures that are metastable and have a significant strain due to large
lattice mismatch, but they may relax by radiative or non-radiative means during
operation of a device. In any case, there is a critical thickness beyond which,
for given growth conditions, one can not grow a suitable high quality semicon-
ductor. The thicknesses required for HFETs are usually sufficiently small that
quite significant mismatch can be accommodated. An example of this is the
considerable work in Ga1−xAlxAs/Ga1−xInxAs and GaAs/Ga1−xInxAs systems
where low mole fractions of indium arsenide have been used to obtain improve-
ments in the amount of charge and transport for HFETs. The effect of strain in
such structures is both in band structure itself and in scattering due to changes
in band structure.

6.3 Strained Heterostructures

During the growth of a structure, the grown epitaxial layer assumes the lattice
constant of the crystal, and is under a strain of ε = ∆a/a, where a is the lattice
constant of unstrained crystal. This strain has an effect on the band structure
because it introduces a spatially periodic perturbation differing from that of the
unstrained crystal. The strain introduced due to the growth, caused by lattice in
the plane perpendicular to the growth orientation, is a biaxial strain. Strain can
also be introduced by external means on a grown crystal. The inverse process of
the piezoelectric effect, discussed in Chapter 5, should give rise to strain. This
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is by electrical means. Stress can be applied uniaxially by compressing a crystal
in an anvil; it can be applied hydrostatically using hydrostatic pressure. A
hydrostatic pressure on a crystal produces the same strain in all directions. The
effect of such strains on band structure is quite complicated. In general, strain
causes a change in bands–bandgap, as well as band curvature, i.e., effective
masses.

Symmetry of the band structure has a principal relationship with the polarity
of the effect on the bandgap. This is stressed in Figure 6.3, which shows a
schematic of the effect on the band structure for a variety of conditions. Biaxially
compressive strain, i.e., a larger lattice constant material grown on a smaller
lattice constant material for a direct bandgap crystal, e.g., Ga1−xInxAs grown
on GaAs (see Figure 6.3), leads to a decrease in the bandgap. The effect of
compressive strain in an indirect gap crystal is more complex. For Si with (100)
surface, the effect of compressive strain is to raise a set of conduction band
constant energy ellipsoidal surfaces and lower the other set of constant energy
surfaces. Thus, in-plane and out-of-plane valleys behave differently.

These changes in bandgap occur together with changes in the band curva-
ture at the band minimum of the conduction band and the band maxima of the
valence bands, with the changes in the latter being particularly significant. The
constant energy surface for the valence bands, as discussed in Chapter 2, is a
warped surface. It exhibits differing curvature in different directions. Also, at
these energies, we need to consider both the light hole and the heavy hole band.
The primary effect of the strain in these, as seen in Figure 6.3, is to lift the
degeneracy. For the example of Ga1−xInxAs grown on GaAs, it causes, at zone
center, the heavy hole band to become the lower hole energy band. Addition-
ally, the in-plane effective mass, at zone center for the heavy hole band, becomes
lower than that of the light hole band even for small incorporation of indium
arsenide in the crystal. This effective mass change is orientation-dependent be-
cause the constant energy surface is warped. Significant complications have now
been introduced in the description of the electronic structure due to introduc-
tion of this strain. Since the masses are different in different orientations and
degeneracy has been lifted at zone center, we would expect interesting conse-
quences both for hole transport, due to the effect on mass and scattering, and
for electron–hole interactions, such as in optical processes.

For transport, the primary effect is the lifting of the light hole and heavy
hole degeneracy, which reduces scattering, and hence improves the hole trans-
port properties. Strained HFETs with p-type channels are believed to show
improvements due to these band structure improvements. This is also believed
to be important for the in-plane transport of holes in p-SiGe bases of bipolar
transistors. The consequence for effective mass was shown schematically in Fig-
ure 6.3. The example of Ga1−xInxAs grown on GaAs and Si1−xGex grown on
(100) Si approximately follow the behavior shown in this figure, both for the
bandgap and the in-plane effective mass. The effect on distortion of conduction
bands is smaller than that for hole bands in these examples. Compressive biax-
ial strain does lead to a slight improvement in the electron effective mass for the
direct gap and an orientation-dependent change for the indirect gap example
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Figure 6.3: A schematic description of the effect in band structure due to biaxial
strain occuring due to assembling of crystals with differing lattice constants (a).
(b) shows the behavior of a direct gap semiconductor with compressive on left
and tensile on right. (c) shows the effect on an indirect gap semiconductor
such as Si biaxially strained in the (100) plane. This indirect semiconductor
differs from the direct gap example because the four-fold and two-fold degenerate
valleys of Si behave differently. The conduction band edge moves lower in energy
for one of these sets of valleys. The valence band edges behave the same as in
(b). Other indirect bandgap semiconductors and other orientations will behave
differently.
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discussed here. The effect on transport is more complicated because we must
incorporate the effects on scattering in this discussion. The in-plane distortion
of the crystal due to the biaxial strain is four-fold symmetric. Band edge sym-
metries can therefore be destroyed by this strain. For the examples considered,
for electrons, the out-of-plane transport of electrons improves but the in-plane
transport deteriorates.

6.4 Band Discontinuities

We continue here our discussion of band edges at heterojunctions initiated in
Chapter 4. In heterojunctions, the semiconductor band structure may be con-
sidered undisturbed right up to the interface. At the interface, in the abrupt
heterojunctions, discontinuities occur in the conduction band (∆Ec) and valence
band (∆Ev), both of whose magnitude is experimentally determined.

Many ab-initio models and calculations of band discontinuities have been
presented, some of which are in fair agreement with experiments. Historically,
the first of the models was Anderson’s electron affinity rule, which assumed
continuity of the vacuum level. This predicts ∆Ec = q(χ2 − χ1), where the χ’s
are the electron affinities in the two semiconductors. This is in error for most
compound semiconductors. For the SiO2/Si interface, it is relatively close, but
does not predict the observed orientation dependence. Atomic orbital–based
calculations predict that when anion species are common at a heterojunction,
such as As at Ga1−xAlxAs/GaAs, most of the discontinuity should occur in the
conduction band. This is because valence band states are p-orbital–like and
come from the anion which is common. This is known as the common-anion
rule. In practice this is not so, for Ga1−xAlxAs/GaAs, the conduction band
discontinuity is ≈ 0.65∆Eg for aluminum arsenide mole-fractions of less than
0.4. More success appears to be occurring by semi-empirical techniques. One
example is an approach postulating that, similar to the Fermi level in the case
of metal–metal junctions, there exists a level that should be considered primary
and equi-energy across the interface in a semiconductor. Most often this level
would lie inside the energy gap, but it doesn’t necessarily have to do so. It is this
level that determines barrier heights on nascent surfaces, i.e., on vacuum cleaved
and unreconstructed surfaces. Thus, metal–semiconductor barrier heights may
be a good indicator of discontinuities. The discontinuity plot (Figure 6.2) of
this chapter appears to follow this empirical relationship.

The discontinuity is, of course, with respect to specific band minimum. Dif-
ferent minima have different discontinuities which follow different trends, repre-
sented, e.g. in the bowing parameters of the alloy. At specific compositions, the
different minima may be the lowest minima. At a heterojunction, which minima
should be considered to be important, and hence which discontinuity should be
used, depends on the dominant physical process. All the discontinuities—Γ–Γ,
L–L, X–X, etc.—exist at the heterojunction interface. As an example, consider
tunneling through a barrier of large bandgap material such as Ga1−xAlxAs from
GaAs. Electrons in GaAs are largely in the Γ valley; if the Ga1−xAlxAs barrier
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Figure 6.4: The conduction and valence band edges in the Ga1−xAlxAs sys-
tem as a function of the AlAs mole-fraction for the Γ, L, and X valleys. After
J. Batey and S. L. Wright, “Energy Band Alignment in GaAs:(Al,Ga)As Het-
erostructures: The Dependence on Alloy Composition,” J. of Appl. Phys., 59,
No. 1, p. 200, 1986.

is relatively thin, these Γ electrons are most likely to tunnel via Γ-like states
in the barrier. However, if the barrier is thick, they may do so through X-
like states, a process that will require phonon interaction in order to allow for
change in momentum. Thus, for thick barriers, the difference in energy between
the Γ valley of GaAs and the X valley of Ga1−xAlxAs may be more perti-
nent. Consider the same for transfer of carriers from donors in Ga1−xAlxAs to
GaAs. The transfer of carriers takes place from whichever is the lowest valley in
Ga1−xAlxAs, irrespective of the width of the barrier. This interesting behavior
of the discontinuity, with its implication to the charge transfer process and to
perpendicular current flow, is shown in Figure 6.4 for the Ga1−xAlxAs/GaAs
system as a function of aluminum mole-fraction.

At aluminum arsenide mole-fractions of greater than 0.45, the X band is
the minimum and forms the lower barrier. So, for x > 0.45, the barrier be-
tween the X valley in Ga1−xAlxAs and the Γ valley in GaAs is lower, and in
fact for charge transfer, and for tunneling in larger barrier widths, the relevant
maximum discontinuity occurs at x ≈ 0.45. For the GaAs/Ga1−xAlxAs/GaAs
SISFET, this results in a larger leakage current between the gate and the channel
as mole-fractions go towards the AlAs end of the semiconductor composition,
counter-intuitive to the simplistically expected trend. The importance of appro-
priate discontinuity will be considered again in Chapter 8 due to its importance
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in tunneling structures. Here, we stress that the barrier thickness and barrier
height for each of the valleys, need to be considered together with elastic and
non-elastic tunneling processes to determine the dominant barrier in the current
transport mechanism.

6.5 Band Bending and Subband Formation

We have discussed the details of drawing of band edges at a heterostructure in
Chapter 4. If we know the discontinuities in the conduction and the valence
band, then the heterojunction band diagram follows, similar to the case of
homojunction band diagram and consistent with the requirements of Poisson’s
equation in the bulk (which may have two-dimensional constraints on the carrier
distribution), Gauss’s Law at the interface, and the additional condition of the
discontinuity at the interface.

For abrupt ideal heterojunctions, band edges are parallel at the interface
because there is no macroscopic interface charge; for graded heterojunctions
the change in accelerating potential for electrons and holes is given by the elec-
trostatic potential plus the alloy grading potential due to composition-induced
changes in the conduction and valence band energies. The quasi-fields are the
negative of the gradient of the electrostatic and alloy grading potential. These
were shown in Figure 4.11 for no interface charge.

The effect of confinement at an abrupt interface has been discussed in our
introduction to heterostructures in earlier chapters. Carriers confined in the
narrow potential well, perpendicular to the interface of a discontinuity, do not
behave classically, (i.e., according to the nearly-free electron model). When the
carrier de Broglie wavelength becomes of the same order of magnitude as the
classical length scale, i.e., the classical turning point (= kT/qE), the classical
treatment of the carrier motion in the direction perpendicular to the interface
breaks down. In this direction, the carrier can have only specific momenta, i.e.,
the momentum is quantized, and this result is a direct consequence of the prin-
ciples of quantum mechanics in the presence of the strong confinement. The
eigenfunction solution of Schrödinger’s equation, whose square represents the
probability of finding a carrier at any position, decays beyond both the discon-
tinuity and the classical turning point as a result of the barriers. The solution of
Schrödinger’s equation for the specific potential well and carrier mass, etc., can
be interpreted as nearly-free electron behavior parallel to the interface, a direc-
tion in which no change from the classical behavior and boundary conditions has
occurred. Perpendicular to the interface, however, only certain eigenfunctions
are the solution; energies associated with them are quantized. These discrete
energies represent the minimum in energy in a band of allowed energies. Each
continuum of states attached to one of the discrete energies is called a subband.
The behavior of carriers under conditions of confinement in one direction is
called two-dimensional behavior.

Consider an isotropic semiconductor whose energy bands in three dimension
behavior can be approximated by parabolic bands. The confinement in one
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Figure 6.5: Confinement and the minima of the resulting energy subbands are
shown on the left. The constant energy surfaces, at the Fermi energy, are shown
on the right.

dimension results in energy subbands whose allowed energies are of the form

E = En +
h̄2

2m∗ (kx
2 + ky

2). (6.1)

Here, En is the quantized energy associated with the perpendicular motion ref-
erenced to the unquantized condition. It represents the set of minima in energy
for carriers occupying the subbands. The various Ens allowed, representing the
minima in subband energies, are shown in Figure 6.5, together with constant
energy Fermi surfaces in various subbands.

We drew this figure in the isotropic parabolic band approximation, relevant
at low energies for the Γ band of GaAs. The formation of subbands and the
allowed perpendicular momenta are considerably more complicated for holes
as well as for electrons in Si and Ge, etc. This is because of the presence of
different hole masses (light and heavy) whose perpendicular momentum and
energy are quantized differently, and because of the anisotropy of the electron
mass in silicon and germanium.

As an example of this more complicated situation, consider the quantization
of a silicon n-type inversion layer together with anisotropy of the mass. We
leave the case of holes as an exercise (see Problem 1). Recall that the constant
energy surfaces near the bottom of the conduction band are ellipsoids with a
large longitudinal mass and a low transverse mass. Consider inversion or accu-
mulation on a (100) surface using SiO2 as an insulator. There are two equivalent



378 6 Insulator and Heterostructure Field Effect Transistors

Figure 6.6: Schematic of the lowest energy subband minima (a) and associated
envelope functions (b) for inversion layers on (100) Si.

ellipsoids occupied by electrons whose momentum is confined in the longitudinal
direction, and four equivalent ellipsoids occupied by electrons whose momentum
is confined in the transverse direction. The longitudinal mass is larger than the
transverse mass, and leads to a smaller energy En of the bottom of the cor-
responding two-dimensional subband because of the inverse dependence of the
energy on carrier mass. Figure 6.6 shows the quantization of the two sets of
subbands and their envelope functions.2 Because of the anisotropy, different
surfaces of silicon behave differently just as they behave differently for tunnel-
ing or thermionic injection. These follow in a similar manner and are considered
as an exercise (see Problem 2) in this chapter.

The energy levels in the quantized two-dimensional channels must be derived
by solving Poisson’s equation and Schrödinger’s equation for the quantum well
simultaneously, and by taking into account in this solution all carrier energy–
related effects. Poisson’s equation, here, identifies the relationship between
potential energy and the charge distribution, Schrödinger’s equation identifies
the relationship between the allowed total energy and the momentum, and the
energy effects include the consequences of many-body effects such as exchange
and correlation effects on carriers. These latter effects usually result in lowering
of the energy. The effective potential energy V (y) in Schrödinger’s equation can
be written as

V (y) = −qψ(y) +
∑

Vi. (6.2)

2The envelope function together with the Bloch function factor yields the wave function
of the electron.
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Here ψ(y) is the electrostatic potential, the Vi’s are the potential energy terms
associated with exchange correlation, image, grading, etc., and y, following our
convention is the direction perpendicular to the interface. Schrödinger’s equa-
tion for the envelope function ςi(y) in subband i is

− h̄
2

2

d

dy

[
1

m∗(y)

d

dy
ςi(y)

]
+ V (y)ςi(y) = Eiςi(y), (6.3)

where m∗(y) is the position-dependent effective mass, which can depend on i
and Ei in general cases, and Ei is the energy at the bottom of the ith subband.
Unlike the SiO2/Si system, which has a large discontinuity, in the compound
semiconductor heterojunction systems, ∆Ec is usually of the order of 0.5 eV or
less (see Figure 6.2), and the electron wave function can penetrate a significant
distance into the barrier just as it does in the other direction. Compound
semiconductors, with their small effective masses for electrons, exhibit strong
quantization effects; the reduced confinement by the barrier layer adds to the
complexity of the problem.

Poisson’s equation, using the envelope function, is of the form

d

dy

[
εs(y)

dψ(y)

dy

]
= q

∑
Nsiς

2(y) − ρI(y), (6.4)

where

Nsi =
m∗kT

πh̄2 ln

[
1 + exp

(
ξf − Ei
kT

)]
, (6.5)

and εs(y) is the position-dependent permittivity, Nsi is the number of electrons
per unit area in subband i, ξf the Fermi energy, Ei the minimum of the ith
subband energy, m∗ the density of states effective mass of the inversion layer
material, and ρI the ionized impurity charge density, ρI = −qNA for an acceptor
doping of NA.

Since the carrier charge is confined in a short distance at the interface, and
the ionized impurity charge density is usually smaller by a significant amount,
the potential well is sometimes approximated as an infinite triangular well. This
is to say that the carrier charge is assumed to be a sheet charge giving rise to a
constant electric field which is not significantly disturbed by the weak acceptor
charge density. For this approximation, which is not an unreasonable description
of moderate and strong inversion conditions, an approximate solution to the
problem is

ςi = Aii
[(

2m∗qEs
h̄2

)1/3(
y − Ei

qEs

)]
, (6.6)

where Ai are the Airy functions,

Ai(y) = c1f(y) − c2g(y). (6.7)
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The problem of a triangular barrier was encountered in our discussion of tunnel-
ing, where we showed how Airy functions3 solved the problem exactly and led to
a similar expression as the WKB expression in asymptotic limit. This problem
is similar, of a triangular well instead of a triangular barrier (see Problem 3),
and the subband minima energies are given by

Ei =

(
h̄2

2m∗

)1/3[
3

2
πqEs

(
i+

3

4

)]2/3
(6.9)

for large values of i.4 This is similar to the asymptotic solution of the triangular
barrier problem.

In the limit of large inversion charge, or negligible acceptor charge density,
Gauss’s law gives Es = qNS/εs for the electric field at the heterostructure in-
terface. Here, NS is the carrier sheet charge. Thus, in the limit of moderate
to strong inversion, low acceptor charge, and ignoring of barrier penetration
effects, the subband energy levels can be related to either the electric field at
the interface or the sheet carrier charge at the interface. For Ga1−xAlxAs/GaAs
junctions, this results in the energy level positions as

E0 = 1.83× 10−6E2/3
s

and E1 = 3.23× 10−6E2/3
s , (6.10)

where the energies are given in units of eV and electric fields are in units of
V.m−1.

We should also consider, in addition to these, the changes in density of states
in the two-dimensional systems as a result of the formation of the subbands.
Again, recall that density of states in a ν-dimensional k-space is (2π)

−ν
. So, for

two-dimensional systems, the density of states is

D(E) =
2g

(2π)
2 2πk

dk

dE
, (6.11)

3The functions f(y) and g(y) are given by

f(y) =

∞∑

n=0

3n
(

1

3

)

n

y3n

(3n)!
,

and g(y) =

∞∑

n=0

3n
(

2

3

)

n

y3n+1

(3n+ 1)!
. (6.8)

See, e.g., M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formu-

las, Graphs, and Mathematical Tables, U.S. Government Printing Office, Washington, D.C.,
p. 446, 1964.

4A more exact solution suggests replacement of the bracketed index terms of (i + 3/4)
by 0.7587, 1.7540, and 2.7525 for i = 0,1, and 2. The reader would find T. Ando, A. B.
Fowler, and F. Stern, “Electronic Properties of Two-Dimensional Systems,” Reviews of Mod-

ern Physics, 54, No. 2, p. 437, April 1982, a very thorough review. Even though this long
article, suggested as a general reading, concentrates on inversion layers in silicon, the basic
concepts are general. Our treatment here draws extensively from this reference.
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Figure 6.7: Density of states distribution in an electron inversion layer on GaAs
surface as a function of energy is shown in (a). (b) shows the density of states
distribution function as a function of energy for an electron inversion layer on
a (100) Si surface.

where g is the valley degeneracy and the factor 2 accounts for spin degeneracy.
If we assume isotropic parabolic bands,

E = E0 +
h̄2k2

‖

2m∗ , (6.12)

with

D(E) =
gm∗

πh̄2 for E > E0

= 0 for E < E0. (6.13)

The density of states is constant in any subband, and zero below the subband
edge. As energy increases, more subbands become populated and there is a
piece-wise discontinuous increase in the density of states. For an n-type inversion
layer in GaAs, g = 1 because there is only one equivalent Γ band, and the
density of state distribution for the two-dimensional system is straightforward
and shown in part (a) of Figure 6.7. For (100) silicon, g = 2 for the two
ellipsoids whose longitudinal momentum is confined and g = 4 for the ones
whose transverse momentum is confined. The density of state distribution is
slightly more complicated and is shown in part (b) of Figure 6.7. The mass
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to be used in Equation 6.13 is the density of state effective mass for the two
orientations, i.e.,

m∗ = mt (6.14)

for the 2-fold degenerate subbands and

m∗ = (mtml)
1/2

(6.15)

for the four-fold degenerate subbands. Holes and other orientations of Si are
different and follow similar considerations (see Problem 1 and Problem 2).

At absolute zero, the sheet carrier density and the Fermi level energy (if only
the zero’th band is occupied) are related by

Ns = D(E)(ξf − E0), (6.16)

and, following our calculations for Fermi velocity in Chapter 2,

kF =

(
2πNs
g

)1/2

and vF =
h̄

m∗

(
2πNs
g

)1/2

. (6.17)

Consider GaAs with Ns = 6 × 1011 cm−2 electron density, a common sheet
density in high mobility samples at Ga1−xAlxAs/GaAs interfaces, the Fermi
velocity is 3.2× 107 cm.s−1 at absolute zero. Note that this is larger than ther-
mal velocity in non-degenerate GaAs at 300 K. The treatment leading to these
equations ignores several second-order effects related to band structures. The
parabolic band approximation is accurate only for small energies, and higher-
order subbands are influenced strongly by the wave-function penetration into the
larger bandgap material at the discontinuity. Hole bands are highly anisotropic,
as are bands in smaller bandgap materials such as Ga.47In.53As. p-channel de-
vices also have complications due to multiple bands, warped surfaces, and low
barriers with larger wave-function penetration even for the lowest energy sub-
bands. The parabolic infinite barrier picture is too simplistic for these, and we
have to rely almost exclusively on numerical techniques to obtain parameters of
interest.5

Numerical techniques, based on the quantum-mechanical treatment described
above, yield results that, although accurate for specific modelling conditions
only, can be employed to yield fitting equations that describe variation over a
parameter space. Consider, e.g., position of the lowest subband energy E0 as a
parameter that is of interest to us, since in thermal equilibrium a major fraction
of carriers occupy this subband. The energy E0 is a function of both the sheet

5The reader is referred to F. Stern and S. Das Sarma, “Electron Energy Levels in
GaAs/Ga1−xAlxAs Heterojunctions” Phys. Rev. B, 30, No. 2, p. 840, 1984, and F. Stern
“Doping Considerations for Heterojunctions,” J. of Appl. Phys., 43, No. 10, p. 974, 15 Nov.
1983, for a discussion of calculations in the Ga1−xAlxAs/GaAs system. Some of the results
described in these papers are reproduced here as part of our discussion.
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mobile charge and the background immobile charge. The former has a strong
effect on the electric field at the interface, hence confinement at the interface,
and the latter has a strong effect on the fields away from the interface, and hence
higher-order subbands. The composition of the barrier, and the discontinuity
at the barrier are central to the penetration of the wave function, and hence E0

should depend on these too. A calculation over a parameter space allows us to
write simple interrelationships that are convenient in modelling and sufficiently
accurate for analysis. The lowest subband energy, e.g., is related as

E0 =

(
3

2

)5/3(
q2h̄

m∗1/2εs

)2/3
NAs + 55

96
Ns

(
NAs + 11

32Ns
)1/3 , (6.18)

where NAs is the sheet density of the acceptors in the depletion region at the
interface (two-dimensional gas being formed in a p-type GaAs medium) and Ns
the sheet concentration in the two-dimensional electron gas. Application of this
equation to finding the parameters of interest, e.g. the sheet electron density,
requires an iterative procedure, since occupation statistics have to be consid-
ered together with the above as well as higher-order subbands and the total
sheet acceptor charge consistent with the band bending. When NAs � Ns,
the acceptor charge may be ignored, and the subband energy is proportional
to the 2/3rd power of the sheet carrier density. Since the sheet carrier density
is proportional to the electric field, the zero’th subband energy is proportional
to the 2/3rd power of the electric field, a result shown earlier employing the
Airy function solution to the triangular barrier problem. A triangular barrier
can be formed only with no acceptor charge to allow constant field. The two
results are consistent. The pre-factors of the equation can also be shown to be
consistent. This also points out the approximate basis of the triangular well
approximation, and its inadequacy when Ns is low and within factors of four
of the acceptor density. A 1 × 1015 cm−3 doped material, with a 1 µm deple-
tion for typical bias conditions, has a sheet acceptor density of 1 × 1011 cm−2,
making this approximation inaccurate under conditions of 4 × 1011 cm−2 sheet
carrier density. Clearly, if non-degenerate conditions prevail, a test that can
be made post-priori, application of the Boltzmann approximation may be more
acceptable. We will return to the discussion of these approximations again later;
Problem 5 considers the above question for a subject of some interest in HFETs.

When NAs < Ns, the subband energies are quite independent of tempera-
ture and the temperature dependence of the Fermi level position can be found
by integrating the Fermi function over the subbands. The subband positions
being insensitive to temperature, these can be modelled more accurately than
the expressions based on triangular well approximation. An example for the
Ga1−xAlxAs/GaAs system is shown in Figure 6.8 at absolute zero.

Figure 6.6 showed schematically the envelope functions and the position of
the first three subband levels in an inversion layer on a (100) surface in silicon.
The lowest two of these subband levels arose from the lower transverse mass
and the third from the higher longitudinal mass. Since the conduction band
at the band minimum is isotropic in GaAs, the subbands do not exhibit the
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Figure 6.8: Zero’th energy level E0 (solid lines) and the first energy level (dashed
lines) for the Ga1−xAlxAs/GaAs system as a function of temperature for a
barrier energy of 0.3 eV, and acceptor concentration of 3 × 1014 cm−3. The
two-dimensional sheet electron densities are 1, 3, 5, 7.5, and 10× 1011 cm−2 for
the successive curves starting at the bottom. After F. Stern and S. Das Sarma,
“Electron Energy Levels in GaAs/Ga1−xAlxAs Heterojunctions” Phys. Rev. B,
30, No. 2, p. 840, 1984.
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Figure 6.9: Average distance from the interface for the Ga1−xAlxAs/GaAs ex-
ample. The acceptor density is 3 × 1014 cm−3 and the different curves are for
0, 77, and 300 K. After F. Stern and S. Das Sarma, “Electron Energy Levels in
GaAs/Ga1−xAlxAs Heterojunctions” Phys. Rev. B, 30, No. 2, p. 840, 1984.

complexity of (100) silicon surface; the pattern is similar to that exhibited by
the X valleys of silicon corresponding to the transverse masses and the envelope
functions have a similar general shape. The average distance of electrons from
the interface is related to the shape of the envelope function. Figure 6.9 shows,
at various temperatures, the average distance of the two-dimensional electron
gas from the interface as a function of the sheet charge density. With an increase
in the carrier density in the channel, even though higher-order bands get more
occupied, the average distance from the interface decreases because it leads
to a stronger confinement, again through semiconductor band bending at the
interface. The electrons in the lowest subband are on an average about ≈ 40 Å
into GaAs, and those in the first excited subband ≈ 150 Å away from the
interface at high–1011 cm−2 sheet electron density in GaAs. We will discuss
this average distance later in this chapter since it can be a substantial fraction
of the thickness of the large bandgap semiconductor and hence quite important
to the characteristics of HFETs.

The minimum subband energy is also a function of the sheet electron density
since these are interrelated with the degree of confinement. Figure 6.10 shows
the movement of the energy of the zero’th energy level as a function of sheet
electron density. The influence of channel carrier density in moving the energy
levels is strongest for the lowest acceptor doping because it leads to the largest
band bending and confinement at the interface. At higher acceptor densities,
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Figure 6.10: Zero’th subband position as a function of the sheet elec-
tron concentration at absolute zero for our example of the 0.3 eV barrier,
Ga1−xAlxAs/GaAs heterojunction with NA varying. The sheet acceptor den-
sity NAs corresponding to the acceptor densities shown are 0.146, 0.46, 0.80,
1.47, 2.56, and 4.69× 1011 cm−2. After F. Stern and S. Das Sarma, “Electron
Energy Levels in GaAs/Ga1−xAlxAs Heterojunctions” Phys. Rev. B, 30, No.
2, p. 840, 1984.
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Figure 6.11: Fraction of the occupation of zero’th and first subbands as a func-
tion of sheet electron density for 0 K, 77 K, and 300 K. Barrier energy is 0.3 eV
and the sheet acceptor density is 8×1010 cm−2 in the substrate. After F. Stern
and S. Das Sarma, “Electron Energy Levels in GaAs/Ga1−xAlxAs Heterojunc-
tions” Phys. Rev. B, 30, No. 2, p. 840, 1984.

the triangular well approximation is increasingly inaccurate, and the well char-
acteristics are strongly influenced by the acceptor charge in addition to being
influenced by the carrier charge.

For the influence of thermal energy in the occupation statistics, Figure 6.11
shows the occupation of individual subbands as a function of the sheet electron
density for various temperatures. The occupation of the higher bands increases
with temperature, as expected, as also with larger sheet electron density. At
5 × 1011 cm−2 channel electron density, the ground state is ≈ 60% occupied,
the first excited state is ≈ 20% occupied, and the second excited state is ≈
10% occupied at 300 K, showing the significance of all of these in the electron
statistics. The resulting Fermi energy as a function of channel electron density
and temperature is shown in Figure 6.12, which shows the variation of the
Fermi energy again for the various temperatures. Note the rapid movement of
the Fermi energy with respect to the extrapolated bottom of the conduction
band with channel electron density at 300 K.

Actual implementations of heterostructures in a transistor may be signifi-
cantly different from the structure we have been discussing. We assumed the
existence of the larger bandgap semiconductor Ga1−xAlxAs as a heterostructure
with GaAs, and concentrated on the behavior of GaAs and occupation of states
in GaAs. Practical structures quite often employ doped Ga1−xAlxAs with an
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Figure 6.12: Fermi energy w.r.t. extrapolated Ec as a function of sheet electron
density for Ga1−xAlxAs/GaAs for 0 K, 77 K, and 300 K. Sheet density of the
accepter charge in the depletion layer is 8 × 1010 cm−2 and barrier energy is
assumed to be 0.3 eV. After F. Stern and S. Das Sarma, “Electron Energy Levels
in GaAs/Ga1−xAlxAs Heterojunctions” Phys. Rev. B, 30, No. 2, p. 840, 1984.
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Figure 6.13: Calculated results for a Ga.7Al.3As/GaAs heterostructure with
3 × 1014 cm−3 p-type GaAs, showing the dependence of predicted sheet carrier
density as a function of Fermi energy for the triangular well approximation (a),
the quantum-mechanical calculation (b), the Fermi–Dirac approximation (c),
and the Boltzmann approximation (d) at 300 K.

undoped spacer layer to create the electron or hole two-dimensional carrier gas.
The donor in this Ga1−xAlxAs or other barrier material may be deep, thus the
excursion in the Fermi energy at the interface in GaAs, and the sheet carrier
density is not unlimited. As the Fermi energy increases in the smaller bandgap
material, the donors in the larger gap material themselves begin being occupied
by electrons and lose their ability to influence the electric field and the electron
charge at the interface.

We now return to the question of statistics and the relevance of various
approximations in a device problem. We consider this using the problem of
Ga.7Al.3As/GaAs with 3 × 1014 cm−3 p-type GaAs, and we consider the pre-
diction of carrier density with Fermi energy for the quantum-mechanical calcu-
lation, the triangular well approximation, the Boltzmann approximation, and
the Fermi–Dirac approximation. The results are shown in Figure 6.13. Note
that at the lowest carrier densities, the Boltzmann, the Fermi–Dirac (which re-
duces to Boltzmann in the non-degenerate limit), and the quantum-mechanical
calculation yield quite accurate results. In the modest carrier density range
of low to mid 1011 cm−2, the Fermi–Dirac approximation and the quantum-
mechanical calculation agree reasonably well; the triangular approximation is
in agreement at the highest carrier densities. Thus, the use of simplifications to
the quantum-mechanical calculation in the form of the triangular well approx-
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imation are useful in the larger carrier density situation; in others, simplified
three-dimensional approximations suffice. We will relate this to the behavior in
devices, where low and high carrier densities exist simultaneously in different
parts of the device, later.

Our conclusion from this calculation is restricted to 300 K temperature of
operation. The thermal energy is .026 eV; it is not surprising that only when
the quantization energies become sufficiently stronger than this thermal energy
do we need to consider the effect of quantization on the carrier densities. At
77 K, the thermal energy is only ≈ .005 eV and quantization effects must be
considered (see Problem 6).

6.6 Channel Control in HFETs

Doped barrier HFETs6 are usually fabricated using a spacer layer of undoped
material at the interface in the larger gap material. In addition, donors in
Ga1−xAlxAs have large ionization energies, a subject we will discuss later. Fig-
ure 6.14 shows the channel control under one-dimensional conditions with and
without bias, showing schematically the effect of the spacer layer, deep donor
layer, and bias in a modulation-doped HFET. The major consequence of a spacer
layer and large ionization energy in the large bandgap material is that fewer car-
riers occur in the well than in the situation without the spacer or with a shallow
donor. Due to the large ionization energy, the donor states in the larger gap
material themselves begin being occupied at large forward voltages on the gate.
This reduces the ability to influence the electric field and the electron charge at
the interface. The gate then loses control of the two-dimensional channel.

Once the bias reaches these conditions, a further increase in gate voltage
leads to electrons in the channel formed in Ga1−xAlxAs being modulated. These
electrons are either available through ohmic contacts such as in an FET, through
generation process, and by injection through the barrier regions. Since the
generation time constant is of the order of 1 ns, absent ohmic contacts, in a
capacitor structure, frequency dispersion effects in capacitances occur around
1 GHz. In FETs, the ohmic contacts supply the necessary carriers, and the
bias effects of electron capture by donors in the larger bandgap material are
always present. Devices thus have a parasitic Ga1−xAlxAs MESFET channel
in the high gate bias region when modulation-doped barrier semiconductors are
employed. The channel will form irrespective of shallow or deep levels—the
problem just occurs earlier in the latter case. For Ga1−xAlxAs, with x ≈ 0.4,
the donor ionization energy is ≈ 60–80 meV. Later, we also discuss other
peculiar phenomena in Ga1−xAlxAs—that of DX centers. Figure 6.15 shows
the magnitude of ionization energy of a silicon donor as a function of aluminum
arsenide mole-fraction, and, for a selected structure, the ratio of sheet charge

6These have also been called MODFETs for modulation-doped field effect transistors,
HEMTs for high electron mobility transistors, and SDHTs for selectively doped heterostruc-
ture transistors for historical reasons. We will refer to these as doped barrier HFETs implicitly
acknowledging the common roots of the different varieties of HFETs.



6.6 Channel Control 391

Figure 6.14: Effect of spacer layer, deep donors etc. on the channel control
without and with bias at a Ga.7Al.3As/GaAs heterojunction. (a) shows con-
duction band edge assuming shallow donors (solid lines), deep donors (long
dashed lines), and shallow donors with a spacer layer (short dashed lines). The
lower set of lines is with a forward bias of 0.5 V. (b) shows the ionized donor
density as a function of forward bias on the gate of 0 V, 0.25 V, 0.5 V, and
0.75 V for the deep donor case. It shows the significant electron capture by
donors occuring in this example.
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Figure 6.15: Ionization energy associated with doping due to Si in Ga1−xAlxAs
as a function of AlAs mole-fraction. This figure is approximate with an error
bar of the order of 20 meV at the peak and has been assembled from various
data in the literature.

in the channel versus in the Ga.7Al.3As as a function of sheet density in the
channel. In this figure, it can be seen that at x ≈ 0.4, there is a rapid rise in the
ionization energy. This rapid rise is believed to result from the lattice distortion
effect as well as possible consequences of a large coupling between the Γ, L, and
X bands near the band crossover point.

HFETs based on confinement of carriers can obviously be made in several
different forms, for one need not confine oneself to a quasi-triangular well. We
could equally well use a square well by cladding a smaller bandgap material
by doped larger gap materials, or even undoped larger gap materials. The
doped large gap material doesn’t have to be at the surface—it could be buried
underneath the channel, and it would still have a confined channel showing the
enhanced mobility. This is known as the inverted structure.

These variations in structures are a consequence of the freedom afforded by
morphic and pseudomorphic growth of dissimilar bandgap materials in com-
pound semiconductors. Figure 6.16 shows many of the variations of HFET
structures in the form of one-dimensional band diagrams showing the formation
of the two-dimensional channel. The various device structures are differing at-
tempts at alleviating shortcomings of other structures or improving on some of
the features. These may include higher mobility or use of a different material,
use of an inverted interface to obtain buried devices, better threshold control,
suppression of the DX center problem, a larger amount of charge control by im-
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Figure 6.16: Some of the many variations of HFET structures, based on con-
finement of carriers in one of the dimensions using heterostructures. (a) shows
the doped-barrier HFET. (a.1) and (a.2) show variations of this structure us-
ing doping in GaAs in a superlattice to avoid deep donor problems and the
use of planar doping to achieve high sheet carrier densities. (b) shows the SIS-
FET structure with (b.1) as its variation using a metal gate (also called MIS-
FET for metal–insulator semiconductor field effect transistor and HIGFET for
heterostructure–insulator gate field effect transistor). (c) shows the inverted het-
erostructure where an underlying layer of the large bandgap material is doped.
(d), (d.1) and (d.2) show structures based on utilization of stronger confinement
using square wells.
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proving the efficiency of charge transfer, higher mobilities by introducing strain
in the crystal, use of alternate confinement to obtain better short-channel effects,
etc.

One can think of several other structures and material combinations, each
with a trade off between advantages and disadvantages. Doping, as we have
discussed, leads to formation of parasitic conducting channels. These would
also happen in inverted structures. Inverted structures present a discontinu-
ity to the conducting channel away from the charge control electrode. Ideally,
this should result in a suppression of injection of warm carriers from the con-
ducting channel to the substrate. However, in doped Ga1−xAlxAs, where a
lower energy region exists between the discontinuity and the substrate, carri-
ers can get injected towards the substrate, resulting in their trapping in the
Ga1−xAlxAs. This phenomenon can lead to instability problems in switching
because these thermalized carriers can not come back to the channel as easily.
This same instability can occur in the capacitor structure discussed in this sec-
tion. Generation–recombination times are of the order of 1 ns. If a forward bias
rapid pulse is applied to cause an injection of carriers from the channel into the
large bandgap material region of the capacitor, and they are captured by the
donor, the process occurs on a slow time scale. Thus the capacitor structure
shows time transients at these time scales. In FETs, with bias changes, etc., as
during a switching transient, they will lead to larger time constant decays and
rises.

An alternative to the doping of the larger gap material is to use undoped
material—making the larger material a closer analogue of the SiO2 insulator,
a process that also removes the above time transient effects. These structures,
such as the GaAs gate SISFET, have a threshold voltage closer to zero and result
in p-channel devices with a similar close-to-zero threshold voltage. Undoped
Ga1−xAlxAs, etc., may also be used in certain cases to increase the barrier
height of a Schottky barrier, such as to Ga1−xInxAs. The example (b.1) of
Figure 6.16 accomplishes this.

The common feature to all these devices is a conducting channel where there
are usually no intentional dopants. This allows the low field mobilities to be
larger, largely because of reduction in ionized impurity scattering. The thresh-
old voltage is controlled by appropriate thicknesses of the doped barrier layer,
or to the natural value that may result from the structure. In SiO2 MOSFETs,
the threshold is controlled by doping the channel in order to accomplish the
appropriate band bending. Channels have also been doped in compound semi-
conductor HFETs, but usually the objective is to suppress substrate injection
by appropriate band shaping at the back interface.

Undoped barrier devices have been particularly appealing because they avoid
deep donor related problems and have better threshold control. Being extensions
of the SiO2-based structures, they are also easier to discuss and consider as
basis for further refinements. We have also discussed the appropriateness of
Boltzmann statistics, Fermi–Dirac statistics, triangular-well approximation, and
full quantum-mechanical calculation in the context of calculating channel charge
in a two-dimensional carrier gas. Boltzmann approximation was shown to be
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adequate, for 300 K, for low sheet densities. This would suggest that in sub-
threshold conditions, low channel densities, and in the region of the device where
the channel is pinched off, i.e., near the drain for a normally operating FET,
the Boltzmann approximation will be an adequate representation. Initially, we
will make an additional assumption of treating the larger bandgap material,
to be called an insulator, as entirely insulating. Such devices can be made in
some of the compound semiconductors, and hence serve as a reference for the
development of our analysis. They also serve to refresh the physics of MOSFETs,
since they are similar in form.

6.7 Quasi-Static MISFET Theory Using Boltz-

mann Approximation

The simplest of the field effect transistor structures based on inversion or ac-
cumulation at semiconductor interfaces utilize large bandgap insulators such
as silicon dioxide, and the most convenient means of analyzing the structures
based on the two-dimensional carrier system is based on treating it as a sheet
charge utilizing the Boltzmann approximation.7 Such structures, based on an
ideal insulator and statistics of non-degenerate conditions, have limited valid-
ity in compound semiconductors. Insulators such as silicon dioxide have fairly
large interface state density at the surfaces of most compound semiconductors,
reducing or precluding control of inversion layers, and at the least leading to
substantial slow and fast states related effects. Large bandgap semiconductors
conduct some current, and hence hot carrier and tunneling effects are substan-
tially more important and part of the device operation over much of the bias
range, unlike in the oxide-based structure where the tunneling and hot carrier
effects are more of a concern in device reliability. Likewise, most of the large-
mobility compound semiconductors have a low effective density of states, and
strong inversion requires inclusion of degenerate statistics, and, because of the
smaller effective mass, inclusion of quantization effects in the source end part
of the device. But, both low inversion conditions (i.e., low gate biases) and
drain biases leading to pinch-off at the drain end cause a substantial part of
the channel to be in weak inversion; these are all regions where the Boltzmann
approximation is appropriate. Quasi-static characteristics for both capacitor

7Sheet charge models were originally developed for silicon MOSFETs where they have
been extensively applied. Four references that describe various degrees of sophistication as
well place it in a historical perspective are: H. C. Pao and C. T. Sah, “Effect of Diffusion Cur-
rent on Characteristics of Metal–Oxide(Insulator)–Semiconductor Transistors,” Solid-State

Electronics, 9, No. 9, 1966; G. Baccarani, M. Rudan, and G. Spadani, “Analytical I.G.F.E.T
Model Including Drift and Diffusion Currents,” IEE J. on Solid-State and Electron Devices,
2, No. 2, 1978; P. A. Muls, G. J. Declerck, and R. G. Van Overstraeten, “Characterization of
the MOSFET Operating in Weak Inversion,” in L. Marton, Ed., Advances in Electronics and

Electron Physics, 47, Academic Press, N.Y., (1978); and J. R. Brews, “Physics of the MOS
Transistor,” in D. Kahng, Ed., Applied Solid State Science, Suppl. 2A, Academic Press, San
Diego, CA (1981). Our description here closely follows the last reference with changes to suit
compound semiconductors.
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structures and field effect transistor structures, assuming ideal insulators and
the Boltzmann approximation, are of general interest before we consider the
consequences of breakdown of these approximations.

Our discussion of insulator semiconductor physics for use in field effect tran-
sistors will begin with a discussion of the semiconductor–insulator–semiconductor
capacitor structures. Consider the band bending when two pieces of semicon-
ductors or a semiconductor and metal are brought together with an intervening
insulating medium, in thermal equilibrium, and in steady-state, with positive
and negative bias applied as shown in Figure 6.17. Because the insulator does
not support any flow of charge (an example of such an insulator is SiO2 under
most conditions), the system is in thermal equilibrium even with bias, with the
only mechanism for the redistribution of charge being through the processes of
generation and recombination. In the figure, case (b) is when a voltage VFB
is applied to the metal gate to lead to flat band conditions in the semiconduc-
tor. Flat-band is defined as the condition when the band edges are flat in the
region of interest, i.e., at the interface in the semiconductor. For a structure
with a changing bandgap, we may define this as when the band edge of interest
corresponding to the carrier of interest is flat, e.g., conduction band edge (cor-
responding to electrons) for formation of inversion layer in the p-type material.
In the base–emitter junction of the n–p–n bipolar transistor, it is again the con-
duction band edge for both the emitter and the base since the electron transport
is the major transport and the feature of interest. Case (c), in this figure, shows
the depletion condition at the interface when the bias causes removal of holes
from near the insulator interface. When more bias is applied, electron charge
results at the surface, as shown in case (d). This charge region is known as the
inversion layer because in this example we used a p-type semiconductor. If a
polarity opposite to this were applied, we would obtain an accumulation layer
of holes at the interface. In all these cases, because no current flow can occur,
not being allowed by the insulator, the carrier redistribution occurs through
generation and recombination of carriers, and thermal equilibrium prevails.

The corresponding capacitance–voltage characteristics that we would see
for this example are shown in Figure 6.18. The observed capacitance, which
measures the change in charge to any change in applied bias, depends on how
rapidly the signal used to measure the capacitance is changed. In the absence
of a source of carriers, the process of addition or removal of carriers from the
interface and the depletion region are limited by generation and recombination,
which have a finite time constant. Recall that the insulator allows no flow of
charge. In a FET, this moving charge at the interface is available through the
ohmic electrodes of source and drain. But, in a capacitor structure, with only
the gate and the substrate electrode for bias, it has to occur through carrier
generation and recombination, either through a thermal process or through
some external means of excitation. An example of the latter is light-induced
generation of carriers.

Let us assume that we have an accumulation layer formed in the structure
and we have a negative bias applied for the p-type substrate structure. So,
we have accumulation of holes at the insulator–semiconductor interface. These
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Figure 6.17: (a) shows the energy band diagram when the metal and semicon-
ductor are far away and (b) shows the same when they are connected together
and the flat-band voltage VFB is applied. (c) and (d) shows the energy band
diagrams in depletion and inversion together with a schematic of charge distribu-
tion in the lower half of the figure. (d) also shows the band bending convention
adopted here.
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Figure 6.18: Capacitance–voltage characteristics for the metal–insulator–
semiconductor structure. The accumulation region is on the left part, and the
positive bias for this p-type substrate shows various possible capacitances de-
pending on the frequency of operation.

holes were attracted to the interface by the negative bias voltage applied and the
lower hole energy at the band edge that resulted. If we measure the capacitance
of this structure at this bias by a small-signal voltage, we will essentially mea-
sure the capacitance of the insulator. Because the substrate is p-type, carriers
will move to the interface or away from the interface through the conducting
path. The frequency of signal that we apply can either be low or high (within
limits of dielectric relaxation frequency); the accumulation region will be able to
respond through the conducting path and we will continue to observe this high
capacitance so long as accumulation exists, i.e., below flat-band voltage bias for
the p-type substrate. We now change the bias that is applied to the substrate.
As we change the bias to greater than the flat-band voltage, the capacitance
response becomes a function of the measurement conditions, because these de-
termine whether the electrons can appear at the interface or not, depending on
rate of sweep of the bias, and if they do appear whether they can respond or
not.

First consider the changing of bias and measurement of the capacitance using
a small applied signal in the absence of any excitation such as light. If the sweep
of bias, even though it is slow, does not lead to generation of carriers because the
semiconductor material has good lifetime, then, independent of the frequency
of measurement, no carriers appear at the interface and the depletion region
continues to expand into the semiconductor. The capacitor structure is then
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said to go into deep depletion. On the other hand, if the bias sweep is such that
it allows the carriers to appear at the interface, then the capacitance response
depends on whether these carriers at the interface can be modulated by the small
signal. If the frequency is high, then even though the inversion layer is formed,
the carriers in the inversion layer do not respond to the applied signal, only
the substrate depletion region responds, and one sees a low capacitance. This
low capacitance occurs together with an inversion layer; the bias drop across
the substrate region is smaller than that in the deep-depletion case where no
inversion layer is formed. So, this capacitance is higher than the deep-depletion
capacitance. Now, if the applied small signal is at a low frequency, the inversion
layer may respond through carrier generation and recombination. So, with
change in bias, at low frequencies, we gradually see the capacitance reaching
back to similar values as in the accumulation case. Minor differences in the
magnitude of this limit capacitance will occur because the total band bending
also depends on density of states, which are different for the conduction and
valence bands. So, when the bias is swept from below flat-band voltages to
higher than flat-band voltages, the capacitor structure can show three distinctly
different behaviors, to be referred to as deep-depletion behavior, high-frequency
behavior, and low-frequency behavior. The inversion layer is formed in both
the high-frequency and the low-frequency case, even though the capacitance
observed is different because the inversion layer fails to respond to the high-
frequency signal but does respond to the low-frequency signal.

We may also have an excitation, such as light, during or during part of the
measurement of the structure. The deep-depletion type of measurement ob-
tained by sweeping the bias from below flat-band voltage to above the flat-band
voltage is quite often accomplished by applying a slowly varying bias (a ramp,
e.g.), and observing the current to determine the capacitance. The current is
displacement current in the insulator, and, because of the slow change in bias,
conduction current in the semiconductor. If we apply a bias larger than the flat-
band voltage bias and form an inversion layer (e.g., by using light excitation),
and then use the slow ramp sweep to measure the capacitance as we apply a
bias going towards accumulation, a capacitance–voltage behavior similar to the
low frequency behavior will be observed. Such a behavior is usually referred to
as quasi-static capacitance–voltage behavior. Its observation indicates the insu-
lating character of the insulator. Together with the high-frequency behavior it
forms a strong basis for first-order understanding of interface state distribution,
etc. (see Problem 8).

We will define the various states of charge distribution at the insulator–
semiconductor interface for the p-type substrate here. The definitions for the
n-type substrate are analogous to this.

Weak inversion is defined as the state when the surface is barely n-type with
the electron concentration greater than the intrinsic carrier concentration but
less than the background hole concentration of the substrate, i.e.,

ni ≤ n(0) ≤ p0, (6.19)
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and equivalently,

ψB ≤ ψS ≤ 2ψB . (6.20)

We define the potentials w.r.t. the bulk where the reference is the intrinsic
level. The bulk potential is ψB , the hole Fermi energy level being qψB below
the intrinsic energy level. The surface potential is ψS . The two equations above
for carrier concentration and potential can then be seen to be equivalent.

Likewise, moderate inversion is the state when the carrier concentration at
the surface exceeds the bulk hole concentration, but the total charge in the
inversion layer is still less than the charge in the depletion region.

n(0) ≥ p0 and QI ≤ Qdep. (6.21)

Let ψH be the potential at the surface when the inversion charge becomes equal
to the depletion layer charge. The above condition can be summarized to

2ψB ≤ ψS ≤ ψH . (6.22)

Strong inversion is defined as the condition at which the total charge in the
inversion layer exceeds the depletion layer charge. Thus, at strong inversion

n(0) ≥ p0,

QI ≥ Qdep.,

and ψS ≥ ψH . (6.23)

Part (d) of Figure 6.17 shows the convention for definition of potentials and
energies. We use the bulk intrinsic level as our reference. Then, the electrostatic
potential is defined as the band bending with respect to the bulk. It is positive
if the bands bend downwards. The Fermi level in the bulk is at qψB below
the intrinsic level. Let us derive a general solution to the problem, relating the
band bending to the material properties. We will later extend this by relating
the band bending to the applied potentials themselves. Consider the case of a
uniformly doped semiconductor with

NA(y) = NA, (6.24)

independent of the position. We consider the Boltzmann approximation for the
carriers,

p = ni exp

(
q
−ψ + ψB

kT

)
. (6.25)

In thermal equilibrium, and this insulator case is always in thermal equilibrium
because the insulator allows no current to flow,

n = ni exp

(
q
ψ − ψB
kT

)
. (6.26)
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Also, again by definition,

NA = ni exp

(
qψB
kT

)
. (6.27)

Poisson’s equation allows us to write the problem in the form

−d
2ψ

dy2
= −qNA(y)

εs
+
qp(y)

εs
+
qND(y)

εs
− qn(y)

εs
. (6.28)

Consider the case of no donors (p-type substrate) and uniform doping.

d2ψ

dy2
=

qNA
εs

− qni
εs

exp

(
q
−ψ + ψB

kT

)
+
qni
εs

exp

(
q
ψ − ψB
kT

)

for 0 < y < w

and
d2ψ

dy2
= 0 for y > w. (6.29)

Multiplying by dψ/dy , using the equality

1

2

d

dy

(
dψ

dy

)2

=

(
dψ

dy

)(
d2ψ

dy2

)
, (6.30)

and neglecting the hole contribution, we obtain

1
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d

dy

(
dψ
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)2

=
qNA
εs

[
1 +

ni
NA
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(
q
ψ − ψB
kT

)]
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. (6.31)

This is simply written as

1
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d

dy
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dψ
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)2
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kT

qλD

)2
[
q

kT
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q

kT

(
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qψ
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)]
dψ
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, (6.32)

where λD is the Debye length given by

λD =

√
εskT

q2NA
, (6.33)

yielding the form
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. (6.34)

Integrating from the insulator–semiconductor interface (y = 0) to the edge of
the depletion region (y = w) we obtain

(
dψ

dy

)2

y=w

−
(
dψ

dy

)2

y=0

= 2

(
kT

qλD

)2
[
q

kT
ψ +
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)2
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(
qψ
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)]∣∣∣∣∣

y=w

y=0

.

(6.35)
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At the edge of the depletion region both the electrostatic potential and the
electrostatic field are zero, and at the insulator–semiconductor interface the
potential is the surface potential. So the boundary conditions at y = w are

ψ = 0 and
dψ

dy
= 0, (6.36)

and at y = 0 is
ψ = ψS . (6.37)

So, we obtain

− dψ

dy

∣∣∣∣
y=0

=

√
2kT

qλD

{
qψS
kT

+

(
ni
NA

)2 [
exp

(
qψS
kT

)
− 1

]}1/2

. (6.38)

The terms in this equation can be associated with the charge terms of Poisson’s
equation. The first term is due to the ionized impurity charge NA and the
second term is due to the electron charge corresponding to ψS of band bending.
We may show this quite simply, Poisson’s equation solution for band bending
and field for the ionized charge solution is the simplest level of approximation
in p–n junction theory. The field and the band bending from Poisson’s equation
as a function of the depth y are

−dψ
dy

=
qNA
εs

y,

and ψ =
qNA
2εs

y2, (6.39)

which, when y is eliminated, is

−dψ
dy

=
qNA
εs

√
2εsψ

qNA
=

√
2

λD
ψ. (6.40)

This equation, derived earlier, is a more general solution of the transition
region problem that includes the contribution of both mobile (electron) and im-
mobile charge. It still ignores hole contribution which could have been included,
but would have resulted in a more complicated expression. In the insulator–
semiconductor problem, our interest is in the realistic modelling of the charge
that gives rise to conduction, i.e., the electrons in inversion. The hole charge
contribution is negligible because the inversion condition, where these devices
are usually biased to operate, leads to significant enough band bending that very
little hole charge exists. Most of the other charge contribution appears from the
ionized acceptor charge in the depletion region. The electron charge is spread
out near the insulator–semiconductor interface, and, as we will see, mostly con-
fined in a region which is fairly thin (of the order of at most ≈ 100 Å’s). Our
further approximation, for a simple iterative but manageable solution, entails
assuming that we will approximate the inversion charge of electrons to be con-
fined in a thin sheet of charge at the interface. We will take into account all the
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contributions by approximating the limited spread of the electron charge into
this infinitesimally thin layer. We could have used numerical integration of the
electron density given by

n = ni exp

(
q
ψ − ψB
kT

)
(6.41)

and a solution of ψ for calculating this. Instead we treat it as simply a sheet
charge at the interface of sheet density NI , equal to the numerically integrated
value of the above. Gauss’s law applied to Equation 6.38 allows us to do this
simply. The total charge in the semiconductor that gives rise to the band
bending and the field is Qsem and is

Qsem = −qNI − qNAw. (6.42)

Once an inversion layer forms, and conditions allow the supply or removal of
electrons for any further change in bias, most of the charge is induced in the
inversion layer; w does not change substantially then. The reason for this is
that the gate bias is screened by the electron inversion charge once the inversion
layer has been formed. ψS then does not change substantially. Since neutrality
prevails in the substrate beyond the depletion region, and the field is zero at
the depletion region edge, Qsem simply follows from Gauss’s law using a volume
whose one surface is at the interface and other is beyond the depletion region.

εs
dψ

dy

∣∣∣∣
y=0

= Qsem, (6.43)

and
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, (6.44)

and

qNAw = qNA
√

2λD

(
qψS
kT

)1/2

. (6.45)

So,

NI = NA
√

2λD
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−
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qψS
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 . (6.46)

In this equation, we have dropped the unity term of the electron charge part
of the semiconductor charge term because in moderate and strong inversion,
exp (qψS/kT ) is large. In weak inversion the whole term by itself is small.
Figure 6.19 shows the inversion carrier density of electrons in p-type substrate
of 3 × 1014 cm−3 doping. As can be seen in this, with the Boltzmann ap-
proximation, and we elaborate on this further later in our discussion of FET
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Figure 6.19: Sheet electron density in the Boltzmann approximation as a func-
tion of band bending for GaAs at 300 K and 77 K; the p-type doping in the
substrate is assumed to be 3× 1014 cm−3. The dotted lines show fits to the two
segments of the variations.

characteristics, the weak inversion and strong inversion regions are character-
ized by exponentially-varying electron charge densities. Mathematically, these
can be related by looking at the approximations of Equation 6.46.

In weak inversion, the surface is barely n-type, ni ≤ n(0) ≤ p0, ψB ≤ ψS ≤
2ψB , and QI ≤ Qdep.. Our approximation of Equation 6.46 is

NI ≈ NA
√

2λD

{(
qψS
kT

)1/2
[
1 +

(
ni
NA

)2
exp (qψS/kT )

2qψS/kT

]
−

(
qψS
kT

)1/2
}

≈ NAλD

(
ni
NA

)2
√

kT

2qψS
exp

(
qψS
kT

)
. (6.47)

In strong inversion, the inversion charge of electrons is significantly larger
than the depletion charge due to ionized acceptors, and the exponential term
dominates.

NI ≈ NA
√

2λD

(
ni
NA

)
exp

(
qψS
2kT

)
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≈
√

2λDni exp

(
qψS
2kT

)
. (6.48)

The slope of the sheet charge, with respect to band bending in strong inver-
sion, changes to approximately half of the exponential dependence of the weak
inversion region. The change in surface potential, necessary to cause any frac-
tion of change in inversion carrier density, is smaller by nearly a factor of two
in strong inversion compared to weak inversion. The largest changes in carrier
densities occur at the insulator–semiconductor interface in a thin region; the rel-
ative change in band bending required to cause a fractional change the charge
density here is very small because of the exponential relationship.

The relationship we seek is the relationship between applied gate bias, the
external stimulus, and the carrier density, in order to apply it in the calculation
of the current flow of the field effect transistor. The band bending occurs as
an implicit parameter in this derivation since it is the primary parameter in
calculations of charge densities. So, first we seek the relationship between this
band bending and the gate bias of the insulator capacitor structure.

Let the VG be the gate bias with respect to the substrate. The electrostatic
potential of the gate, assuming for the moment that the flat-band voltage, a
translational variable, is zero, is the applied potential VG itself. The electric
field in the insulator, Eins, is

Eins =
VG − ψS
tins

, (6.49)

where tins is the thickness of the insulator. In the absence of any interface
charge, the displacement field is continuous across the interface, i.e., Dins =
Dsem, and

εins
VG − ψS
tins

=

√
2εs
λD

kT

q

{
qψS
kT

+

(
ni
NA

)2 [
exp

(
qψS
kT

)
− 1

]}1/2

, (6.50)

or

Cins (VG − ψS) =
√

2CFB
kT

q

{
qψS
kT

+

(
ni
NA

)2 [
exp

(
qψS
kT

)
− 1

]}1/2

, (6.51)

where

Cins =
εins
tins

(6.52)

is the capacitance associated with the insulator, and

CFB =
εs
λD

(6.53)

is the capacitance associated with the semiconductor under flat-band conditions
(see Problem 9).
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Figure 6.20: Surface band bending with applied gate at 300 K and 77 K for GaAs
of background doping 3 × 1014 cm−3, with an insulator of 400 Å thickness and
a dielectric constant of 11.9 (an idealization of undoped Ga1−xAlxAs assuming
a large bandgap). This calculation assumes a flat-band voltage of zero, so the
gate voltage should be translated along the ordinate axis by VFB .

These capacitances are defined per unit area, as are many of the earlier
parameters such as the sheet charge carrier densities, etc. The flat-band capaci-
tance CFB is the semiconductor portion of the total capacitance of the structure
when flat band conditions prevail. Our analysis of p–n junctions also gives rise
to similar capacitance when the junction is biased to near flat-band conditions.
We now have the relations between the gate bias and surface band bending and
we have already derived the relationship between surface band bending and the
sheet carrier density. For the insulator capacitor, we now have a relatively com-
plete description of the parameters of interest, from which most others can be
derived.

Figure 6.20 shows the variation of surface potential with applied gate bias
for a GaAs substrate of background doping 3 × 1014 cm−3 at 300 K and 77 K ,
assuming an idealized insulator of undoped Ga1−xAlxAs, of dielectric constant
of 11.9, and a bandgap assumed to be very large. At low biases, the surface po-
tential changes rapidly with gate bias through the depletion and weak inversion
region. At larger biases, the surface potential does not change as much with
bias. The change to this lower bias dependence begins to occur at moderate
inversion conditions where the inversion sheet charge is similar in magnitude to
the depletion layer sheet charge. Once the semiconductor surface is in strong
inversion, the surface potential changes very little, almost as if it is pinned. To-
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Figure 6.21: Sheet carrier (solid lines) and sheet total charge density (long
dashes) as a function of band bending for 3 × 1014 cm−3 acceptor doping in
GaAs at 300 K and 77 K. The variation of sheet density due to acceptor in the
depletion region is shown using short dashes.

gether with this, the depletion region width also becomes nearly constant. The
capacitance associated with the semiconductor, therefore, is nearly a constant in
this bias region. The screening by inversion charge is responsible for this. The
surface band bending does not have to change much to induce a large change in
the sheet charge because most of the charge resides in a sheet at the insulator–
semiconductor interface, and, recall, the carrier density changes exponentially
with the energy difference between the Fermi energy and the conduction band
edge energy.

For modest doping in the substrate, this change in behavior of the surface
potential occurs close to the condition where the charge in the inversion layer
becomes comparable to the ionized dopant charge in the depletion region. It
becomes equal at ψH ; the region between a band bending of 2ψB and ψH is
characterized by the change to saturation behavior of the surface potential.
We tend to use the magnitude 2ψB for evaluation of the condition of onset of
inversion at modest or large substrate dopings because it is easy to evaluate.

Figure 6.21 shows the behavior of sheet charge, at the interface, in the semi-
conductor region, as a function of surface potential for the 3 × 1014 cm−3 ac-
ceptor doping. ψB for this doping is ≈ 0.49 V. Here, the use of 2ψB as a
criterion for inversion would be quite erroneous. However, at larger dopings in
the substrate, exceeding 2 × 1016 cm−3, the change over to modest and strong
inversion comes close to the 2ψB criterion. The lighter-doped material has too
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little integrated charge due to ionized impurities; the band bending that creates
a similar amount of sheet carrier density results in a small carrier density and a
large difference between the conduction band edge and the Fermi energy at the
interface. A larger sheet density than this is needed before the band bending
exhibits the expected pinning.

The condition at which this change to rapid increase in sheet carrier density
with band bending occurs is reflected in the threshold condition, since con-
duction can be large for biases exceeding this. For the low-1016 cm−3 doped
substrate, this threshold condition can be defined in terms of when the band
bending reaches the magnitude of 2ψB. This is the onset of modest inversion;
as the trend of sheet carrier density with band bending shows, a more accurate
description may be the onset of strong inversion which occurs nearly 100 mV
to 200 mV above the 2ψB band bending. For lighter-doped substrates, we may
define this to occur at conditions when the inversion sheet carrier density ap-
proaches mid-1010 cm−2, a condition when the band edge and Fermi energy are
quite close and inversion charge changes rapidly without any significant change
in band bending. So, for higher-doped substrates, the threshold voltage in our
derivation where we ignore the exponential factor is

VT ≈ 2ψB +
CFB
Cins

(
2
qψB
kT

)1/2

, (6.54)

with a translational parameter of flat-band voltage, and more accurately, the
term of 2ψB may be replaced by 2ψH . In the case of low-doped substrates, we
need to determine the surface band bending for mid-1010 cm−2 sheet carrier
density and employ that value.

6.7.1 Capacitance of the MIS Structure

We have now determined the relationship between the band bending and the
applied bias, and the relationship between the carrier density and the band bend-
ing. The capacitances (quasi-static, since this analysis uses the static equations)
follow from the change in charge due a change in potential. The semiconductor
capacitance Csem, e.g., is

Csem = −dQsem

dψS

=
CFB√

2

[
1 +

(
ni
NA

)2

exp

(
qψS
kT

)]
×

{
qψS
kT

+

(
ni
NA

)2 [
exp

(
qψS
kT

)
− 1

]}−1/2

. (6.55)

In order to obtain an expression for capacitance valid from depletion to strong
inversion, we must consider the charge contribution from electrons and holes;
the above equation considers electron charge but ignores hole charge. Thus,
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the expression is invalid in accumulation and flat-band conditions since the hole
contribution can be substantial in these regions. The validity of the above
expression is thus restricted to qψS/kT � 0. Had we included this (see Prob-
lem 9),

Csem =
CFB√

2

{
1 − exp

(
−qψS
kT

)
+

(
ni
NA

)2 [
exp

(
qψS
kT

)
− 1

]}
×

{[
exp

(
−qψS
kT

)
+
qψS
kT

− 1

]
+

(
ni
NA

)2 [
exp

(
qψS
kT

)
− qψS

kT
− 1

]}−1/2

. (6.56)

This equation should be valid in all regions. This corresponds to the low-
frequency behavior discussed earlier, since we have assumed quasi-static condi-
tions to prevail in the semiconductor. Note that when ψS → 0, Csem → CFB ,
the semiconductor capacitance at flat-band conditions, related through the De-
bye length. The capacitance we are most interested in is the capacitance CMIS

of the complete structure, related as

CMIS =
dQG

dVG
= −dQsem

dVG
. (6.57)

We assume a perfect insulator that contains no charge, hence,

Cins (VG − ψS) = −Qsem, (6.58)

and

Cins

(
1 − dψS

dVG

)
= −dQsem

dV G

= Csem
dψS
dVG

. (6.59)

The relationship between the band bending and the applied bias, in terms of
the capacitances, following the above, is

dψS
dVG

=
Cins

Cins + Csem
, (6.60)

from which it follows that

CMIS = −dQsem

dVG
= −dQsem

dψS

dψS
dVG

=
CsemCins
Csem + Cins

. (6.61)

The capacitance of the metal–insulator–semiconductor structure is a series com-
bination of capacitors. Using the above relationships, we can also now determine
the capacitance of the structure, since both the insulator and the semiconduc-
tor are known. This capacitance, for the example of 3 × 1014 cm−3 substrate
of GaAs at 300 K and 77 K, with a 400 Å Ga1−xAlxAs insulator, is shown in
Figure 6.22. This corresponds to the low-frequency capacitance of the structure,
considered qualitatively earlier, since it is based on the use of static equations.
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Figure 6.22: Capacitance per unit area of the MIS structure consisting of a
3 × 1014cm−3 GaAs with 400 Å Ga1−xAlxAs as a function of bias. Curves are
shown for 300 K and 77 K.

6.7.2 Flat-Band Voltage

So far, we have assumed that flat bands, i.e. ψS = 0, occured at VG = 0, the
rationale being that this is only a translational variable. In practice it occurs
at a finite non-zero value, which we have called VFB (ψS = 0 at VG = VFB ); we
will determine it now to evaluate its quantitative magnitude for structures of
interest to us. This non-zero flat-band voltage is a consequence of work function
differences, insulator charge, etc. Our equations derived so far will all be correct
if we replace the potential VG by VG−VFB . For example, the threshold voltage
VT for modest or higher substrate dopings is

VT = VFB + 2ψB +
√

2
CFB
Cins

kT

q

(
2
qψB
kT

)1/2

. (6.62)

We have been treating the insulator–semiconductor interface as ideal with
no interface state density, and the insulator as containing no charge. The flat
band will occur when a gate voltage of VFB is applied that is the sum of the
difference in the metal barrier height and the conduction band discontinuity and
the bulk potential, i.e.,

VFB = φB − ∆Ec
q

− |ψi| − ψB, (6.63)

as shown in Figure 6.23. In reality, modifications have to be made to this. In-
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Figure 6.23: Flat-band conditions obtained by applying a gate voltage equal to
the flat-band voltage to metal–insulator–semiconductor (a) and semiconductor–
insulator–semiconductor (b) structures. The parameters are defined in the fig-
ure.

sulators have some unintentional charge in them. Undoped Ga1−xAlxAs quite
often has acceptor charge, while SiO2 has a very small positive charge. The
interface may also have a non-negligible interface state density which also must
be considered in the charge analysis. Problem 10 discusses some of these con-
siderations and their effect on capacitances and flat-band voltages.

When semiconductor gate electrodes are used instead of metal electrodes,
such as in a semiconductor–insulator–semiconductor structure, the flat-band
voltage under the idealized conditions, assuming discontinuities of ∆Ec1 and
∆Ec2, and an energy difference between conduction band edge and the Fermi
level of qψB2 in the control electrode (see (b) in Figure 6.23), is

VFB =
∆Ec1
q

+ |ψi1|+ ψB1 −
∆Ec2
q

− |ψi2| − ψB2 , (6.64)

which reduces to the bulk potential differences when identical semiconduc-
tors are employed. Note that ψB1 is negative in the example shown. In the
semiconductor–semiconductor system we have to independently determine the
discontinuities. Fixed charge at the interface is less likely to be substantial at
the interfaces due to crystal continuity; however, charge may still exist in the in-
sulator. VFB is therefore most accurately characterized by experiments because
of its sensitivity to so many different parameters.

6.7.3 MISFET Models Based on Sheet Charge Approxi-
mation

We have now established the framework for treating the field effect transistor
based on this approach utilizing sheet charge approximation and band bending
in the semiconductor as the parameter. We will refer to this analysis as the sheet
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charge model and we will follow Brews’ discussion (see general references) of its
application to silicon MOSFETs. No current flows in the ideal MIS structure; it
is always in thermal equilibrium, and the carriers in inversion layer come about
due to generation and recombination processes or external stimuli. Light is one
of these. We can also introduce the carriers by introducing ohmic electrodes
of source and drain. These ohmic contacts can supply and extract the carriers
in the inversion channel. The carriers are now introduced through the exter-
nal circuit that biases the source and drain electrodes. The carriers are now
limited in availability by the dielectric relaxation time constant and any other
limitations prescribed by the time-dependent operational characteristics of the
device. Our idealized MISFET is, therefore, a MIS capacitor with source and
drain ohmic electrodes located on opposite sides of the gate, and doped opposite
to the polarity of the substrate in order to have a small barrier for injection of
carriers into the inversion channel, as shown schematically in Figure 6.24.

The gate bias allows significant flow of current above the threshold volt-
age. The surface has an inversion layer and the carrier flow occurs between
the source and the drain along the surface channel due to injection and collec-
tion of carriers at the source and the drain. As with the MESFET, gradual
channel approximation allows us to reduce our analysis to one dimension and
derive a useful model. The arguments and the conditions for applicability of
this approximation are similar to those for the MESFET.

A major difference between the ideal MIS structure and this structure is
that the structure is no longer always in thermal equilibrium. In the presence of
current flow, the electrons and holes readjust to accommodate the current flow
and the bias, or equivalently in the Boltzmann approximation, the Fermi level
splits into non-identical quasi-Fermi levels. Current flow occurs partly by drift,
i.e., it is driven by an electric field, and partly by diffusion, i.e., due to carrier
density gradient. We may write

p = ni exp

(
q
−ψ + φp
kT

)
,

n = ni exp

(
q
ψ − φn
kT

)
, (6.65)

and the current density of electrons, for the n-channel device, is

J = −qµnn
dψ

dz
+ qDn

dn

dz
, (6.66)

where Dn = kTµn/q. Here the first term is the drift component of the current
and the second is the diffusion component of the current. We may rewrite the
current expression in terms of the quasi-Fermi levels as

J = −qµnn
dφn
dz

(6.67)

for current carried by electrons in an n-channel device. Since the source and
drain electrodes supply only electrons, the holes remain at equilibrium as before
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Figure 6.24: Surface plot of conduction band edges for a biased MISFET struc-
ture is shown in (a). (b) shows contours of constant potential. The source and
the drain electrodes are identified in the figure. Band edge, with a constant
slope is shown for the idealized insulator.
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Figure 6.25: The Fermi level in a MIS capacitor (a) and the splitting of the
quasi-Fermi level in a MISFET (b) due to carrier flow through ohmic source
and drain electrodes.

in the MIS capacitor, i.e.,

φp = φF = ψB =
kT

q
ln

(
NA
ni

)
. (6.68)

Figure 6.25 shows the Fermi level in a MIS capacitor and the splitting to quasi-
Fermi levels in a MISFET due to carrier flow through source and drain elec-
trodes. To calculate the current by the inversion layer, we must integrate the
current continuity equation (Equation 6.67) across the depth (the y direction)
and then multiply by the channel width W , since there exists a uniform current
density along the width of the gate. The electron quasi-Fermi level, perpendic-
ular to the surface, remains relatively flat because there is little if any current
flow between the source and drain electrodes and the substrate electrode. Recall
that, even in a forward biased p–n junction under low-level injection conditions,
the quasi-Fermi levels remain flat. The electron quasi-Fermi level approaches
the hole quasi-Fermi level deep into the substrate on a length scale of the order
of the diffusion length similar to that in a wide-base p–n junction. We may
treat the electron quasi-Fermi level as independent of y, which is the coordinate
perpendicular to the surface in the region of interest.

The current I at any position z of the channel is given by

I = −WqµnNI
dφn
dz

, (6.69)

which relates the electron current in terms of the sheet carrier density in the
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two-dimensional carrier gas and the quasi-Fermi level. We have determined this
inversion charge density for the MIS capacitor before in terms of the unsplit
Fermi level. Including the splitting of the quasi-Fermi level, the sheet charge
equation for the MISFET structure is

NI = NA
√

2λD

{[
qψS
kT

+

(
ni
NA

)2

exp

(
qψS
kT

)
exp

(
q
−φn + φF

kT

)]1/2

−

(
qψS
kT

)1/2
}
.

(6.70)

While this follows directly from the earlier MIS-related equation, the relation-
ship is not directly obvious. Therefore, consider its derivation directly as a
solution from Poisson’s equation. Ignoring the hole contribution,

d2ψ

dy2
=
qNA
εs

− qni
εs

exp

(
q
ψ − φn
kT

)
for 0 < y < w. (6.71)

The solution follows using a similar technique of multiplying by dψ/dy. The
equation for band bending in terms of the quasi-Fermi level is

1

2

d
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(6.72)

The boundary condition at the edge of the depletion region (y = w) is given by

ψ = 0

and
dψ

dy
= 0. (6.73)

Integrating, we obtain

−
∣∣∣∣
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. (6.74)

Introducing the sheet charge approximation for identical reasons,

−qNI = Qsem − (−qNAw) = εs
dψ

dy

∣∣∣∣
y=0

+ qNA
√

2λD

(
qψS
kT

)1/2

, (6.75)
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gives the carrier density in the inversion layer as

NI = NA
√

2λD
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. (6.76)

We wish to actually go a step further. In addition to the source and drain
contacts, the substrate contact can also be used to control the channel by an
externally applied stimulus. The substrate bias (VBS for the applied bias be-
tween the source and the body) leads to additional changes in the splitting of
the quasi-Fermi levels. For any applied bias condition, if a larger reverse bias is
applied at the substrate, then a larger voltage drops across the depletion region,
the depletion region extends deeper into the substrate, and the inversion and
depletion region charges reconfigure. Consider the source end and the drain end
of the channel at the same bias so that no current flows between them. They
also have the same reverse bias with respect to the substrate. The quasi-Fermi
level is the same along the channel from source to drain. Due to the application
of the substrate bias, the electron quasi-Fermi level φn and the bulk Fermi level
φF differ by the applied substrate bias VBS . Substrate biases are usually nega-
tive ( −VBS with VBS > 0 for the n-channel device utilizing a p-type substrate),
and are used to control substrate effects. In the presence of this reverse bias, the
quasi-Fermi level splitting is established by this reverse bias, and the inversion
layer charge density is given by

NI = NA
√

2λD
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+

(
ni
NA

)2

exp

(
qψS
kT

)
exp

(
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−
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}
. (6.77)

With the application of substrate bias, the total band bending ψS has also
changed. Since this substrate bias VBS drops across the substrate region, in
strong inversion, one would expect the band bending to be approximately equal
to the substrate bias VBS . It deviates in part due to the reconfiguration of
the charge. An increased integrated charge in the depletion region causes some
changes in the inversion layer charge for identical gate-to-source bias as a con-
sequence of the continuity of the displacement vector. In strong inversion, these
are small because the sheet carrier charge is the largest component of the semi-
conductor charge. In this limit, from the equation of inversion charge in the
presence of substrate bias (Equation 6.77),

NI ≈
√

2λDni exp

(
q
ψS − VBS

2kT

)
. (6.78)
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Thus, to obtain the same sheet charge NI with the source-to-body bias VBS , the
new band bending increases by VBS , i.e., the depletion region charge increases
to accommodate this increase in band bending from

Qdep = qNA
√

2λD

(
qψS
kT

)1/2

(6.79)

to

Qdep = qNA
√

2λD

(
q
ψS + VBS

kT

)1/2

. (6.80)

As an elaboration of this argument, consider the situation where the gate-
to-source bias is kept constant and the bias of source and drain, which are being
maintained the same are increased with respect to the substrate by VBS . Since
the gate charge remains the same, the semiconductor charge remains the same
and equal. Since the depletion region has widened and the charge in it increased,
the inversion layer charge must decrease to maintain the same semiconductor
charge density.

In the presence of the substrate bias, we may now rewrite the threshold
voltage expression, Equation 6.62, with respect to the substrate as

VT = VFB + 2ψB + VBS +
√

2
CFB
Cins

kT

q

(
2
qψB
kT

+
qVBS
kT

)1/2

. (6.81)

The threshold voltage referenced to the source VTS can be written as

VTS = VFB + 2ψB +
√

2
CFB
Cins

kT

q

(
2
qψB
kT

+
qVBS
kT

)1/2

, (6.82)

where the substrate bias occurs as a perturbative effect through the depletion
region charge.

In these equations, the effect of the substrate and the substrate bias occurs
through the terms involving CFB . The relative intensity of the effect of the sub-
strate bias compared to that of the gate bias is described by the body parameter
a, defined as

a =
√

2
CFB
Cins

=
√

2
εs
λD

tins
εins

. (6.83)

The larger the flat-band capacitance, or the smaller the insulator capacitance,
the stronger is the control of the substrate bias vis-a-vis the gate bias. Quite
often, a term γ, called the body coefficient, is also employed. This is given by

γ =
(2qεsNA)

1/2

Cins
=

√
2
CFB
Cins

kT

q
= a

kT

q
. (6.84)

The relative insensitivity of the threshold voltage to substrate bias, for typi-
cal parameters of a GaAs/Ga1−xAlxAs/GaAs is shown in Figure 6.26 for various
acceptor dopings and insulator thicknesses. This figure assumes a 5×1018 cm−3



418 6 Insulator and Heterostructure Field Effect Transistors

Figure 6.26: Threshold voltage with respect to the source as a function of
the substrate-insulator parameter for various insulator thicknesses and accep-
tor doping at 300 K for GaAs/Ga1−xAlxAs/GaAs. The lower and upper solid
lines are for constant insulator thicknesses of 750 Å and 250 Å respectively with
acceptor doping allowed to vary. The lower and upper dashed lines are for con-
stant acceptor doping of 5 × 1015 cm−3 and 5 × 1017 cm−3 respectively with
insulator thickness allowed to vary.
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doped gate semiconductor. The substrate voltage is used to obtain a stronger
control on back side injection effects; the design of device structures can be made
convenient and easy only by making the body coefficient and body parameter
small. Note that in the area between the inside lines, the insulator thickness may
vary between 250 Å and 750 Å, and the acceptor doping may also be allowed
to vary substantially without causing large changes in the threshold voltage.
These calculations assume no charge in the insulator and no fixed charge at the
interface.

Current–Voltage Characteristics

We have now determined the expression for the inversion layer sheet charge
density as a function of band bending and substrate bias. We want to determine
the current of the device, given VGS , the gate bias relative to the source; VDS , the
drain bias relative to the source; and −VBS , where VBS >, 0 the body-to-source
bias. We shall place several restrictions on our discussion in order to derive an
analytic theory which has most of the features of the real device and a realistic
physical representation. To allow the use of gradual channel approximations,
we consider the geometrical condition of L � tins, so that the analysis can be
separated between the transverse direction for control of the charge and the
longitudinal direction for drift-diffusion transport effects related to the current.
The variation in electric field along the channel, i.e., the dependence on z is very
weak compared to the variation with depth, i.e., the dependence on y. We will
consider length scales to be such that the depletion width in the substrate and
the junction depths at the ohmic contact do not influence the device operation.
Two-dimensional current flow effects, due to injection into the substrate, etc.,
are therefore considered to have been minimized in these structures by use of
small junction depths. We will keep, for convenience purposes only, the flat-
band voltage as zero. To include it, one can replace VG by VG−VFB and obtain
the general relationship.

The current is

I = −WqµNI
dφn
dz

. (6.85)

Our charge expressions have been determined in terms of the surface band bend-
ing ψS . We will maintain the use of this parameter because it occurs naturally
in the exponentials relating charge with energies, and linearly in other energy
terms, and is quite basic. Since we know the sheet carrier density, we need to
find the quasi-Fermi level as a function of band bending. We know

Cins (VG − ψS) = −Qsem

=
√

2CFB
kT

q

{[
qψS
kT

+

(
ni
NA

)2

exp

(
q
−φn + φF

kT

)
×

[
exp

(
qψS
kT

)
− 1

]}1/2

, (6.86)
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Figure 6.27: Variation of the quasi-Fermi level with respect to the bulk Fermi
level (φn−ψS ) with the surface band bending (ψS) for the GaAs MIS structure
being considered in the calculations (insulator thickness is 400 Å). Gate voltage
VG is the parameter for the different curves.

i.e.,

{
Cins (VG − ψS)√

2CFB

q

kT

}2

− qψS
kT

=

(
ni
NA

)2 [
exp

(
qψS
kT

)
− 1

]
×

exp

(
q
−φn + φF

kT

)
, (6.87)

and hence

qφn
kT

=
qφF
kT

− ln

{
[(qVG − qψS)

2
/(akT )

2
]− (qψS/kT )

(ni/NA)
2
[exp (qψS/kT ) − 1]

}
. (6.88)

This allows us to obtain the normalized quasi-Fermi level position, qφn/kT ,
as a function of the normalized band bending qψS/kT at any point along the
channel. The variation of the quasi-Fermi level with respect to the bulk Fermi
level (φn − φF ) with the band bending (ψS ) is shown in Figure 6.27 for our
GaAs/Ga1−xAlxAs/GaAs example.

The electron quasi-Fermi level moves rapidly when the band bending ap-
proaches specific value for various gate biases. This is the condition delineating
the tracking of the quasi-Fermi level and the band bending. The tracking entails
a nearly constant separation between the band edge and the quasi-Fermi level,
the condition of large charge in the channel, the inversion condition. The rapid
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change of the separation describes the condition where band bending in the
substrate and the movement of the quasi-Fermi level are disjointed because the
integrated substrate immobile charge is a significant fraction of the sheet charge
density in the semiconductor. This behavior corresponds to the depletion part
of the characteristics considered earlier. The breakpoint in this band bending
will be called the saturation band bending ψsat. From the relationship of the
Fermi level position already derived in Equation 6.88, this rapid change occurs
when the numerator of the logarithmic term goes to zero, i.e., when

1

a2

(
qVG
kT

− qψsat
kT

)2

=
qψsat
kT

,

or

(
qVG
kT

− qψsat
kT

)2

= a2 qψsat
kT

. (6.89)

Following our discussion, this condition of saturation in band bending describes
the condition when the channel has pinched off and the inversion layer has very
few carriers.

We can show that the inversion layer carrier density is negligible by noting
that the total sheet charge density in the semiconductor

−Qsem = Cins (VG − ψS) , (6.90)

at this condition of ψS = ψsat, becomes

−Qsem = Cinsa
kT

q

(
qψS
kT

)1/2

= CFB
√

2
kT

q

(
qψS
kT

)1/2

=
εs
λD

√
2
kT

q

w√
2λD

= qNAw. (6.91)

Since the total semiconductor charge is close to the charge in the depletion
region, the charge in the inversion layer is negligible. The proportional change in
the quasi-Fermi level for electrons with surface band bending follows intuitively,
since a negligible inversion charge implies that any band bending occurs due to
the acceptor charge and leads directly to a movement of the quasi-Fermi level
for electrons. The quasi-Fermi level is no longer near the conduction band edge.
It moves rapidly further and further away with band bending.

The magnitude of this saturation voltage can also be derived from the full
charge control derived earlier (see Problem 11). Explicitly, this saturation band
bending is given by

qψsat
kT

=
qVG
kT

+
a2

2
− a

(
qVG
kT

+
a2

4

)1/2

, (6.92)
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as a function of the gate voltage and the body parameter. The form of this
equation in terms of the body parameter explicitly justifies the use of the body
parameter, since it directly scales the applied gate bias with its substrate linkage
at the condition of the disappearance of inversion.

We have now established the direct relationship between the quasi-Fermi
level, the inversion charge and the band bending. This can be utilized in our
current equation in order to show the current at any cross-section as a func-
tion of the band bending at the surface at that cross-section. To complete the
evaluation of the current, we should consider the boundary conditions on this
band bending at the source edge and the drain edge of the channel. We can
determine these, since we know the quasi-Fermi levels at the source end and the
drain end of the channel since they are directly influenced by the applied biases.
The position of the quasi-Fermi level φn at the source end of the channel is

φn|source = φF + VBS . (6.93)

No particle current flows in the circuit involving the gate electrode, and the
splitting at the source end is directly related to the effect of the bias between
the source and the bulk substrate. Here, we do not use the Fermi level position
of the source ohmic contact region, which is in the extrinsic part of the device
and enters only indirectly in the current calculation. Instead, we employ the
quasi-Fermi level position at the end of the channel at the source end, which
may differ from the quasi-Fermi level at the source end. For clarifying this, see
Figure 6.28. This is so because the behavior of the device is assumed to be
determined by the behavior in the channel and not of the injecting regions, i.e.,
the contact regions are assumed to be capable of supplying as many carriers
as determined by the channel behavior and any changes in the ohmicity of
these regions should not influence the operation of the device (the current it
carries, etc.). This is quite similar to the low-level injection behavior of p–n
junctions. The current under low-level injection is determined by the rate at
which carriers transport in the quasi-neutral regions and not in the junction
regions. The drift and diffusion currents, delicately in balance in the junction
region, are capable of supplying much larger current than is extracted in the
low-level injection condition. Similarly, in this problem, the ohmic contact and
the source region is assumed to be capable of supplying much larger current
than is the actual magnitude limited by the channel transport. The carrier
densities are very large in the doped region and hence capable of supporting
large current densities—the product of the electron charge, the carrier density,
and the thermal velocity (≈ 107 cm.s−1) through it. Locally, at the interface
of the contact and the channel region, the quasi-Fermi level is flat, and the
band bending at the channel end and the quasi-Fermi levels are determined
by the charge control relationship of the channel and the bias constraints that
determine the quasi-Fermi level.

As the source-to-bulk bias −VBS increases, the band bending ψS increases
until the pinch-off occurs, i.e., inversion ends. Then, the band bending saturates
to ψsat as in Figure 6.27. For a bulk-to-source bias VBS of zero, the quasi-
Fermi level at the source end of the channel is the same as the bulk Fermi level
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Figure 6.28: The conduction band edge and the electron quasi-Fermi level at
the surface and along the channel for a GaAs MISFET. Note the nearly flat
quasi-Fermi level at the source edge.

(φn = φF ), and Equation 6.88 gives

qVG
kT

− qψS
kT

= a

{
qψS
kT

+

(
ni
NA

)2 [
exp

(
qψS
kT

)
− 1

]}1/2

, (6.94)

which also follows from Gauss’ Law. If the source-to-bulk bias VBS is zero, then
the band bending at the source end of the channel is the same as the band
bending that we derived for the MIS capacitor for a bias at the gate of VG, since
no current flow occurs between the source and the substrate.

Let us reemphasize that in this analysis we are assuming that the current
transport is affected by what happens in the channel, not by the transition
region between the source contact region and the source end of the channel.
That is why we use the band bending ψS following Equation 6.93 and not that
determined from the built-in potential of the associated contact–channel p–n
junction. Since the source is assumed to not limit the supply of needed carriers,
and the ohmic drops are assumed to be small, the quasi-Fermi level is constant
in this transition region.

Similarly, the band bending at the drain end of the channel is determined
from

φn|drain = φF + VBS + VDS , (6.95)

which is the explicit effect on the quasi-Fermi level as a result of the application
of the bias at the drain and the substrate, and Equation 6.88, which relates the
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position of the quasi-Fermi level with the band bending. In the band bending
at the drain, ψS → ψsat at large enough drain-to-source bias VDS just as the
behavior of the source end does as a function of the bulk-to-source bias VBS .
A large enough drain-to-source bias increases the depletion region in the sub-
strate at the drain end, resulting in a decrease of the inversion charge, all other
bias constraints remaining constant. The occurrence of a band bending of ψsat
reflects removal of inversion conditions at the drain end, i.e., the occurrence
of pinch-off of the channel at the drain end. This behavior is similar to that
of the long channel constant mobility model of the MESFET, where pinch-off
also represented disappearance of mobile charge. Like the MESFET, under this
condition, the current flow through the channel saturates. This drain-to-source
voltage, corresponding to pinch-off of the channel, will be referred to as the
drain saturation voltage VDsat. To estimate it, we approximate the asymptotic
and the linear increase portion with intersecting straight lines. The asymptotic
line is given by

ψS = ψsat, (6.96)

and the linear line by
φn − φF = ψS − ψs0 (6.97)

So the drain saturation voltage follows, by evaluation at the intersection of linear
and asymptotic lines, as

VDsat = φn − φF |intersection = ψsat − ψs0. (6.98)

For drain voltages higher than the drain saturation voltage, i.e., VDS >
VDsat, even though the band bending ψS does not increase, a large increase in the
lateral field in the drain end channel transition region can occur. The size of this
transition region increases with drain bias, causing a reduction in the electrical
channel length L. In small devices, this could be appreciably different from
the source-to-drain separation, which is usually described as the metallurgical
channel length Lm. We will discuss the consequences of this decrease in the
effective electrical channel length in a discussion of the extension of this model
to short channel conditions.

Having determined these boundary conditions, we can now determine the
current, following similar procedures as in our analysis of MESFETs. From the
equation for quasi-Fermi level (Equation 6.88), we have

d
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(
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)
=

[
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2
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)
, (6.99)

and

qNI = Cins (VG − ψS) − qNAλD
√

2

(
qψS
kT

)1/2

, (6.100)

all in terms of band bending and gate bias.
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Substituting, at any vertical cross-section along the channel, the current is
given by

I = −WqµNI
dφn
dz

= −WµCins

(
kT
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(6.101)

Under quasi-static conditions, this current is constant throughout the chan-
nel due to current continuity. Like the MESFET analysis, we can integrate with
respect to z,

∫
Idz = IL
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(6.102)

A complete result of this can be obtained by a lengthy integration (see
Problem 12) as
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(6.103)
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where
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and the boundary conditions on band bending are written as

ψS |z=0 = ψs0 (6.106)

at the source end and
ψS |z=L = ψsL (6.107)

at the drain end.
Fairly accurate approximations can be made to the complicated forms above.

Brews has described a subtle approximation that makes the problem quite a bit
less cumbersome. The first two terms in the integral above describe the contribu-
tion from the strong inversion charge qNI , i.e., the contribution of q2NI/kTCins.
The last term is the perturbation term important in regions of weak inversion.
It is important when the strong inversion terms are negligible. This weak in-
version condition prevails near pinch-off condition, i.e., in the region of the
channel where it is pinched off. It is important at drain biases close to drain
saturation voltage, in the drain region of the channel, and at gate biases in the
sub-threshold and threshold region, for all parts of the channel. An adequate
approximation may be obtained by substituting for this fraction its magnitude
at pinch-off, the condition at which it is important and hence must be accurate.
This leads to simpler approximation,

2 (qVG − qψS) /kT + a2
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, (6.108)

and hence, Equation 6.102 takes the form
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The band bending at the source end and the drain end can be derived since
we know the quasi-Fermi levels at source and drain from the applied biases,
and because we have related the quasi-Fermi level to the band bending through
Equation 6.88. Integration of the approximate equation yields
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Here,
VG = VGS + VBS , (6.111)

which can be translated for a non-zero flat-band voltage using the procedure
discussed with MIS capacitors. The source end band bending ψs0 is found from

φn = φF + VBS , (6.112)

and the quasi-Fermi level position from Equation 6.88; and the drain end band
bending ψsL is found from

φn = φF + VBS + VDS , (6.113)

and the quasi-Fermi level position from Equation 6.88.
The current–voltage characteristics have now been derived as a function

of the band bending parameter. The current–voltage characteristics can be
calculated using several different procedures based on the above set of equations.
As an example, consider the derivation of the output characteristics for a bulk-
to-substrate bias of VBS . If we choose the band bending at the source end
ψs0, then the quasi-Fermi level position at the source end (z = 0), following
Equation 6.88, is related by
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This gives the gate bias as a function of source end band bending ψs0 and
bulk-to-substrate bias VBS ,
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Figure 6.29: The output characteristics for a MISFET using
GaAs/Ga1−xAlxAs/GaAs using the procedure based on parameterization
of the band bending. The device has a gate length of 10 µm, a mobility of
4000 cm2.V−1.s−1, an acceptor doping of 3 × 1014 cm−3, and an insulator
thickness of 400 Å. This device will also be used as an example in subsequent
figures to show the use of numerical procedures.

=
ψs0
kT

+ a

[
qψs0
kT

+ exp

(
q
ψs0 − 2φF − VBS

kT

)]1/2
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Now, choosing ψsL in the range 0 ≤ ψsL ≤ ψsat, one can derive the correspond-
ing drain-to-source voltage, since we now know the quasi-Fermi level position
at the drain end of the channel. The band bending at the drain end ψsL is
limited between the value of zero, which corresponds to a drain-to-source bias
of zero, and ψsat, which is in the region of channel pinch-off and which cor-
responds to the drain-to-source bias VDS → ∞. By varying the value of the
drain end band bending ψsL, we generate the current-to-drain-to-source volt-
age behavior for constant source end band bending, i.e., constant gate voltage.
This is one of the characteristics; others for other source end band bending ψs0
result in characteristics for different gate voltages. We use the band bending as
a parameter in these calculations because we had parameterized our problem in
terms of band bending and had derived the analytic form of the current equa-
tion in terms of it. The characteristics of our MISFET example utilizing the
GaAs/Ga1−xAlxAs/GaAs example are shown in Figure 6.29.

Ideally, one likes to know the current for a specified gate and drain bias.
This, however, will require an iterative procedure, because our equations are
not written explicitly in terms of the voltages in an analytic form. Since the
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Figure 6.30: The saturation drain current IDSS as a function of gate voltage VG
for the MISFET example employing GaAs/Ga1−xAlxAs/GaAs.

quasi-Fermi level position is known through Equation 6.88 and is related to the
applied bias at the contacts through the boundary conditions of Equations 6.93
and 6.95, one obtains an iteration of a new approximation of the band bending
in the form

qψs0
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kT

+2
qφF
kT

−2 ln a+ln
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− qψs0
i
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− a2 qψs0
i

kT



 . (6.116)

The band bending at the drain end can be allowed to vary between zero and the
asymptotic value of ψsat. From Equation 6.110, we can now derive the drain
current–voltage characteristics for any gate bias.

Quite often, one wishes to find the magnitude of the saturation current with
gate bias, i.e., the drain current at a band bending of ψsL = ψsat as a function
of the gate voltage VG. This derivation is similar to before. For any chosen
band bending at the source end of ψs0, we can compute the gate bias VG from
our equation. The saturation current can be obtained since ψsat is known, and
hence the saturation drain current IDSS can be obtained. This saturation drain
current versus gate voltage behavior, known as transfer characteristic, is shown
in Figure 6.30 for our MISFET example.

One may also be interested in drain current versus gate voltage for a given
drain voltage, unlike the previous example in which it was determined for chan-
nel pinch-off conditions. Since the drain bias VDS and bulk-to-substrate bias
VBS are known, the band bending at the drain end ψsL can be determined
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Figure 6.31: The drain current as a function of gate bias for various drain
voltages near and above the threshold voltage for the GaAs/Ga1−xAlxAs/GaAs
MISFET example.

by the quasi-Fermi level equation (Equation 6.88) and Equation 6.95. We also
know that

qVG
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qψsL
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+ a

[
qψsL
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+ exp

(
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kT

)]1/2
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and hence the gate bias VG is known. Knowing the gate bias VG, the source end
band bending ψs0 can be determined iteratively as before and hence the current
follows. An example of this is shown in Figure 6.31.

The procedure is not as accurate, and needs refining, for calculation in the
sub-threshold region, i.e., the region where the entire channel is in weak and
moderate inversion. The reason for this may be traced to our approximation of
the perturbation term in the quasi-Fermi level expression to its magnitude at
ψsat. When the entire channel region is in weak inversion, moderate inversion,
or depletion, the resulting expression can not be expected to be representative.
We can, however, derive a procedure, considering the weak inversion component
to be the dominant component. The band bending at the source end is

ψs0 < 2φF = 2ψB. (6.118)

Clearly, the exponential term in the quasi-Fermi level equation (Equation 6.88)
is small, there is very little electron charge of NI . We eliminate the gate bias
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VG by using the identity
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in an equation similar to Equation 6.117 for the source end, hence,
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We can use this in the iteration
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In the sub-threshold region, there is very little electron charge in the channel,
and since ψsat approaches the value of the source end band bending ψs0, the
drain end band bending ψsL approaches the value of source end band bending
ψs0, and most of the current flow occurs via diffusion. Expanded characteristics
of the drain current ID with gate voltage VG are shown in the logarithmic plot
of Figure 6.32.

Figure 6.33 shows expanded output characteristics of the MISFET with a
schematic of the band bending and carrier distribution along the channel for the
different regions of operation. At the large gate biases considered, the surface
is strongly inverted. At small drain biases VDS , the drain edge is also strongly
inverted. The channel behaves like a resistor with an ohmic drop of VDS across
it, and the majority of the current flows as drift current. The quasi-Fermi level
change between the source end and the drain end is equal to this drain-to-
source voltage VDS . As the drain-to-source bias VDS increases, the ohmic drop
increases, lowering the quasi-Fermi level φn further. As this approaches the
saturation voltage, the quasi-Fermi level φn begins to drop faster than the band
bending ψS , and diffusion current begins to become important. The carrier
density at the drain end begins to reduce and hence the ohmic drop in this
region gets larger and larger. More drain bias is needed to increase the current,
curves begin to flatten from the linear behavior, and it becomes more parabolic.
When the drain-to-source bias VDS exceeds the saturation voltage VDsat, carrier
density at the drain end becomes very low—a condition we described as channel
pinch-off. Band bending now becomes independent of carrier density and most
of the excess voltage now drops across this region.

The behavior in the sub-threshold region is largely limited by the diffusion
current, because there are very few carriers to support any appreciable drift
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Figure 6.32: Drain current versus gate voltage characteristics for the
GaAs/Ga1−xAlxAs/GaAs MISFET example emphasizing the behavior in the
sub-threshold region. The conventional linear region appears at high currents
in this figure.

Figure 6.33: Expanded output characteristics of the example of
GaAs/Ga1−xAlxAs/GaAs MISFET together with a schematic of the band
bending along the channel in the different regions of operation.
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Figure 6.34: The solid lines show characteristics by including both drift and
diffusive components of the current in the GaAs/Ga1−xAlxAs/GaAs MISFET
example. The dot-dashed lines show characteristics using only drift current.

current. In the sub-threshold region, as shown in Figure 6.32, the current is
exponential in nature. This is because no inversion channel exists; the carrier
transport is by injection across a barrier, giving a characteristic exponential
dependence. This is also sometimes referred to as the barrier modulated region
of operation. The diffusive character of this transport should be compared
with large drift dominated component in regions where strong inversion exists.
Figure 6.34 serves to emphasize the relative importance of drift and diffusive
currents by showing the net current resulting in our device from drift current.
This figure serves to emphasize the net drift or diffusion effects in the device
under various bias conditions.

In the sub-threshold region of operation, i.e., for VG < VT , or equivalently
for ψS < 2φF + VBS , weak inversion exists. Since we may approximate

NI = NAλD

(
ni
NA

)2

exp

(
q
−φn + φF

kT

)(
2
qψS
kT

)−1/2

, (6.123)

and since weak inversion implies that the band bending is nearly the asymptotic
magnitude of ψsat along the channel,

NI0 −NIL = NAλD

(
ni
NA

)2

exp

(
qψsat
kT

)
exp

(
−qVBS

kT

)
×

(
2
qψsat
kT

)−1/2 [
1 − exp

(
−qVDS

kT

)]
, (6.124)
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where NI0 and NIL are the inversion charge density at the source end and the
drain end. Since ψS ≈ ψsat over the channel, the electric field along the channel

Ez = −∂ψS
∂z

≈ 0, (6.125)

and most of the current is diffusive. We can, therefore, determine it from

I = qDW dNI
dz

. (6.126)

The current being constant in the steady-state condition, the weak inversion
charge varies linearly, and hence,

dNI
dz

=
NIL −NI0

L
, (6.127)

and hence,

I = −WµqNAλD
L

kT

q

(
ni
NA

)2

exp

(
−qVBS

kT

)
exp

(
qψsat
kT

)
×

[
1 − exp

(
−qVDS

kT

)](
2
qψsat
kT

)−1/2

, (6.128)

where from our earlier approximation,

qψsat
kT

=
qVGS
kT

+
qVBS
kT

+
a2

2
− a

(
qVGS
kT

+
qVBS
kT

+
a2

4

)1/2

. (6.129)

The important attributes of this behavior are that the current is nearly ex-
ponentially dependent on the gate bias, that for drain-to-source bias a few times
larger than the thermal voltage there exists little or no drain bias dependence,
and that there is a rapid reduction of current with gate bias when a reverse bias
is applied between the body and the source.

As voltage levels of operation decrease, the gate bias swing and the corre-
sponding current in its conducting and non-conducting states become increas-
ingly important. The rapidity with which the drain current is reduced by gate
bias in the sub-threshold region is usually measured by the sub-threshold gate
swing S given by

S =
ln(10)

d ln(I)/dVG
. (6.130)

We may derive the magnitude of this in terms of the parameters of our device.
We have

S =
kT

q
ln(10)

[
d ln(I)

d (qψsat/kT )

]−1[
d (qψsat/kT )

d (qVG/kT )

]−1

(6.131)

and
d (qVG/kT )

d (qψsat/kT )
= 1 +

a

2(qψsat/kT )
1/2

. (6.132)
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In sub-threshold, the change in current with the saturation band bending is
related by

d ln(I)

d (qψsat/kT )
= 1 − 1

2 (qψsat/kT )
. (6.133)

The relationship between the change in gate bias and the saturation band bend-
ing may be related by the insulator and body effects represented in the corre-
sponding capacitances. The depletion capacitance, for band bending of ψsat, is
given by

Cdepsat = Cdep|ψ=ψsat = CFB

(
2
qψsat
kT

)−1/2

, (6.134)

because there is very little inversion charge. Therefore,

∂ (qVG/kT )

∂ (qψsat/kT )
= 1 +

Cdepsat
Cins

, (6.135)

and
∂ ln(I)

∂ (qψsat/kT )
= 1 − 2

a2

(
Cdepsat
Cins

)2

. (6.136)

The sub-threshold gate swing S can now be explicitly written as

S =
kT

q

1 + Cdepsat/Cins
1 − (2/a2)

(
Cdepsat
Cins

)2

ln(10). (6.137)

The larger the insulator capacitance, i.e., the larger the control by the gate
through the insulator, the more nearly ideal is the sub-threshold swing, the gate
being still efficient in controlling the channel. The smaller the body parameter
(the weaker the body effect and hence two-dimensional and punch-through ef-
fects due to substrate parameters), the more ideal the sub-threshold behavior
is.

Since the asymptotic band bending affects the sub-threshold gate swing S,
device comparisons for logic at small voltages must be made at similar current
densities in order for them to be equally effective in the off state and the on
state. A device for large integration requires careful control of the sub-threshold
behavior in order to establish clear off voltages and in order to decrease power
dissipations.

We have described the modelling of the MISFET in quite rigorous detail.
Usually, such preciseness can be sacrificed for the purposes of simplistic un-
derstanding. Simplified treatments also lend themselves for some applications
where their inaccuracy is not a major hindrance; most often such applications
involve computer aided design of circuits where the device needs to be treated
as functional block, reproducible enough and whose characteristics can be de-
scribed in the least numerically time consuming and most robust manner to
allow for circuit design. Such simplifications can be extracted quite easily, based
on our derivation. Consider the triode region of operation, i.e., VG > VT and
VDS < VDsat. Now the band bending ψS and the quasi-Fermi level position φn
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change by the same amount along the channel. This is the unity slope region
of the plot showing their dependence on each other. Given that

φn|z=L − φn|z=0 = VDS , (6.138)

it follows that
ψsL = ψs0 + VDS , (6.139)

and our current equation (Equation 6.110) reduces to

I = −WµCins
L

{(
VG − ψs0 −

1

2
VDS

)
VDS−

2

3
a

(
kT

q

)1/2 [
(ψs0 + VDS)

3/2 − (ψs0)
3/2
]}

, (6.140)

where the square root term has been ignored. We now take advantage, in the
triode region, of ψs0 > VDS . The first two terms of the Taylor series expansion
of the last term in the above yield

(ψs0 + VDS)
3/2 − (ψs0)

3/2
=

3

2
(ψs0)

1/2
VDS +

3

2

1

2
(ψs0)

−1/2 1

2
VDS

2. (6.141)

This gives the current in the devices as

I = −WµCins
L

{
VG − ψs0 − a

kT

q

(
qψs0
kT

)1/2

−

1

2

[
1 +

a

2

(
qψs0
kT

)−1/2
]
VDS

}
VDS . (6.142)

Note that if we ignore the negative half power term of ψs0, it being smaller
than unity, we obtain our familiar simplistic expression of the current–voltage
characteristics of FETs,

I = −WµCins
L

[
(VGS − VT )VDS − 1

2
VDS

2

]
, (6.143)

where we have introduced the threshold voltage as VT .

Quasi-Static Equivalent Circuit Elements

Having derived the current–voltage characteristics, the equivalent circuit ele-
ments, based on perturbation analysis, follow in a straightforward manner. The
drain conductance gd, e.g., following definition, is given as

gd =
∂I

∂VD

∣∣∣∣
VG

= µq
W

L
NIL

= µq
W

L
NI0

(qVG − qψsL) /kT − a(qψsL/kT )1/2

(qVG − qψs0) kT − a(qψs0/kT )
1/2

. (6.144)
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In weak inversion, this reduces to

gd = µq
W

L
NI0 exp

(
−qVDS

kT

)
. (6.145)

Similarly, the transconductance gm is by definition

gm =
∂I

∂VG

∣∣∣∣
VDS

=
WµCins

L
(ψsL − ψs0) . (6.146)

Model Extensions

We now discuss some of the shortcomings of the theory. We have assumed con-
stant mobility; velocity saturation was not taken into account. It is increasingly
important in shorter gate-length structures because lateral fields become large.
We can relax the assumption of constant mobility, still in a closed form, by
assuming a hyperbolic relationship, i.e.,

µ =
µ0

1 − Ez/Ec
, (6.147)

where Ez is the electric field in the channel direction and Ec is a critical field so
that saturated velocity vs = Ecµ0. Alternately, we may write

v =
vs

1 − Ec/Ez
. (6.148)

This is quite a good approximation to the equilibrium velocity–field relation-
ship in silicon, for holes in compound semiconductors, but poorer for electrons
in compound semiconductors. We can show how this leads to a closed form
following a similar analysis since the field dependence is in the z-direction and
the integrals are similar. We have

µ =
µ0

1 + dψS/(Ecdz)
, (6.149)

using the longitudinal field dependence in the channel for calculation in gradual
channel approximation.

Our current equation (Equation 6.67) yields

I = −Wq
µ

1 + dψS/(Ecdz)
NI

dφn
dz

. (6.150)

So, ∫ L

0

I

(
1 +

1

Ec
dψS
dz

)
dz = −Wqµ0

∫
NIdφn. (6.151)
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Figure 6.35: Example of characteristics with (dashed lines) and without velocity
saturation (solid lines) for a 2.5 µm GaAs/Ga1−xAlxAs/GaAs MISFET.

This yields, from Equation 6.88, and after integration,

I = −Wµ0Cins
L

(kT/q)
2

1 + (ψsL − ψs0) /EcL
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(
qψs0
kT

)1/2
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. (6.152)

The equation has a very similar form to that of Equation 6.110, and identical
procedures may be adopted to obtain the required characteristics or equivalent
circuit parameters (see Problem 13). Comparison of results, with and without
velocity saturation, for a 2.5 µm device are shown in Figure 6.35 to emphasize
the effects of velocity saturation in reducing the current drive capability of a
device.

This modelling is also poor in its prediction of output conductance. The
conductance of the channel was assumed to occur in a narrow channel along
the interface, and does not include the stronger two-dimensional effects of con-
duction in the bulk, a component we identified as being very important in
MESFETs. Also, a major cause for output conductance is the shortening of the
electrical length of the device. Recall that when pinch-off occurs, a larger and
larger fraction of the applied bias in excess of the pinch-off voltage drops in the
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Figure 6.36: Shortening of the channel with application of bias beyond the pinch-
off voltage. (a) shows schematically the channel at low bias voltages while (b)
shows the shortening of channel at high bias voltages.

pinched region. The region of the device where inversion exists, and where our
formulation continues to truly hold, becomes shorter and shorter, as shown in
Figure 6.36. With the shortening of this effective gate length, our model predicts
that the device current would increase. So, when a drain-to-source bias of VDS
in excess of the saturation voltage VDsat is applied, the extent of the inversion
region is shortened by ∆L, where most of the excess voltage above VDsat drops.
Diffusion current is the dominating current here. The device current becomes
larger with the increase in the drain-to-source bias VDS because the device be-
haves as one of electrical gate length L, shorter than Lm, the metallurgical gate
length, and because the current is inversely proportional to the electrical gate
length. This gives rise to finite output conductance. Approximating that all
the excess voltage drop occurs across the pinched off weak inversion region, we
obtain

∆L ≈
√

2λD

{
[ψsat + (VDS − VDsat)]

1/2 − (ψsat)
1/2
}
, (6.153)

and the current is given by

I = − WµCins
Lm − ∆L
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for the constant mobility assumption, and

I = − WLm
Lm − ∆L

(
kT

q

)2
µ0Cins
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Figure 6.37: Output conductance resulting from reduction in electric gate length
of the 10 µm gate length GaAs/Ga1−xAlxAs/GaAs MISFET example in the
constant mobility limit. The dashed curves result due to shortening of the
channel.
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for the hyperbolic velocity–field relationship. Figure 6.37 shows the effect of
shortening of the electrical gate length on the behavior of the device in the
constant mobility limit.

6.8 Quasi-Static HFET Theory Using Analytic

Approximations

In the previous section, we considered the behavior of a field effect transistor,
based on a two-dimensional carrier gas approximated as a sheet charge, by ig-
noring band occupation effects related to quantization, the exclusion principle,
and parasitic conduction in Ga1−xAlxAs, and assuming either a constant mobil-
ity or a hyperbolic velocity–field relationship. Our rationale for this was based
in part on the observation that the Boltzmann approximation was justifiable
over a significant part of the channel and bias range.
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We now wish to to relax some of these assumptions and include some of the
special features of confinement effects in the compound semiconductors. As a
general introduction, consider how we may modify the quasi-static MISFET the-
ory procedure to include some of these in calculating the current–voltage char-
acteristics for arbitrary conditions, but still utilizing the sheet charge approxi-
mation. We will assume that since our specific interest is in taking advantage
of the larger carrier velocities in these structures, we will use low background
doping in the substrates.

Our analytic procedure will be a variation on the methodology adopted in
MISFET analysis. Our intention is to complement the previous treatment by
including analytically some of the effects of complications introduced in using
compound semiconductors in the barrier region and elsewhere. We may use
the Boltzmann approximation only where the quasi-Fermi level is ≈ kT or
more below the conduction band edge at the interface. Here, as a result of
(φn−ψS) > kT/q, the sub-band levels E0, E1, etc., come close together and the
total sheet charge in the semiconductor, which is the sum of the sheet charge in
the inversion layer and the sheet charge due to acceptors in the semiconductor
(Ns = NI +NAs) is small. This is accurate in the sub-threshold region but not
always in the near-threshold region. When φn − ψS < kT/q, we need to begin
including Fermi–Dirac statistics. As carrier concentrations reach 3× 1011 cm−2

and more, we need to include confinement effects and the Fermi–Dirac statistics.
At the kind of background dopings employed commonly (5 × 1014 cm−3), at
Ns = NI > 3 × 1011 cm−2, the acceptor charge may begin to be neglected
and NI begins to be large enough for the triangular well approximation to
be quite accurate. But below these carrier concentrations, the Airy function
solution employed in the triangular well approximation is about as accurate as
the Fermi–Dirac solution assuming a continuum band, and it is poor in sub-
threshold conditions because it neglects acceptor doping effects. So, depending
on ψS and φn, we may determine Ns(ψS , φn) using the appropriate statistics
and density of state distribution.

Knowing a bias VG (again assuming the flat-band voltage of zero but can be
introduced by a translation of VFB in gate voltage), we can determine the total
semiconductor charge. As an example, for an undoped Ga1−xAlxAs insulator
in a GaAs gate SISFET, assuming no interface charge and charge variation in
Ga1−xAlxAs, this semiconductor charge density is CAl(VG − ψS), where CAl is
the capacitance ε/tAl per unit area of the insulator. The relationship for VG
may be substantially more complicated for the variety of these structures, e.g.,
for the doped barrier HFET with uniformly doped Ga1−xAlxAs, and no spacer
in undoped region, the band bending from Figure 6.38 gives

−qNs = −Qsem = CAl

(
VG − φM +

qNDtAl
2

2εAl
+

∆Ec
q

+ |ψi|+ ψB − ψS

)
. (6.156)

Thus, for the general problem, the charge control equation allows us to relate
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Figure 6.38: Schematic showing parameters related to the determination of sheet
charge using Gauss’ Law for a doped barrier HFET.

the quasi-Fermi levels to ψS for various VG’s.
We need to identify the boundary conditions. Unlike the case of the MIS-

FET, we generally do not employ a substrate bias (we use lightly doped p-
type buffer and semi-insulating substrates). Remembering from our discussion
of built-in voltages of MISFETs, the device transport is determined by drift-
diffusion in the channel of the device, and not by the ability of the source and
drain junctions. So, we need to find the band bending ψS at the source end and
the drain end. Since VBS = 0,

ξn(z = 0) = ξp = −qφF = −qψB , (6.157)

and

ξn(z = L) = −qφF − qVDS = −qψB − qVDS . (6.158)

These give us the magnitude of band bending ψS at the source end and the
drain end.

Now we employ the drift-diffusion equation in steady-state,

I = WµNI
dξn
dz

. (6.159)

Here W is the width of the device, q is the electronic charge, µ is the chordal
mobility v/E , NI is the inversion or accumulation layer mobile charge, and
dξn/dz accounts, by using quasi-Fermi levels, for both the drift and diffusion
currents.
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Figure 6.39: Stationary velocity–field curve, and various approximations for
GaAs employed in analytic and non-analytic device modelling. (a) is the con-
stant mobility approximation, (b) shows the constant mobility with saturated
velocity approximation adopted in the PHS model for MESFETs, and (c) is a hy-
perbolic approximation. These should be compared with the electron and hole
velocity–field characteristics present in inversion layers of Ga1−xAlxAs/GaAs
heterostructures.

In the case of a MISFET, using µ = µ0, or

µ =
∣∣∣
v

E
∣∣∣ =

µ0

1 + |E/Ec|
, (6.160)

allowed us to get a closed-form solution because NI could be written in terms
of VG and ψS , and so could dφn/dz. This led to the closed-form expression for
I by integration over the device gate length L in terms of ψs0 and ψsL.

Consider the additional complications of HFETs. Ideally, the velocity–field
curve (neglecting off-equilibrium effects) will have a negative differential mo-
bility region, which has been approximated in several forms, as shown in Fig-
ure 6.39.

For a general velocity–field curve, the complete solution will have to be
performed iteratively according to the procedure above with the condition that

I = Wµ (dψS/dz)NI(ψS , VG)
dξn
dz

(6.161)

is satisfied throughout the channel region, and

at y = 0, ψS = ψs0,
and at y = L, ψS = ψsL.

(6.162)
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We now discuss some approximations. First consider the calculation of
charge. In the case of MISFET analysis, we have already discussed the use
of the Boltzmann approximation, and the closed-form solutions we could find
with it. In the beyond-threshold region, we should include Fermi–Dirac statis-
tics. Poisson’s equation in the Boltzmann approximation is

−d
2ψ

dy2
=

q

εs

[
N−
A + n

]

=
q

εs
NA +

q

εs
ni exp

(
q
ψ − φn
kT

)
(6.163)

for 0 < y < w. For y > w,

−d
2ψ

dy2
= 0. (6.164)

This gives the solution, for the Boltzmann approximation,

NI = NA
√

2λD






[
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+
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)2

exp

(
qψS
kT

)
exp
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q
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kT

)]1/2

−
(
qψS
kT

)1/2
}
. (6.165)

In this equation, the second term is the total depletion charge, while the first
term contains the total semiconductor charge, the difference being the mobile
charge. With Fermi–Dirac statistics, we consider the Poisson’s equation in 0 <
y < w as

d2ψ

dy2
=

q

εs
NA +

q

εs
NCF1/2

(
q
ψ − φn
kT

)
. (6.166)

An approximation of the Fermi integral of the order 1/2 is the Ehrenreich
approximation, given by

F1/2(η) =
4 exp (η)

4 + exp (η)
, (6.167)

which is quite accurate for η ≤ 2. So, the Fermi level can be ≈ 50 meV at
300 K into the conduction band while still giving a fairly accurate estimate for
the sheet density of semiconductor charge. This allows quite accurate modelling
of the inversion/accumulation charge at near-threshold conditions. Using the
technique of multiplying by dψ/dy on both sides, we get in the Ehrenreich
approximation

NI = NA
√

2λD

{{
qψS
kT

+
4NC
NA

ln

[
1 +

1

4
exp

(
q
ψS − φn
kT

)]}1/2

−

(
qψS
kT

)1/2
}
. (6.168)
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This can be shown to reduce to the Boltzmann approximation expression for
q(ψS − φn)/kT << 1 by perturbative expansion of the logarithmic term.

In strong inversion, we consider the effect of occupation of the various sub-
bands with the Fermi–Dirac distribution function determining the occupation
statistics. Consider the simple example of occupation by Γ electrons. The
density of states (D) for the subbands E0, E1, etc., is constant and equal to
qm∗/πh̄2 (for GaAs, ≈ 3.24× 1013 cm−2.eV−1 ). We may then write the Fermi
level ξf w.r.t. the conduction band edge Ec as

NI = D

∫ ∞

E0

dE

1 + exp [(E − ξf ) /kT ]
+

∫ ∞

E1

1

1 + exp [(E − ξf) /kT ]
dE + · · ·

= DkT ln

{[
1 + exp

(
ξf − E0

kT

)][
1 + exp

(
ξf − E1

kT

)]
· · ·
}
.

(6.169)

The density of states of all the subbands is equal for the isotropic and parabolic
Γ valley, and the sheet density of carriers in the inversion layer are related via a
simple logarithmic expression. For the other, more complicated subband forms,
e.g., of the hole inversion layer, the results are necessarily more complex (see
Problem 14), and emphasize the importance of heavy hole bands due to both
their lower energy shifts and their larger density of states.

In the carrier concentration range of interest, i.e., ≈ 5-10 × 1011 cm−2, the
third subband is about 10% occupied for GaAs at 300 K according to Fig-
ure 6.11, but quite often this is ignored. The complication in analysis using the
confinement effects arises in the form of the dependence of E0 and E1 themselves
on the inversion layer sheet density NI because NI determines the electric field
and hence the confinement in the triangular well. To obtain accuracy in the
solution one would have to use an iterative procedure at this step. However,
considering that the triangular well approximation is only being adopted for the
strong inversion condition, we may employ the approximations for the subband
energies described earlier using the Airy function solutions,

E0 = γ0NI
2/3; γ0 = 2.5× 10−12 J.m4/3,

E1 = γ1NI
2/3; γ1 = 4.0× 10−12 J.m4/3,

(6.170)

for GaAs. Using for the moment our notation in terms of energies, we now
obtain

exp

(
NI
DkT

)
exp

(
E0 +E1

kT

)

= exp

(
E0 +E1

kT

)
+ exp

(
ξf +E1

kT

)
+
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exp

(
ξf + E0

kT

)
+ exp

(
2ξf
kT

)
+

[
exp

(
E0

kT

)
+ exp

(
E1

kT

)]
exp

(
ξf
kT

)
+

exp

(
E0 +E1

kT

)[
1 − exp

(
NI
DkT

)]
. (6.171)

The solution for ξf , the Fermi energy, follows as

ξf = kT ln

{
−1

2

[
exp

(
E0

kT

)
+ exp

(
E1

kT

)]
+ A

}
, (6.172)

where A is

A =
1

4

[
exp

(
E0

kT

)
+ exp

(
E1

kT

)]2
−

exp

(
E0 +E1

kT

)[
1 − exp

(
NI
DkT

)]1/2

=

{
1

4

[
exp

(
E0

kT

)
− exp

(
E1

kT

)]2
+

exp

(
E0 +E1

kT

)
exp

(
NI
DkT

)}1/2

. (6.173)

This can be written, as a function of sheet inversion charge density, for strong
inversion, as

ξf = kT ln

{
−1

2

[
exp

(
γ0NI

2/3

kT

)
+ exp

(
γ1NI

2/3

kT

)]
+





1

4

[
exp

(
γ0NI

2/3

kT

)
− exp

(
γ1NI

2/3

kT

)]2

+

exp

(
γ0 + γ1

kT
NI

2/3

)
exp

(
NI
DkT

)}1/2
}
. (6.174)

Recall that this is still an approximation using a quasi-triangular well. Over
the years this problem has been treated with further analytic simplifications to
allow simple solutions of current–voltage characteristics. These may be treated
as fitting techniques suitable only for specific conditions since acceptor doping
effects are still ignored or assimilated in the parameters of the approximation,
thus limiting its applicability for wider substrate parameters. Some examples
of analytic approximations8 are

ξf = ξf0, (6.175)

8Some examples of these and discussion related to them can be found in J. Yoshida,
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i.e., no quasi-Fermi level variation,

ξf = ξf0 + aNI , (6.176)

i.e., a linear variation of the quasi-Fermi level, and

ξf = K1 +K2(NI +K3)
1/2
, (6.177)

and

ξf = ξf0 + γNI
2/3, (6.178)

which are various forms of power law variation. Referring to our accurate cal-
culation of the variation of the sheet carrier density with Fermi energy at the
the Ga1−xAlxAs/GaAs interface, Figure 6.40 shows representative examples of
some of the previous approximations. The merit of these analytic approxima-
tions, is in the convenience of fitting an analytic expression to a strong inversion
behavior that is considerably complicated.

We could employ our procedure together with these relationships to arrive at
the current–voltage characteristics even for arbitrary velocity–field curves. Some
examples of velocity–field relationships were illustrated in Figure 6.39. The first
of these is the hyperbolic relationship, used earlier, which allows a closed-form
solution of the current equations derived above if the charge relationship allows
analytic integrations. For silicon long channel devices, the hyperbolic curve
is quite accurate. For compound semiconductors exhibiting large mobilities
or a negative differential relationship, it is quite inaccurate, and a hyperbolic
relationship may be treated as a fitting technique with fitting parameters chosen
to best reflect the behavior at specific electric fields. Finally, there have been
many attempts at modelling the compound semiconductors by fitting closely
the low-field behavior and the high-field behavior. These piece-wise fits are
illustrated in the next set of velocity–field curves in this figure.

One common thread in most of these fits is their inaccuracy at moderate
fields even if low-field behavior is fitted inaccurately in order to obtain more
accuracy at moderate fields. None can simulate negative differential mobility,
none can then simulate moderate field behavior (i.e., near the peak velocity
fields) without sacrificing the accuracy of high-field behavior. This moderate
field behavior is certainly quite important to the carrier transport. Channel
pinch-off occurs when these fields are reached, so much of the region of transistor
operation in logic and in analog applications occurs under these field conditions.
Quite generally, therefore, when applying these characteristics, one is forcibly

“Classical versus Quantum-Mechanical Calculation of the Electron Distribution at the n-
AlGaAs/GaAs Heterointerfaces,” IEEE Trans. on Electron Devices, ED-33, No. 1, p. 154,
Jan. 1986; K. Park and K. D. Kwack, “Calculation of the Two-Dimensional Electron Gas
Density at the AlxGa1−xAs/GaAs Interface,” IEEE Trans. on Electron Devices, 33, No. 11,
p. 1831, Nov. 1986; S. Kola, J. M. Golio, and G. N. Maracas, “An Analytical Expression for
Fermi Level versus Sheet Carrier Concentration for HEMT Modelling,” IEEE Electron Device

Letters, 9, No. 3, p. 136, Mar. 1988; and A-J Shey and W. H. Ku, “On the Charge Control of
the Two-Dimensional Electron Gas for Analytic Modelling of HEMTs,” IEEE Electron Device

Letters, 9, No. 12, p. 624, Dec. 1988.
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Figure 6.40: Sheet electron density as a function ofEc−ξf at Ga1−xAlxAs/GaAs
interface for 3 × 1014 cm−3 acceptor doping in the substrate. (a) shows the
calculation in Boltzmann approximation, (b) in the linear approximation, (c)
in the 2/3rd power law approximation, and (d) shows a fit with triangular
well approximation. Appropriate fitting parameters were chosen to obtain most
accuracy at sheet densities of interest.
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fitting a behavior, and the choice of parameters such as low-field mobility and
saturated velocity are dictated not by the actual material parameters but by
values that provide minimum error fit to actually observed device characteristics.
So, when we use these velocity–field curves, it is implicitly understood that
quoted mobilities or velocities are fits and not actual mobilities or velocities.

A general analytic expression that shows negative differential mobility, but
which does not allow closed-form solutions, is

v(E) =
µE + vs(E/Ec)n

1 + (E/Ec)n
. (6.179)

For lightly doped GaAs at room temperature, n ≈ 4.

We now discuss our sheet charge approximations. The rapid drop-off of
Fermi energy with sheet carrier concentration at low carrier concentration is
extremely difficult to model, considering the variability of NA, which has also
been assumed to be a constant. Like the velocity–field relationship, fitting can be
performed only over a very narrow range, and does not lead to an accurate model
over a wide variety of bias conditions extending from the sub-threshold region
to high gate biases. The effect of background doping and temperature on these
approximations is quite large and one should carefully obtain the parameters
to achieve an acceptable accuracy in the end results of the calculations—device
characteristics.

Before we derive a simplistic closed-form solution of the current–voltage
and capacitance–voltage characteristics, let us emphasize some of the important
differences of HFETs vis-a-vis silicon MOSFETs. HFETs use much lower p-
type doping in order to maintain a high low-field mobility. So, the criterion
ψS = 2ψB would lead to a condition where there are still very few carriers for
conduction. This is shown in Figure 6.41. So, unlike in SiO2/Si MOSFETs,
neither ψS saturation nor a rapid change in electron charge with bias would
occur. Therefore, the threshold can not be defined as simply in terms of band
bending for HFETs. Practically speaking, VT is a fitting parameter that we get
from measured characteristics of devices. It signifies the gate voltage, at a given
drain voltage, for which a rapid onset of conduction occurs. We may, therefore,
write it as a minimal NI needed for this conduction to take place. For example,
at a velocity of 1 × 107 cm.s−1, an inversion charge of QI = 8 × 10−9 C.cm−2

(i.e., NI = 5 × 1010 cm−2) results in a current of 8 mA.mm−1—a small current
compared to the 200-400 mA.mm−1 current that devices are capable of. Thus,
this may be used as a definition of threshold voltage, and certainly one can
see from the plots of sheet carrier concentration, it is around this concentration
that the rapid change in Fermi level position occurs—similar to what happens in
SiO2/Si MOSFETs. One could define it more precisely for arbitrary conditons
by actually determining the region where this rapid change in NI occurs. This
would depend on the charge density in the background—a quantity dependent
on the the bulk potential, i.e., ψB.

Note that the rapid onset region is dependent on both the background doping
and the temperature. The onset condition also occurs fairly near where the
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Figure 6.41: Schematic comparing the band bending in SiO2/Si MOSFETs (a)
compared to HFETs which employ low background dopings (b) at the ψS = 2ψB
condition.

conduction band edge and the quasi-Fermi level are nearly coincident. So the
amount of band bending is ≈ ψB + ψi instead of 2ψB.

In a manner similar to the analysis of the PHS model for MESFETs, we
could have broken up our problem in various sections that could be treated
analytically or numerically. As in PHS model, this leads to a discontinuity in
dv/dE . We could match where the peak velocity and field occur, i.e., we could
solve the current equation in the two sections and match the two sections by
maintaining current continuity in a way similar to the constant mobility and
constant saturated velocity analysis of MESFETs. This methodology does not
lead to analytic form of sufficient accuracy; however, non-analytic procedures
with confinement effects in the low-field region and sheet charge approximation
in the Boltzmann limit in the velocity saturated region do lead to acceptable
accuracy. Compared to the MESFET, there is one particularly interesting differ-
ence between the two devices, which is shown in Figure 6.42. In the PHS model,
the region of high-field and saturated velocity transport can be very large. In
a MISFET, where the channel is induced, the pinch-off region is shorter at the
larger gate lengths, since the carrier pinch-off is more efficient, and the fields in
this region are larger for similar drain voltages. This behavior is size-dependent,
the smaller the gate length of a device, the more similar the two devices become
in the behavior of the potential.

Our analytic calculation of the current–voltage characteristics9 follow in light
of the approximations discussed. We consider a smooth velocity–field curve

9The model discussed here is a simple extension of A-J Shey and W. H. Ku, “An Analyt-
ical Current–Voltage Characteristics Model for High Electron Mobility Transistors Based on
Nonlinear Charge Control Formulation,” IEEE Trans. on Electron Devices, ED-36, No. 10,
p. 2299, Oct. 1989.
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Figure 6.42: The conduction band edges in a GaAs MESFET (solid line) and
GaAs/Ga1−xAlxAs/GaAs MISFET MISFET (dot-dashed line) for 1 µm gate
length at a 1 V drain bias.

based on the hyperbolic relationship, letting us write complete relationships
instead of a procedure, but with the caveat that the mobility and saturated
velocity are fitting parameters that emphasize a more accurate reflection of the
velocity–field behavior in the moderate electric field region. Away from this
region, in regions in which they normally would have a physical meaning, they
are mere fitting parameters. We have ignored the consequences of negative
velocity–field characteristics present at the low background doping, which may
exhibit substantial hot carrier effects in certain HFET structures. We will re-
turn to this shortcoming by considering its two-dimensional nature later in this
chapter.

We use our general relationship within the sheet charge approximation of

I = µNIW
dξn
dz

. (6.180)

We ignore the diffusive current component—the model is incorrect in the sub-
threshold region, which we treat separately. Our control equation then is

ID = qµNIW
dV

dz
, (6.181)

where V is the electrostatic potential of the channel. We will refer this to the
bottom of the conduction band at the source end of the channel. So, V = 0 at
the source end. Recall, based on potential drops and Gauss’s law, at a position
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z somewhere along the channel,

−q(NAs +NI ) = CAl ×{
VG − V − ξf

q
+

∆Ec
q

+
qND
εAl

(tAl − tsp)
2 − φM

}

= CAl

{
VG − V −

[
φM − qND

εAl
(tAl − tsp)

2−

∆Ec
q

+
ξf
q

]}
. (6.182)

We use the non-linear approximation for

ξf = ξf0 + γNI
2/3, (6.183)

which parameterizes the confinement effects, and is accurate over a modest
range of mobile charge in the two-dimensional carrier gas under conditions of
low background doping with a proper selection of the fitting parameters ξf0 and
γ. For modest (low 1015 cm−3 or lower) doping in GaAs, a suitable fit is

γ = 1.79× 10−9 eV.cm4/3, (6.184)

with ξf0 dependent on the background doping (see Problem 15). So,

NI =
CAl
q

{
VG − V − VT0 − γNI

2/3
}
, (6.185)

where

VT0 = φM − qND
εAl

(tAl − tsp)
2 − ∆Ec

q
− ξf0

q
(6.186)

is a “threshold” voltage at which charge is induced rapidly at the source end
where V = 0. This leads to

NI =
CAl (VG − V − VT0)

q
(
1 +CAlγNI

−1/3/q2
) . (6.187)

For an example of Ga1−xAlxAs with εAl ≈ 1× 10−12 F.cm−1, tAl = 400 Å, and
NI ≈ 1 × 1012 cm−2, the perturbation term in the sheet carrier density is

CAlγ

q2
NI

−1/3 ≈ 0.28, (6.188)

i.e., deviations from a constant quasi-Fermi level relationship with carrier den-
sity account for nearly a quarter of the effect in the carrier density, a substantial
effect.

Our velocity–field relationship is

v(E ) =
µ0E

1 + |E/Ec|
. (6.189)
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For convenience, we now introduce a parameter

$ =
CAlγ

q2
. (6.190)

Using these relationships, the drain current can be expressed as

ID = − WCAl

1 +$NI
−1/3

[VG − VT0 − V ]
µ0E

1 + |E/Ec|
, (6.191)

and

NI =
CAl

q
(
1 +$NI

−1/3
) (VG − VT0 − V ) , (6.192)

where $NI
−1/3 is the perturbation term in carrier occupation due to the move-

ment of the subband levels with changing occupation. We may also interpret

it as a renormalization term for the capacitance CAl to CAl/
(
1 +$NI

−1/3
)
.

The charge could be viewed as tAl ×$NI
−1/3 further away from the interface,

leading to poorer modulation of the charge. For our example, this effective
increase in the spacing for the sheet carrier density is ≈ 0.28 × 400 = 112 Å.
Strictly speaking, we can determine this from the complete calculation based on
the envelope wave function and the occupation in all the subbands. This excess
spacing is

∆tAl =
2
3

∑
iNIiyi∑
iNIi

, (6.193)

where NIi is the sheet carrier density in the ith subband. Figure 6.43 shows vari-
ation of this parameter, and compares it with the fitted parameter determined
above.

We can utilize our expression for NI as a function of the bias voltages in
the equation for ID, and ignore the second-order expansion terms in voltage,
leading to

ID = − WCAl (VG − VT0 − V )

1 +$(CAl/q)
−1/3

(VG − VT0 − V )
−1/3

µ0E
1 + |E/Ec|

. (6.194)

We now define

λ = $

(
CAl
q

)−1/3

=

(
εAl
tAl

)2/3
1

q2/3
γ

q
. (6.195)

For our example, λ ≈ 0.24 V1/3. Substituting for field and above,

ID = −Wµ0CAl (VG − VT0 − V )

1 + λ(VG − VT0 − V )
−1/3

−∂V/∂z
1 + ∂V/Ec∂z

. (6.196)

This is an equation that can be solved analytically; the other power relationship
fits also allow this, albeit in slightly different forms. Again, like our earlier
MESFET example, we introduce the normalized variable of voltage,

ξ = (VG − VT0 − V )
1/3
, (6.197)
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Figure 6.43: Excess distance, as calculated from accurate calculations of the
two-dimensional electron gas at Ga1−xAlxAs/GaAs interface (solid line), and
from the fitting parameter of the power relationship (dashed line).

which has the magnitude of

ξ = (VG − VT0)
1/3

(6.198)

at the source (z = 0), and the magnitude of

ξ = (VG − VT0 − VD)
1/3

(6.199)

at the drain (z = L). Here, VD is the drain voltage with the source as a reference.
We have

dξ =
1

3(VG − VT0 − VD)2/3

= − 1

3ξ2
dV. (6.200)

So,

ID = −Wµ0CAl
ξ3

1 + λξ−1

3ξ2

1 − 3ξ2dξ/Ecdz
dξ

dz
, (6.201)

and hence,

ID

∫ [
z − 3ξ2

Ec
dξ

dz

]
dξ = −3Wµ0CAl

∫
ξ6

ξ + λ
dξ. (6.202)
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Integrating from z = 0, ξ = ξs to z = L, ξ = ξd, we obtain

ID = − 3Wµ0CAl

L
[
1 − (ξd

3 − ξs
3)/EcL

]
[
ξ6

6
− λ

ξ5

5
+ λ2 ξ

4

4
−

λ3 ξ
3

3
+ λ4 ξ

2

2
− λ5 ξ

1
+ λ6 ln (ξ + λ)

]∣∣∣∣
ξd

ξs
, (6.203)

which can be expressed as

ID = − 3Wµ0CAl
L (1 + VD/EcL)

{[
6∑

i=1

(−1)
i

i
λ6−i

(
ξd
i − ξs

i
)
]

+ λ6 ln

(
ξd + λ

ξs + λ

)}
,

(6.204)
and in terms of applied voltages as

ID = − 3Wµ0CAl
L (1 + VD/EcL)

{[
6∑

i=1

(−1)
i

i
λ6−i

(
(VG − VT0 − VD)

i/3−

(VG − VT0)
i/3
)]

+ λ6 ln

[
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+ λ
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]}
, (6.205)

or

ID =
3Wµ0CAl

L (1 + VD/EcL)

{[
6∑
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(−1)
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i
λ6−i
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(VG − VT0)
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(6.206)

This relation reduces to the familiar parabolic approximation in the triode
region, i.e., for drain voltages below the channel pinch-off voltage. We show
this by considering the approximations. The natural logarithm term is small
because it is in the powers of λ, a small quantity. The sum term has as its
largest contributor the term whose coefficient is λ0, i.e., i = 6. Consider this
term,

ID =
3Wµ0CAl

L (1 + VD/EcL)
×

1

6

[
(VG − VT0)

2 − (VG − VT0)
2 − VD

2 + 2 (VG − VT0)VD

]

=
3Wµ0CAl

L (1 + VD/EcL)

[
(VG − VT0)VD − 1

2
VD

2

]
. (6.207)

The earlier association of VT0 as a threshold term follows from this expression.
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We must make a cautionary remark regarding our extended expression: it
is still an approximation, since it does not consider diffusive current, and uses
gradual channel approximation and parametric fits to the carrier density and
the velocity–field relationships. However, it provides through its simplicity a
convenient means to represent, adequately for computer-aided design models,
the quasi-static current–voltage relationship. Its approximation in the velocity–
field parameterization may be extended further by considering a PHS model–like
partitioning of the velocity–field relationship: breaking it in a hyperbolic part
and a constant velocity part, and matching the two field regions in the device.

A more convenient form of including this effect, within the simpler mod-
elling procedure, is to consider the origin of the saturation of current and the
evolution of the current–voltage characteristics at drain biases exceeding this.
The saturation of the current, in high mobility materials, is associated with the
appearance of a sufficiently high-field region at the drain end of the channel to
cause saturation of velocity. Thus, a simple parameterization of this field allows
us to determine the condition of saturation of velocity and current (see Prob-
lem 16). This happens at the voltage VDsat associated with the specific gate
bias of the structure. Beyond this point, the current–voltage characteristics
may be considered to arise due to shortening of the channel as in the MISFET
extension. Since Le < L, ID, which is inversely proportional to Le, continues
to increase, leading to what is usually described as the increase in current due
to the short channel effect.

A simpler, and for many instances adequate, model would be to consider
the assimilation of a model similar to the constant velocity model of MESFETs.
If we ignore the effects of the gradual channel approximation region, where
voltage drops are small and consider the entry of the carriers in the channel
at the saturated velocity vs, then in the piece-wise approximation, this current
saturation occurring at a channel voltage of Vsat leads to the drain current given
by

ID = Wqµ0CAl
(VG − VT0 − Vsat)

1 + λ(VG − VT0 − Vsat)
1/3

vs. (6.208)

The current continuity condition requires this current and the current from the
gradual channel approximation expression be identical at the drain saturation
voltage Vsat, giving the magnitude of Vsat. The deviations in electric length
from the metallurgical gate length now follow, allowing for the determination of
the current due to electric gate length shortening.

The major limitation of this and other procedures that do not consider ef-
fects of transport in the substrate region directly is that they underestimate
the output conductance. Proper output conductance modelling can only be
made through two-dimensional models where the substrate characteristics are
adequately accounted. We may continue these refinements by including the par-
asitic MESFET and its screening of the charge transport in the two-dimensional
carrier gas etc. (see Problem 17). These are simpler extensions and will not be
covered.
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6.8.1 Sub-Threshold Currents

This quasi-static model for current flow is probably least adequate in the sub-
threshold region, where many of the approximations break down quite entirely.
The parametric power law fit of carrier density is very inadequate in this region,
and as discussed earlier, the Boltzmann approximation or Fermi–Dirac approxi-
mation of three-dimensional statistics is quite adequate. Sub-threshold current,
then, follows from our discussion related to the MISFET. Here, we employ the
Ehrenreich approximation for Fermi–Dirac statistics. Since the current is by
diffusion, we need the gradient of the carrier distribution.

IDsubthr = WqD dNI
dz

. (6.209)

We have at the source end

NI |source = NA
√

2λD

{[
qψs0
kT

+ 4
NC
NA

ln

[
1 +

1

4
exp

(
q
ψs0 − φn
kT

)]]1/2
−

(
qψs0
kT

)1/2
}
, (6.210)

in the degenerate limit, and

NI |source =
λDNC√

2(qψs0/kT )
1/2

exp

(
ξf
kT

)
(6.211)

in the the non-degenerate limit. Since NI is small,

ξf = −q (VG − VT0) , (6.212)

and

NI |drain = NI |source exp

(
−q VDS

kT

)
. (6.213)

So,

IDsubthr = −WqD dNI
dz

≈ −WqD NI |drain − NI |source
L

, (6.214)

which gives

IDsubthr =
WµkT

L

[
1 − exp

(
−q VDS

kT

)]
×

λDNC√
2(qψs0/kT )

1/2
exp

(
qVT0

kT

)
exp

(−qVG
kT

)
.

(6.215)

In the sub-threshold region, VG < VT0, and drain voltage is usually larger than
thermal voltage. The above expression shows that the sub-threshold current
would exponentially depend on the applied gate voltage, and the dependence
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Figure 6.44: Theoretical behavior of sub-threshold current versus gate volt-
age for a depletion-mode (left set) and an enhancement-mode (right set)
Ga1−xAlxAs/GaAs 1 µm gate length HFETs. The drain bias is increased in
steps of 1 V from 0.5 V.

on the drain voltage would be very weak. And indeed, just like MISFETs,
HFETs show an exponential drain current–gate voltage dependence the in sub-
threshold region with the sub-threshold gate swing S = ln 10/ (d ln I/dVG),
which is approximately 60 mV/decade at room temperature. An example of
this calculation is shown in Figure 6.44.

6.8.2 Intrinsic Capacitances

We derive the capacitances using our approximate model by finding the to-
tal channel charge QT , and then finding its dependence on the gate-to-source
potential and gate-to-drain potential, i.e., we will determine it from

Cgs =
∂QT

∂ (VG − VS)

and Cgd =
∂QT

∂ (VG − VD)
. (6.216)

Recalling our remarks regarding charge partitioning and conservation, this
calculation of capacitance is path-dependent and limited in scope. Following
our definition of ξ,

d (VG − V )

dz
= 3ξ2

dξ

dz
. (6.217)



6.8 HFET Analysis 459

We have

QT = W

∫ L

0

qNIdz

= W

∫ ξd

ξs
qNI

dz

dξ
dξ

= qW

∫ ξd

ξs

1

q

CAlξ
3

1 + λξ−1

dz

dξ
dξ. (6.218)

The drain current, known already from current continuity in terms of ξd and
ξs, is also related to ξ and its derivative by

ID = −Wµ0CAl
ξ3

1 + λξ−1

3ξ2

1 − (3ξ2/Ec)(dξ/dz)
dξ

dz
, (6.219)

and hence the derivative is known as a function of ξ,

dξ

dz
=

1

(3ξ2/Ec) − [3Wµ0CAlξ6/ID(ξ + λ)]
, (6.220)

and hence

QT = WCAl
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6∑

i=1

(−1)
i

i
λ6−iξi

∣∣∣∣∣

ξd

ξs

+ λ6 ln(ξ + λ)
∣∣ξd
ξs



 +

3Wµ0CAl
ID




9∑

j=1

(−1)
j
λ9−j




j∑

i=1

(−1)i

i
λj−iξi

∣∣∣∣
ξd

ξs
+

λj ln(ξ + λ)
∣∣ξd
ξs

]
+

λ10

ξ + λ

∣∣∣∣
ξd

ξs








 . (6.221)

Substituting for ID and using the limits,

QT = WCAl

{
3

Ec

[
6∑

i=1

(−1)
i

i
λ6−i

(
ξd
i − ξs

i
)

+ λ6 ln

(
ξd + λ

ξs + λ

)]
+

L

[
6∑

i=1

(−1)
i

i
λ6−i

(
ξd
i − ξs

i
)

+ λ6 ln

(
ξd + λ

ξs + λ

)]−1

×
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9∑

j=1

(−1)
j
λ9−j

[
j∑

i=1

(−1)i

i
λj−i

(
ξd
j − ξs

j
)

+ λj ln

(
ξd + λ

ξs + λ

)]
+

λ10

(
1

ξd + λ
− 1

ξs + λ

)}}
. (6.222)

We may now determine the capacitances, since

Cgd =
1

3ξd
2

∂QT
∂ξd

,

and Cgs =
1

3ξs
2

∂QT
∂ξs

, (6.223)

where

ξs = (VG − VT0)
1/3

and ξd = (VG − VT0 − VD)
1/3
. (6.224)

This will give us a rather complicated closed-form analytical solution. Here,
noting that the magnitude of λ is sufficiently smaller than unity, and its higher
powers even smaller, we only consider the contribution of the zero’th power in
λ, i.e., we use the approximation for total charge QT ,

QT = WCAl

{
3

Ec

[
1

6

(
ξd

6ξs
6
)]

+ L
2

3

ξd
9 − ξs

9

ξd
6 − ξs

6

}
, (6.225)

giving

Cgd =
1

3ξd
2

∂QT
∂ξd

∣∣∣∣
ξs

= WCAl

[
ξd

3

Ec
+

2L

3
ξd

3 ξd
3 + 2ξs

3

(
ξd

3 + ξs
3
)2

]
. (6.226)

As a function of voltages, ignoring parasitics so that VS = 0, this yields

Cgd = WCAl

[
VG − VT0 − VD

Ec
+

L

2

(VG − VT0 − VD)
(
VG − VT0 − 1

3
VD
)

(
VG − VT0 − 1

2
VD
)2

]
. (6.227)

Note that for large Ec, e.g., in a constant mobility model, and for VD = 0, the
capacitance reduces to

Cgd =
WCAlL

2
, (6.228)
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which is half of the total capacitance associated with the gate. Under conditions
of no drain bias, half of the capacitance is associated with the source and half is
associated with the gate, as expected. Elsewhere, some charge non-conservation
effects occur due to the inadequacy of the analysis (see Problem 18).

An expression similar to the above, associated with the gate-to-source ca-
pacitance, is

Cgs =
1

3ξs
2

∂QT
∂ξs

∣∣∣∣
ξd

= WCAl

[
ξs

3

Ec
+

2L

3
ξs

3 ξd
3 + 2ξs

3

(
ξd

3 + ξs
3
)2

]

= WCAl

[
VG − VT0 − VD

Ec
+
L

2

(VG − VT0)
(
VG − VT0 − 1

3VD
)

(
VG − VT0 − 1

2VD
)2

]
,

(6.229)

which follows identical limits for VD = 0 and Ec → ∞.

We now have the capacitive elements of the independent terms of our model.
These characterize the channel charge storage relationship under quasi-static
conditions. Let us now complete this elementary model.

6.8.3 Transconductance

We would like to characterize the device in terms of voltages VGS and VDS , by

ID = ID(VGS , VDS), (6.230)

and hence the small-signal transconductance is

gm =
∂ID
∂VGS

∣∣∣∣
VDS

, (6.231)

and output conductance is

gd =
∂ID
∂VDS

∣∣∣∣
VGS

. (6.232)

We will not determine these expressions, but they naturally follow from
our derivation above in a similar manner as the capacitances. We have two
capacitances to model the charge storage, one current source to model the output
current, and one conductance to model the output conductance. All these are
determinable in terms of VGS and VDS . The quasi-static equivalent circuit
representing this is shown in Figure 6.45.
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Figure 6.45: Elementary quasi-static small-signal equivalent circuit with in-
clusion of charge storage and output conductance effects; this model does not
include input conductances, etc.

6.9 Quasi-Static Equivalent Circuit Refinements

Now consider refinements to the equivalent circuit model discussed. We have
excluded the consequences of dipole capacitance in the channel in this analy-
sis,10 i.e., we have excluded the effects of the negative differential region of the
velocity–field characteristics. We remarked earlier, in our discussion of the GaAs
MESFET, that it leads to an accumulation and depletion region in the channel.
Under quasi-static conditions, this region contributes a capacitive and a weak
conductive element, which models the modulation of charge in the channel by
the drain-to-channel bias occurring across the dipole region. If we model this
channel contribution through a capacitance Cdc, it is charged from the source
through the intrinsic channel resistance Ri. Ri also occurs in the charging path
for the gate-to-source capacitance. This refinement leads to the quasi-static
equivalent circuit shown in Figure 6.46.

Recall that the depletion and accumulation regions can move at most as
rapidly as the movement of carriers. This occurs at approximately the saturated
velocity (≈ 1 × 107 cm.s−1), so the current source can not respond instanta-
neously and has a phase delay of ωτd. The basis for this phase delay is similar
to that of the MESFETs, it arises from the distributed transmission-line effects.
Thus, the current source has a small-signal transconductance Gm given by

Gm = gm exp (−jωτd) . (6.233)

We should also include extrinsic resistances for the gate (Rg) due to gate met-
allurgy, etc., resistance from the source (Rs) due to ohmic contacts and par-
asitic source regions, etc., and resistance from the drain (Rd) due to ohmic
contacts and parasitic drain regions, etc. There are also parasitic capacitances

10Should the major cause of this dipole be the negative differential mobility that was dis-
cussed in the treatment of MESFETs, its effect should be stronger, since the channel material
is less doped in HFETs.
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Figure 6.46: Quasi-static small-signal model with first-order refinements show-
ing the inclusion of a capacitive element due to channel capacitance and the
intrinsic resistance of the low-field region of the channel.

between the drain and the source electrode, which are dominated by the fringing
capacitance through the semiconductor substrate. Our second-order extrinsic
equivalent circuit model then appears as shown in Figure 6.47.

In the related section for MESFETs, we had discussed the consequences
of the existence of the dipole or the channel capacitance, should the parasitic
capacitances and resistances be small. Most of those comments still hold for the
HFET since the device equivalent circuit is quite similar. So, as gate lengths
are shortened, if parasitics are extremely small, and provided that this method
of quasi-static analysis and its equivalent circuit representation is valid at the
frequencies where it is applied, a pole would occur at a resonant frequency,
and following that the unilateral gain would have an increase in roll-off from
6 dB/octave to 12 dB/octave and the transistor would have a smaller fmax
than predicted by low frequency measurements. Similar phenomena may occur
in MESFETs, however their higher doping at short gate lengths makes the
causes that lead to the dipole capacitance less likely.

There is an additional frequency-related delay effect that is of some concern
in all fast FETs. This is due to gate transmission line effects and was discussed
for MESFETs. Since the gate structure causes a distributed transmission of
the signal along the gate width, it also introduces a phase delay in the signal
leading to constructive and destructive build-up of signal along the drain line.
One could analyze such a structure as a distributed connection of FETs with
gradually increasing phase delay of the gate. Signals at the opposite end from
the feed end have a larger delay. Usually, one strives to design devices so that
the intrinsic device sets the frequency limit of the completed structure, and not
the nature of the width of the device or the resistivity of the gate, etc., i.e., the
propagation time constants, etc. In logic devices, where the widths are small, it
is usually not a problem at µm sized dimensions. It can be a problem, however,
at sub-0.5µm dimensions because of increased gate resistance per unit length.
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Figure 6.47: Second-order quasi-static small-signal model for HFETs incuding
extrinsic resistances and the phase effects of current source.

6.10 Small-Signal Analysis

We have discussed the analysis and modelling of HFETs based on the quasi-
static approximation, i.e., by invoking static solutions, and a static perturbation
of the static solution to derive the response of the devices. This is likely to be
inadequate, in spite of additions to allow the equivalent circuits to be valid at
intermediate frequency ranges. In particular, this does call into question any
attempt at predicting high-frequency effects within a decade in frequency of the
limiting frequencies of the device, and the time scales corresponding to it. To
adequately model this regime, we must resort to solutions of the small-signal
equations. Unfortunately, even more so than the static equations, this involves
approximations and idealizations. Such solutions are, however, quite instructive
and quite adequate in some of the bias regions.

Our discussion of small-signal analysis of HFETs follows along similar lines
as in the case of MESFETs.11 First we consider a solution that can be found
in a manner similar to the use of Weber’s equation in MESFETs. The control
equations for the transport, assuming unit gate width, are

I (z, t) = −qµCins. (Vg − VT − V )
∂V

∂z
, (6.234)

and
∂I

∂z
= −∂ρ

∂t
, (6.235)

11The small-signal analysis, which reformulates the current equation into a wave equation,
has been applied extensively in non-quasi-static modelling of MOSFETs. Three references
of particular interest are J. A. Geurst, “Calculation of High-Frequency Characteristics of
Thin Film Transistors,” Solid-State Electronics, V8, p. 88, 1965; J. A. Van Nielen, “A
Simple Accurate Approximation to the High-frequency Characteristics of IGFETs,” Solid-

State Electronics, V12, p. 826, 1969; and M. Bagheri, “An Improved MODFET Microwave
Analysis,” IEEE Trans. on Electron Devices, ED-35, p. 1147, July 1988.
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with
ρ (z, t) = −Cins (Vg − VT − V (z, t)) . (6.236)

As in the MESFET case, we make normalizations,

ξ =
z

L
,

κ =
Vg − VT − V

Vnorm.
,

ι =
I

I0
,

and θ =
t

t0
, (6.237)

where

Vnorm. = V g − VT ,

I0 =
µCinsV

2
norm.

2L2
,

and t0 =
L2

µVnorm.
. (6.238)

The continuity equation, following these substitutions, is

1

2

∂2κ

∂ξ2
=
∂κ

∂θ
. (6.239)

We resort to our standard approach to determining the solution by assuming
the steady-state and small-signal variation to be given by

κ (ξ, θ) = κ (ξ) + κ̃ (ξ, θ) = κ (ξ) + κ̂ exp (jωt0θ)

and ι (ξ, θ) = ι (ξ) + ι̃ (ξ, θ) = ι (ξ) + ι̂ exp (jωt0θ) . (6.240)

The steady-state magnitudes of κ and ξ, in terms of parameters at the source
end and the drain end, are

ι = κ2
d − κ2

s

and ξ =
κ2 − κ2

s

κ2
d − κ2

s

. (6.241)

Using these substitutions, the small-signal equations are

∂

∂κ

[
1

κ

∂

∂κ
(κκ̃)

]
=

4

ι2
∂

∂θ
(κκ̃) , (6.242)

and

ι̃ =
ι

κ

∂

∂κ
(κκ̃) . (6.243)
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We now substitute for the time dependence of the small-signal variation of

κ̃ (ξ, θ) = κ̂ (ξ, ω1) exp (jω1θ) , (6.244)

and
ι̃ (ξ, θ) = ι̂ (ξ, ω1) exp (jω1θ) , (6.245)

with ω1 = ωt0. Representing the common term in these equations by υ̂, i.e.,

υ̂ = κκ̂, (6.246)

and using the substitution

z = jκ

(
4ω1

ι2

)1/3

, (6.247)

we can obtain the simplified equation

d

dυ̂

(
1

z

dυ̂

dz

)
+ υ̂ = 0. (6.248)

The solution of this equation has similarity with the solution of Stokes’
equation,

d2υ̂

dz2
+ zυ̂ = 0. (6.249)

The function dυ̂/dz is the solution of our equation if υ̂ is the solution of Stokes’
equation. Using the common-source configuration, the admittance parameters
with the gate current phasor and drain current phasors are

Îg = − Î
∣∣∣
z=0

+ Î
∣∣∣
z=d

= ys11V̂g + ys12V̂d, (6.250)

and
Îd = ys21V̂g + ys22V̂d. (6.251)

The admittance parameters follow from the above (see Problem 19) as

ys11 = gm
|ϕs|2
2∆

(
1 − ν2

) [∣∣∣∣
h1(ϕs) h2(ϕs)

ḣ1(ϕd) ḣ2(ϕd)

∣∣∣∣ +

ν

∣∣∣∣
h1(ϕd) h2(ϕd)

ḣ1(ϕs) ḣ2(ϕd)

∣∣∣∣− (1 + ν)W (h1, h2)

]
, (6.252)

ys12 = gm
|ϕs|2
2∆

(
1− ν2

)
ν

[
W (h1, h2) −

∣∣∣∣
h1(ϕd) h2(ϕd)

ḣ1(ϕs) ḣ2(ϕs)

∣∣∣∣

]
, (6.253)

ys21 = gm
|ϕs|2
2∆

(
1− ν2

) [
W (h1, h2) − ν

∣∣∣∣
h1(ϕd) h2(ϕd)

ḣ1(ϕs) ḣ2(ϕs)

∣∣∣∣

]
, (6.254)

and

ys22 = gm
|ϕs|2
2∆

(
1 − ν2

)
ν

∣∣∣∣
h1(ϕd) h2(ϕd)

ḣ1(ϕs) ḣ2(ϕs)

∣∣∣∣ . (6.255)
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In these equations,

gm =
µCins
L

(
V g − VT

)
, (6.256)

ν =
V g − VT − V d

V g − VT
, (6.257)

ϕs = j

[
4ω1

(1 − ν2)
2

]1/3

, (6.258)

ϕd = jν

[
4ω1

(1 − ν2)
2

]1/3

, (6.259)

∆ =

∣∣∣∣
ḣ1(ϕs) ḣ2(ϕs)

ḣ1(ϕd) ḣ2(ϕd)

∣∣∣∣ , (6.260)

and the Wronskian is

W (h1, h2) =

∣∣∣∣
h1(ϕs) h2(ϕs)

ḣ1(ϕd) ḣ2(ϕd)

∣∣∣∣ . (6.261)

In these equations h1 and h2 are Hankel functions,12 which are the linearly
independent solution of the homogeneous equation for this problem.

The control equation has been written in the constant mobility approxima-
tion. The control equation is suspect, therefore, in the region of saturation of
the steady-state current. Following channel pinch-off, ν = 0, and hence accord-
ing to this formulation, both y12, the feedback term, and y22, the output term
reduce to zero. This is a consequence of the steady-state analysis where the
current following channel pinch-off is a constant. In actual practice, it would
be different, and indeed we could find more accurate solution following a com-
plicated analysis (see Problem 20). Our results are closed-form solutions. We
could also attempt analysis in a series expansion form. This solution, written in
terms of the known functions, is valid over a large frequency range, provided the
other approximations made also for the steady-state equations are also valid.

Our general small-signal analysis, using series expansion in frequency and
employed in Chapter 5 on MESFETs can be applied for the HFETs. The
accuracy of the solution is limited now by the number of terms considered in
the series expansion. We will consider it in the triode region of operation, and
its similarity with the treatment of MESFETs will become clear, emphasizing
the general framework of the small-signal treatment. The conductance at any
position z in the channel is

G =
µCins.
L2

(
V G − VT − V

)
, (6.262)

12See, e.g., M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables, U.S. Government Printing Office, Washington,
D.C., p. 446, 1964. Hankel functions are Bessel functions of the third kind. Weber functions,
used in the small-signal solution for MESFETs, are Bessel functions of the second kind.
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where V is the channel voltage. In the triode region, the static drain current is

Id =
µCins
L

[(
V g − VT

)
V d −

1

2
V

2

d

]
. (6.263)

Again, we employ normalizations for voltages,

ξs =
V g − V s − VT

VT

and ξd =
V g − V d − VT

VT
. (6.264)

The characteristic frequencies in this analysis follow (see Problem 21) as

1

ω0
=

4

15

L2

µVT

ξ5s − ξ5d + 5ξ2sξ
3
d − 5ξ3sξ

2
d

(ξ2s − ξ2d)
3 ,

1

ω11
=

4

3

L2

µVT

ξ3s − 3
2ξ

2
sξd + 1

2ξ
3
d

(ξ2s − ξ2d)
2

,

and
1

ω21
=

2

3

L2

µVT

ξ3s − 3ξsξ
2
d + 2ξ3d

(ξ2s − ξ2d)
2

. (6.265)

At a bias point where channel pinch-off and current saturation occur, these
give the characteristic frequencies as

1

ω0
=

4

15

L2

µ

1

V g − V s − VT
,

1

ω11
=

4

3

L2

µ

1

V g − V s − VT
,

and
1

ω12
=

2

3

L2

µ

1

V g − V s − VT
. (6.266)

The first-order elements of the equivalent circuit now follow. For example, the
gate capacitance is given (see Problem 22, which also considers the drain-to-gate
capacitance) as

Cgs =
2

3
CinsLW

ξs
(
ξ3s − 3ξsξ

2
d + 2ξ3d

)

(ξ2s − ξ2d)
2 . (6.267)

At current saturation, this capacitance is

Cgs =
2

3
CinsLW, (6.268)

consistent with the quasi-static analysis.
We will take a third alternate approach that uses the particular form of

the current control equation to obtain a more accurate solution valid to higher
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frequencies. The transmission-line equations for this problem, with Cins as the
capacitance per unit area of the gate dielectric, are of the form

I = µWCins (Vg − VT − V )
∂V

∂z

and
∂I

∂z
= WCins

∂V

∂t
. (6.269)

Separating the steady-state and time-dependent terms for current and volt-
age,

I (z, t) = I (z) + Î (z, ω) exp (jωt)

and V (z, t) = V (z) + V̂ (z, ω) exp (jωt) . (6.270)

Substituting in the transmission line equations, we obtain the sets of equations
for steady-state and small-signal conditions. The steady-state equations are

I (z) = µWCins
(
V g − VT − V

) ∂
(
V g − VT − V

)

∂z
,

and
∂I

∂z
= 0, (6.271)

and the small-signal equations are

Î (z, ω) = µWCins



(V g − VT − V
) ∂
(
V̂g − V̂

)

∂t
+

(
V̂g − V̂

) ∂
(
V g − VT − V

)

∂z

]

= µWCins
∂
(
V g − VT − V

) (
V̂g − V̂

)

∂z
,

and
∂Î

∂z
= jωWCins.

(
V̂g − V̂

)
. (6.272)

For the steady-state solution, the boundary conditions for the problem are

V (z = 0) = V s,

I (z = 0) = Is,

V (z = L) = V d,

and I (z = L) = −Id. (6.273)

Note that, as in the case of MESFETs, the drain current is treated as positive
when entering the port. The small-signal boundary conditions are similar, and
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given by

V̂ (z = 0) = V̂s,

Î (z = 0) = Îs,

V̂ (z = L) = V̂d,

and Î (z = L) = −Îd. (6.274)

The steady-state solution, due to continuity of steady-state current, is straight-
forward following integration and the use of the boundary conditons. Integration
of the steady-state current equation results in

1

2

(
V g − VT − V

)2
=

I

µWCins
z + A, (6.275)

where the constant of integration A follows from the source boundary condition
as

A =
1

2

(
V g − VT − V s

)2
. (6.276)

The current at z = L, −Id, follows from

Id = −µWCins
L

[
1

2

(
V g − VT − V d

)2 − 1

2

(
V g − VT − V s

)2
]

= −µWCins
L

[
1

2
V d

2 − 1

2
V s

2 −
(
V g − VT

) (
V d − V s

)]
,

(6.277)

the triode equation where the potential reference is arbitrary.
In order to ease the appearances of the grouped terms, we make the following

substitutions:

Υ(z) = V g − VT − V (z)

and Υ̂(z, ω) = V̂g − V̂ (z, ω), (6.278)

and consequently the control equations are

Î = µWCins
∂

∂z

[
ΥΥ̂
]
,

and
∂Î

∂z
= jωWCinsΥ̂. (6.279)

The integral forms of these equations can be written as

Υ̂(z, ω) =
1

Υ(z, ω)

[
Υ(L)Υ̂(L, ω) − 1

µWCins

∫ L

z

Îdz
′

]
, (6.280)
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and

Î(z, ω) = Î(L, ω) − jωWCins

∫ L

z

Υ̂(z
′

, ω)dz
′

. (6.281)

We can obtain an expanded series solution to the problem using an iterative
solution of the above. The steady-state solution allows us to write the potential
term Υ along the channel in terms of the current and the position following the
treatment as before. The steady-state current in the channel is given by

I =
µWCins

2L

[
Υ

2
(0) − Υ

2
(L)
]

(6.282)

in terms of the potentials, and the potential as a function of position is given
by

Υ(z) =

[
Υ

2
(0) − 2Iz

µWCins

]1/2
, (6.283)

which may be more simply written as

Υ(z) = Υ(0)

{
1 −

[
1 − Υ

2
(L)

Υ
2
(0)

]
z

L

}1/2

. (6.284)

Note that when the current saturates and the channel pinches off, Υ(L) = 0;
this is the largest bias for which this analysis is valid.

An iterative procedure allows us to determine both Î(z, ω) and Υ̂(z, ω) to
increasing accuracy. Our equations allow us to determine the sinusoidal current
in the channel as a function of position. So, either the source or the drain current
is known in terms of the other, the necessary requirement for calculating the
y-parameters. Also, since the gate, a highly conducting region, has an equi-
potential across it of V g + V̂g exp(jωt), we may determine the gate current by
integrating the current through the capacitor as a function of position,

Îg = jωWCins

∫ L

0

(
V̂g − V̂ (z)

)
dz, (6.285)

i.e.,

Îg = jωWCins

∫ L

0

Υ̂(z, ω)dz. (6.286)

We now use the iterative procedure to show how it may be applied to obtain
an accurate solution of the problem. First consider the zero’th-order approxi-
mation of the current phasor as being independent of position. This is true in
the limit of very low frequency; current continuity implies this for the steady-
state term. So we first substitute Î = Î(L, ω) in the equation for potential
(Equation 6.280). This leads to

Υ̂(z, ω) =
1

Υ(z, ω)

[
Υ(L)Υ̂(L, ω) − 1

µWCins
Î(L, ω) (L− z)

]
(6.287)
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as the zero’th-order equation for the phasor for potential.
Knowing this, we may substitute back into the current equation (Equa-

tion 6.281) to obtain the first-order current phasor solution. The general form
is

Î(z, ω) = Î(L, ω) − jωWCins ×[
Υ(L)Υ̂(L, ω)

∫ L

z

dz
′

Υ(z′ )
− Î(L, ω)

µWCins

∫ L

z

L− z

Υ(z′)
dz

′

]
.

(6.288)

This lengthy integral can be evaluated and the iterative process continued
to allow us to determine the position dependence of the phasor of the channel
current and the potential. Knowing the currents and potentials to the requisite
accuracy, the y-parameters will follow, since the drain current is Îd = −Î(L, ω),
the source current is Îs = Î(0, ω), and the gate current is given by the integral
equation above. The calculation is lengthy, although a more simple form exists
when the channel is pinched off at position z = L. Here Υ(z = L) = 0, and

Υ(z) = Υ(0)
(L− z)

1/2

L1/2
, (6.289)

and hence a simplified result is obtained for the phasor of the potential as

Υ̂(z, ω) = − L1/2Î(L, ω)

µWCinsΥ(0)
(L− z)

1/2
. (6.290)

Iterating with Equation 6.281, we now obtain the first-order approximation of
the phasor of the channel current as

Î(z, ω) = Î(L, ω) − jωL1/2Î(L, 0)

µΥ(0)

∫ L

z

(
L − z

′

)1/2

dz
′

= Î(L, ω)

[
1 −

(
j
ω

ω0

)
2

3

(L − z)
3/2

L3/2

]
, (6.291)

where
1

ω0
=

L2

µΥ(0)
. (6.292)

From this, one may again derive the potential phasor as

Υ̂(z, ω) = − Î(L, ω)

µCinsWΥ(0)

[
L1/2(L− z)

1/2
+ j

4

15

ω

ω0

(L− z)
2

L

]
, (6.293)

and hence, the second-order expression for current as

Î(z, ω) = Î(L, ω)

[
1 +

(
j
ω

ω0

)
2

3

(L − z)
3/2

L3/2
+

(
j
ω

ω0

)2
4

45

(L− z)
3

L3

]
. (6.294)
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When this expression is evaluated at z = 0, we obtain the source current
phasor as a function of drain current phasor −Î(L, ω). This is only a function
of gate-to-source potential. So,

y11 = y21

[
1 +

(
j
ω

ω0

)
2

3
+

(
j
ω

ω0

)2
4

45
+ · · ·

]
(6.295)

What we have shown is a general method that lets us determine the y-
parameters to the desired accuracy. This procedure is actually functionally
quite similar to that described generally in the MESFET section—indeed, one
can see the fractional forms of the terms to be quite similar.

We end by summarizing, without proof, the general forms of the y-parameters
for below and at pinch-off conditions. In the common-source configuration, the
drain current and the gate current can be expressed as

Îd = ydg V̂gs + yddV̂ds

and Îg = ygg V̂gs + ygdV̂ds. (6.296)

The expressions are

ygg =
jω

∆ω

2

3
WLCins

6α+ (1 − α)
2

(1 + α)
2



1 + j
ω

ω0

15α+ 2(1 − α)
2

15 (1 + α)
(
6α+ (1 − α)

2
)



 ,

(6.297)

ygd = − jω

∆ω

2

3
WLCins

α (2 + α)

(1 + α)
2

[
1 + j

ω

ω0

3 + 12α+ 2(1 − α)
2

15(1 + α)
2
(2 + α)

]
, (6.298)

ydg =
Gm
∆ω

+ ygd, (6.299)

and

ydd =
Gd
∆ω

− ygd, (6.300)

where

Gm =
µWCinsV ds

L
, (6.301)

Gd =
µWCins

(
V gs − VT − V ds

)

L
, (6.302)

and

∆ω = 1 + j
ω

ω0

4

15

5α+ (1 − α)
2

(1 + α)
3 +

(
j
ω

ω0

)2
1

45

6α+ (1 − α)
2

(1 + α)
4 . (6.303)

In these expressions,

α =
V gs − V T − V ds

V gs − V T
. (6.304)
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It varies from 1 to 0, with the latter value at channel pinch-off, i.e., V ds =
V gs − VT .

Note the low frequency limits of these expressions, as the case was with our
treatment of MESFETs. They reduce to the quasi-static expressions for the
triode case in the low frequency limit. Based on this relatively more accurate
representation, we may derive an equivalent circuit that is relatively more ac-
curate, as we had for intermediate frequencies in the treatment of MESFETs.
Note the frequency dependence of the current source, which has a phase-lag
term included in it due to the transmission-line nature of the charging of the
capacitance in the channel.

6.11 Transient Analysis

In this section, we will make some qualitative observations on the transient be-
havior of the device. In order to obtain transient response, one usually has to
resort to numerical techniques since the network response is complicated and
can not be placed in the simple forms that are possible for frequency domain.
If a response could be obtained in frequency domain for the input and out-
put matching conditions of interest, an inverse Fourier transform gives us the
time-dependent response. The behavior is quite analogous to the small-signal
behavior. A gate turn-on pulse, e.g., causes carriers from the gate to be injected
into the channel, and initially, these carriers supply the displacement current
through the depleted control region of the gate. As the carrier build-up occurs
in the channel, a build-up that has a time delay similar to the phase delay of
the current-source in the small-signal analysis, the drain current begins to build
up.

Figure 6.48 shows such a transient response with bias conditions similar to
those applied in our discussion of transients in MESFETs. The initial delay
corresponds to the time period required for the carriers to reach the channel
pinch-off region. This time period is the time period related to the charging of
the channel region; the channel current is largely displacement current in the
gate control region. Once carriers reach the pinch-off region, the carrier concen-
tration there begins to change, and the drain current begins to increase. This
leads to further delay, which is mostly related to the time constants associated
with the gate-to-drain and the drain-to-source capacitances.

6.12 Hot Carrier Injection Effects

We now discuss some important issues related to the use of HFETs.13 One par-
ticularly important limitation to the use of the structures comes about from the
the channel hot electron problem. As carriers pick up energy as they move along

13Our discussion here is quite general; the injection problem is of importance to both
undoped-barrier and doped-barrier HFETs. Their implications, particularly those resulting
from capture of carriers at the anomalous DX center, are strong for the doped-barrier devices.
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Figure 6.48: Transient of the drain current, the gate current, and the source
current is shown in (a) in a 0.5 µm gate length GaAs MISFET when the gate is
rapidly forward biased by 0.25 V from near the threshold conditions. (b) shows
the sheet electron density in the channel at various instances of time in pico-
seconds. This figure should be compared with the response of GaAs MESFET
discussed in Chapter 5.
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the channel under the influence of the drain bias, some acquire sufficient energy
to emit over the heterostructure barrier into the large bandgap material,14 as
shown in Figure 6.49. So, the same carriers whose larger velocity results in the
faster response of the device also cause an increase of injection into other re-
gions of the device. Also, because this barrier to a doped-barrier region is very
thin, usually limited by the spacer thickness used, some of these carriers can
actually tunnel through. Hot carriers occur in the high-field region in this struc-
ture; they are injected cold from the source, hence, the injection becomes most
pronounced near the drain end. This injection occurs both in the normal and
the inverted structure, the implications in the inverted structure being stronger
because there may not exist a convenient path for collection of the injected car-
riers due to the conduction band discontinuity. The injected hot carriers in an
inverted doped-barrier HFET thermalize in the well, where they then transport
towards the drain in the larger gap material. In the normal structures, the hot
carriers can be collected at the ohmic contacts. Note that this occurs because,
following injection into the larger bandgap region, some scattering occurs, and
so long as the electron energy is lower than the metal–semiconductor barrier
height, they are much less likely to end up in the gate. However, if sufficiently
large drain potential and gate potential are applied, electrons suffering very few
collisions in the large gap material will have sufficient energy to transport into
the gate region. At this point the gate current also begins to rise rapidly, beyond
the usual generation–recombination and diffusion currents.

In the case of a doped-barrier HFET, therefore, there is a problem of hot
carrier injection into the larger gap material, and these injected carriers trans-
port into the drain. Later, we discuss trapping of these carriers in DX centers
because of the anomalous nature of the behavior of donors in Ga1−xAlxAs.

If the larger gap material is undoped, as in the SISFET or MISFET struc-
tures, the problem of hot carrier injection is much more serious, because now
there is an accelerating field for these carriers that aids their transit to the gate
(see Figure 6.50), there being no metal barrier preventing the flow of these carri-
ers. We discuss this effect for both a metal gate and a semiconductor gate struc-
ture employing the undoped large bandgap barrier in the Ga1−xAlxAs/GaAs
system. Examples of the output characteristics of both these devices are shown
in Figure 6.51. There is a negative resistance behavior in the drain current–
voltage characteristics that occurs at high gate voltages and moderate drain
voltages. A high gate voltage implies that the gate is being pulled down sub-
stantially in energy with respect to the channel, and the drain voltage being
moderate, the gate region has a lower energy than the drain region. Towards
the source end, most carriers are relatively cold and the barrier prevents any

14For an extended discussion of this, see D. J. Frank, P. M. Solomon, D. C. La Tulipe, Jr.,
H. Baratte, C. M. Knoedler, and S. L. Wright, “Excess Gate Current Due to Hot Electrons in
GaAs-Gate FETs,” High-Speed Electronics: Basic Physical Phenomena and Device Princi-

ples, Proc. of the International Conference, Stockholm, Sweden, Springer Series in Electronics
and Photonics, 22, Springer-Verlag, Berlin, p. 709 (1986), and M. S. Shur, D. K. Arch, R. R.
Daniels, and J. K. Abrokwah, “New Negative Resistance Regime of Heterostructure Insulated
Gate Transistor (HIGFET),” IEEE Electron Device Letters, EDL-7, p. 78, 1986.
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Figure 6.49: Surface plots of the conduction band edges of a a normal (a) and
inverted (b) doped-barrier HFET under 0.8 V bias on the drain and similar
sheet electron density in the channel. In the pinch-off region, the conduction
band edge changes rapidly, leaving a higher hot carrier tail with an energy larger
than the barrier band edge. These carriers can emit over the barrier into the
large bandgap semiconductor.
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Figure 6.50: (a) shows the conduction band edges (Γ and L) at the channel in-
terface of a GaAs/Ga1−xAlxAs/GaAs SISFET employing an AlAs mole-fraction
of 0.5 and biased at gate voltage of 0.8 V and drain voltage of 1.0 V. (b) shows
the band edges through vertical cross-sections in the device. Cross-sections at
the source end, in the channel, and at the drain end are shown.
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Figure 6.51: Output characteristics of a metal-gate undoped-barrier HFET (a)
and a GaAs gate SISFET (b) showing regions of negative resistance in the
output. After M. S. Shur, D. K. Arch, R. R. Daniels, and J. K. Abrokwah,
“New Negative Resistance Regime of Heterostructure Insulated Gate Transis-
tor (HIGFET),” IEEE Electron Device Letters, EDL-7, p. 78, 1986., and D.
J. Frank, P. M. Solomon, D. C. La Tulipe, Jr., H. Baratte, C. M. Knoedler,
and S. L. Wright, “Excess Gate Current Due to Hot Electrons in GaAs-Gate
FETs,” High-Speed Electronics: Basic Physical Phenomena and Device Princi-

ples, Proc. of the International Conference, Stockholm, Sweden, Springer Series
in Electronics and Photonics, 22, Springer-Verlag, Berlin (1986).
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significant injection into the barrier material. Let qϕ be the difference between
the conduction band edge at the barrier in the large gap material and the Fermi
energy. Along the channel, as carriers pick up energy, they occupy higher and
higher energies in the Γ-related subbands until they can pick up enough energy
to scatter into the L-related subbands or, since at this energy the quantiza-
tion effects are minimal, the classical L band. This requires at the minimum
(≈ 0.36− ξf/q) of channel potential for GaAs if the initial carrier densities are
non-degenerate. At a drain bias V = 0.36 V, the L band is being populated, and
at V = ϕ some carriers also may have enough energy to surmount the hetero-
barrier. At a channel potential of V = VG−VT larger than 0.36 V, the L band is
significantly more populated and many of these carriers can cross over into the
gate. If the current contribution is strong enough, i.e., if the potential distribu-
tion and the discontinuity are appropriate (this is a function of gate length and
material parameters) then IG may rise rapidly and ID may decrease, leading to
the negative resistance. Figure 6.52 shows the behavior of gate current togther
with that of drain current as a function of both gate voltage and drain voltage
for a the SISFET, confirming the origin of the negative resistance.

At large gate and large drain biases, however, the drain field may become
large enough to divert the electron flux from the gate to the drain. Only in
a smaller region of the device does the injected hot carrier flux go largely to
the gate. So, the negative resistance may disappear at large drain biases, as
is seen in the characteristics shown in Figure 6.51. The phenomenon is more
serious in short channel devices where the injection portion (only a fraction of
the gate length) is more significant because of the relative increase in the drain
field–dominated portion. Parasitic resistances also play an important role in
this phenomenon because they are important to the field distribution in the
channel and in the barrier layer. Large resistances suppress the effect because
they lead to less channel potential drop.

6.13 Effects Due to DX Centers

Even though hot electrons may not give rise to negative resistance because of
the retarding field and higher gate barrier in doped-barrier HFETs, their in-
jection into materials like Ga1−xAlxAs, materials which exhibit large trapping
effects in conjunction with the n-type doping, leads to significant changes in
device characteristics that are both bias- and time-dependent. These trapping
centers, deep donor centers associated with the n-type doping, have been called
DX centers for historical reasons. The origin of these centers is still subject
to debate. They exhibit differing thermal emission and capture energies, large
optical ionization energy, and multiple time constants of emission in pulsed ca-
pacitance measurements. We will discuss possible origins of the centers later in
this section. From a device perspective, their effect is strong and well charac-
terized, since it results directly from the capture and emission processes, which
can be experimentally evaluated as a function of the AlAs mole-fraction.

The reason for the time- and bias-dependent change of the device character-
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Figure 6.52: Gate and drain currents as a function of gate and drain voltages in
the GaAs SISFET emphasizing their behavior in the region of negative output
resistance. After D. J. Frank, P. M. Solomon, D. C. La Tulipe, Jr., H. Baratte,
C. M. Knoedler, and S. L. Wright, “Excess Gate Current Due to Hot Electrons
in GaAs-Gate FETs,” High-Speed Electronics: Basic Physical Phenomena and

Device Principles, Proc. of the International Conference, Stockholm, Sweden,
Springer Series in Electronics and Photonics, 22, Springer-Verlag, Berlin (1986).
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Figure 6.53: Current–voltage behavior of a doped channel HFET at 77 K in the
dark (dashed lines) and with light (solid lines) from a tungsten lamp.

istics is that the carriers injected into Ga1−xAlxAs (of moderate or high AlAs
mole-fraction) get trapped into DX centers, the deep levels. This change of ion-
ization state of the donors leads to a depletion of carriers at the drain end, the
high-field region, and hence a collapse of the current–voltage characteristics due
to a larger resistance. The effect is time-dependent since the carriers can de-trap
on time scales that can range from µs to greatly exceeding seconds depending
on the temperature. The effect is also dependent on other excitation processes
present. For example, Figure 6.53 shows the effect in the dark and compares
with the same effect with illumination from a light source near the bandgap
energy. Shining light recovers characteristics to a normal FET behavior. The
trapping still takes place during the operation of the device, but the DX centers
emit electrons very rapidly in the presence of light whose energy exceeds the
optical ionization threshold energy. In the dark, because donors have captured
electrons available due to electron injection, there are fewer carriers and hence
smaller currents and larger resistances. This is the origin of the collapse in
current–voltage characteristics that is shown in the dark in Figure 6.53. Note
that such emission and capture causes large-scale shifts in the threshold voltage.
Since injection of electrons into Ga1−xAlxAs is a function of the Ga1−xAlxAs
band bending and bias, etc., i.e., the complete parameter space of thickness,
doping, metal barrier height, gate length, voltage, etc., the magnitude of the
effect depends on both the material and bias parameters of the device and the
geometry of the device. It is temperature-dependent because the characteristics
of the DX center, in particular the process of emission of electrons after they are
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captured, is strongly temperature-dependent. Additionally, these characteris-
tics are a function of the AlAs mole-fraction and secondarily the dopant species
that gives rise to the DX center.

The effects on device behavior due to capture and emission in the DX center
region are also a function of the way the biases are applied and hence the
carriers injected because these determine the locale of the capture of carriers in
the large bandgap material. Consider a metal–n-Ga1−xAlxAs–GaAs capacitor
structure. A large thickness of the doped Ga1−xAlxAs region, under conditions
of large sheet charge density in the channel, has a stronger effect than a thinner
doped Ga1−xAlxAs region because of the thicker region over which electron
capture can occur. Thus, thicker Ga1−xAlxAs or other conditions leading to
large sheet densities in the channel, such as a large forward bias, lead to a
stronger effect from the electron capture process in Ga1−xAlxAs. The emission
of carriers from the DX center becomes very inefficient with the lowering of
temperature, the emission being a barrier-limited process. If electrons exist in
the Ga1−xAlxAs during the cooling process, they freeze into the DX center,
leading to a lower threshold voltage of a device and a larger threshold voltage
shift between room temperature and liquid nitrogen temperature. A smaller
thickness, or equivalently a more enhancement mode–like device has a smaller
threshold shift because fewer carriers occur in the Ga1−xAlxAs. Thus, a smaller
Ga1−xAlxAs thickness sample shows a smaller threshold shift than a larger
thickness structure, i.e., it shows a less positive shift of threshold voltage. So,
both the gate and the drain bias lead to injection of electron into the larger
bandgap region and hence to changes in device characteristics. These changes
may be viewed as a VT shift of a device while it is going through a switching
operation itself, and hence an effect on the dynamic noise margin of the device.

We will look at this DX center simplistically—it continues to be a subject of
investigation,15 and many models exist that may fit many of the experimental
observations made to date. The experimental observations of the properties of
these centers include the following: Hall measurements indicate that the DX
center population is proportional to the dopant concentration, which is mostly
DX center–like at mole-fractions of AlAs in excess of ≈ 0.2. The DX center
is associated with all substitutional donors used in Ga1−xAlxAs, e.g., Te, Sn,
Si, and Se, and is independent of material growth techniques. It has a large
thermal capture energy which is mole-fraction-dependent and varying with the
dopant species, and an even larger thermal emission energy which is weakly
mole-fraction-dependent. The photo-ionization energy is even larger than either
of these. The thermal activation energy, measured using dependence of carrier
concentration on temperature via steady-state Hall measurements, indicates
the smallest activation energy of all. Pulsed capacitance measurements indicate
three or four time constants associated with the emission of the carrier from the

15T. N. Theis and P. M. Mooney, “The DX Center: Evidence for Charge Capture via an
Excited Intermediate State,” Mat. Res. Soc. Symp. Proc., 163, p. 729, 1990 discusses the
related arguments at length. Also, a discussion of the structural model for DX centers can
be found in D. J. Chadi and S. B. Zhang, “Atomic Structure of DX Centers: Theory,” J. of

Electronic Materials, 20, No. 1, p. 55, 1991.
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Figure 6.54: An energy model of the DX center based on the observed activa-
tion energies for various processes. An electron capture process occurs through
an intermediate state as shown schematically in transition a. The intermediate
state is shown as a shaded region. It is not hydrogenic and not at the inter-
section of WI and WII. When an electron is captured at the center, lattice
distortion results in the band WII for total energy. A thermal emission requires
the process b, and photo-ionization occurs via the process c. An associated
energy barrier schematic between the two states is also shown. The energies
for thermal capture ∆E1, thermal emission ∆E2, and dopant activation (∆E3,
from Hall measurements) are also shown in the latter.

captured state.
One possible model explaining this behavior is the following. The capture of

electrons by a substitutional isolated donor (a hydrogenic state) leads to local
deformation of the lattice and lowering of the total energy so that the changed
configuration has a level in the energy gap for mole-fractions greater than ≈ 0.2.
This change occurs via an intermediate state. Most likely, the intermediate state
involves capture of one electron, and the DX state state involves trapping of two
electrons. This intermediate state is also a localized substitutional state with
an energy that follows the DX level energies. Figure 6.54 shows a configuration
coordinate energy diagram16 consistent with the observations of these properties
and the above model description. The corresponding capture process is shown
schematically in this figure. This process has an activation energy equal to the
difference between the thermal energy of the mobile electron and the band edge

16Configuration coordinate energy diagram is a plot of the electron energy together with
the lattice energy. Normally, for hydrogenic dopants there is no change in lattice energy due
to capture or emission of electrons. However, if it is significant, and substitutional donors in
Ga1−xAlxAs are believed to have an associated distortion of the lattice and a change in lattice
energy, then the total energy does change. This is represented in the configuration coordinate
energy diagram.
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energy of the intermediate state. The electron becomes localized following the
capture and has a lower state of energy. Capturing itself, however, requires a
minimum energy for the electron before the process can occur. The capture and
emission in a thermal process proceed via this intermediate state and a repulsive
barrier exists for both of the processes.

The origin of this interesting but deleterious behavior apparently lies in the
distortion and associated change in lattice energy, the requirement that the elec-
tron capture or emission process occur via an intermediate state, and because
DX center contains two electrons. The lattice distortion behavior depends on
the specific donor, and the intermediate state corresponding to the distortion
following capture of one electron has an energy relationship that depends on
both the mole-fraction of AlAs as well as the specific dopant. This is a process
where the energy associated with lattice relaxation is of similar magnitude as
the binding energy of the purely electronic part of the defect Hamiltonian. The
electron at the defect can not be looked at as a screened hydrogen-like atom,
as we do in the effective mass theory, but has to include the energy associ-
ated with lattice relaxation. An appropriate way to depict the energy of the
electron, de-localized in the conduction band, or localized at the defect, is to
show the electronic and the defect distortion energy as a function of the defect
configuration coordinate, which was considered in Figure 6.54.

So, an electron in the intermediate state has to have a minimum energy
before it can be localized by the defect. The intermediate state may also be
a localized state and not an extended state of conduction band or hydrogenic
level of donors. When localized, the energy drops into the bandgap, and a larger
emission energy is required before it again becomes a conducting electron. Both
these processes can take place via phonon emission and capture. The photo-
ionization process, which does not have any associated change of momentum,
requires significantly higher energy for transfer to the intermediate electron
band. The weak alloy mole-fraction dependence follows from the behavior of
the intermediate state and the configuration energy in the captured state. This
observed dependence is shown in Figure 6.55. This figure qualitatively shows
that low AlAs mole-fractions, since the energy in the defect-localized state (the
DX state) is higher than in the de-localized state, should not show apprecia-
ble DX center–related collapse phenomena or photo-sensitivity. The apparent
crossover to the lowering of the energy occurs near ≈ 0.2–0.23, at which point
the DX center becomes of significant concern in the device.

A behavioral picture of the DX center state in the energy band diagram as
a function of mole-fraction, consistent with the prior discussion, is shown in
Figure 6.56, together with a schematic of the the capture processes. Since the
relative positions of the band energies change as a function of the AlAs mole-
fraction, there is a corresponding change in the DX center effect. At a low AlAs
mole-fraction, the localized DX state has a higher energy, and the process is less
likely. At a high AlAs mole-fraction, on the other hand, it becomes quite likely.

Time transients in capacitance due to pulsing of biases is a common tech-
nique to determine the characteristics of emission processes. For the DX center,
the time transients appear to have at least three time constants. This may come
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Figure 6.55: A qualitative picture of the mole-fraction dependence of the energy
of the DX center (the most populated of the possibly four different types of
distorted states associated with the donor) together with the changes in Γ, L,
and X valley minima. The figure also plots the likely intermediate state energy
schematically. After P. M. Mooney, “Deep Donor Levels (DX Centers) in III-V
semiconductors,” J. of Appl. Phys., 67, No. 3, p. R1, 1990.
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Figure 6.56: The configuration energy diagram at different mole-fractions, show-
ing the process of capture via the intermediate state into the localized state at
the DX center. (a) is at low AlAs mole-fractions, (b) is at an AlAs mole-fraction
of ≈ 0.22, and (c) is at higher AlAs mole-fractions. After P. M. Mooney, “Deep
Donor Levels (DX Centers) in III-V semiconductors,” J. of Appl. Phys., 67,
No. 3, p. R1, 1990.
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about from lattice distortion caused by the capture of electrons at the donor
site. In this distorted state, the donor atom can have distinctly different local
environments depending on the different possible combinations of nearest group
III atoms. Being a ternary compound, this can be various combinations of Ga
and Al atoms. A different local environment should lead to different associ-
ated rates and hence would be consistent with the observation of different time
constants. So, the possible DX levels are more than one, and quite likely four.

One can also note, why based on this description, the illuminating of a
doped-barrier HFET allows one to recover the current–voltage characteristics
of the device. When the device is cooled from room temperature, with the
device turned off, in a sample with appropriate design so that the Fermi level
is still well below the DX center state, most of the DX centers are ionized at
room temperature and they will remain so at low temperatures until the device
is biased to pull the conduction band closer to the Fermi level. This occurs
with forward biasing of gate or when hot electrons are injected in the current–
voltage measurements. When this occurs, DX centers capture electrons and the
capacitance–voltage moves to an enhancement mode-like behavior because the
DX center remains in this state unless provided energy through optical or ther-
mal means. Shining light releases the captured electron, leading to the recovery
of the current–voltage characteristics. The capture and emission processes can
occur again when the device is biased appropriately. Note that hot electrons
of sufficient energy are captured more readily because they have the requisite
excess energy to surmount the capture barrier. The emission and capture time
constants associated with the DX centers are relatively long compared to the
device switching time constants. So, even though the device will switch rapidly,
when left in a certain bias state, such as in logic, it will slowly reach a new
state associated with the time constant effects of DX center. The large time
constants of capture and emission, following the shutting off of the optical illu-
mination, also result in persistent photoconductivity. Following photoemission
of the captured electrons, there exists a larger electron population, both in the
two-dimensional electron gas and in the Ga1−xAlxAs, which will be recaptured
with rather large time constants. This results in persistent photoconductivity
in the doped barrier channel. Note that this particular problem does not exist
in the gate portion of the undoped-barrier HFET or in p-channel devices.

6.14 Off-Equilibrium Effects

In a fashion similar to our discussion of the off-equilibrium effects in the case
of MESFETs, we discuss off-equilibrium phenomena in HFETs. Our discussion
would be somewhat restricted since many comments relevant to MESFETs are
equally applicable to HFETs. The regimes in which these off-equilibrium effects
are so important that they just can not be ignored are similar in HFETs as in
MESFETs because the scattering characteristics at higher energies are similar.
In MESFETs a large doping is used to achieve large carrier concentrations; in
HFETs a large carrier concentration occurs via transfer from remote donors
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or by inducing of a carrier gas. While impurity scattering is important for
MESFETs, it is less so for HFETs. However, because of larger carrier densities
due to confinement of the channel, carrier–carrier scattering and the effects of
confinement on scattering behavior become important. These differences have
little effect on the high energy behavior of scattering in the high field region of
the device, Coulombic processes being inefficient at higher energies.

We will look at the overshoot effects in HFET structures by considering
a simpler approximation of the insulator–semiconductor FET, where the in-
sulator is an idealization of the large bandgap material. We assume a large
barrier height, similar permittivity as the actual large bandgap material (e.g.,
Ga1−xAlxAs for GaAs structures), and no confinement effects. As remarked
before, in the operation of the device, confinement effects can be important
towards the source end of the channel at 77 K. Although the device operation
depends much more on the behavior close to the drain end, where the confine-
ment is minimal, the behavior of carriers at the drain end is tied in with the
behavior of carriers at the source end. In short devices, the presence of over-
shoot means limited scattering events, and hence the nature of the initial state
remains important in overshoot, even though it could have been ignored in the
long channel devices. We restrict our discussion, therefore, to 300 K operation.

Figure 6.57 shows overshoot and kinetic energy behavior in HFET struc-
tures operating at 300 K under similar bias conditions as the MESFET. Both
the MESFETs and the HFETs being discussed are designed to have nominally
similar enhancement mode thresholds near 0 V. Our discussion here will be
comparative to elucidate the differences in their off-equilibrium behavior. The
amount of velocity overshoot is somewhat larger than that of MESFETs. There
is a noteworthy difference between the behavior of the boundary at which the
carriers enter the channel region in this device and in the MESFET, and this
simulation serves to point out the importance of such effects of boundary be-
cause the calculations are non-local. In the MESFET case, a built-in barrier
existed. As in the case of our MISFET quasi-static theory, this barrier is quite
small and therefore itself does not impede the flow of the necessary current.
But because of the barrier, the average energy of carriers entering the channel
is close to thermal and not close to the Fermi energy of the degenerately doped
source. The average velocity of the carrier in the MESFET case is small, and
the carrier velocity overshoot occurs from this low velocity condition. In the
case of the HFET here, the choice of doping and compensation is such that
carriers enter the channel from a degenerate electron gas; carriers entering the
channel, i.e., those with the right orientation of momentum, also have a larger
energy, and this is reflected in the initial velocity in the source and at the source
end of the channel. Thus, overshoot, which is a function of scattering, the entry
velocity, and the extent of the field region, is different, and almost correspond-
ingly larger. The peak kinetic energy is similar in the case of the HFET to
that of the MESFET, although the spatial distribution of the energy is broader.
This broadness is reflected in the distribution function as a function of position;
the carriers do heat more in this structure, but given the approximations of
the simulations, including those regarding large barrier height at the insulator
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Figure 6.57: Conduction band energy (a), kinetic energy (b), and velocity along
the channel (c) for a 0.15 µm HFET structures. Solid lines are for GaAs
channel, short dashed lines for InP channel, and long dashed lines are for a
Ga.47In.53As channel. An idealized insulator of 200 Å thickness with permit-
tivity of Ga.5Al.5As is assumed. The bias conditions are VGS = 0.5 V and
VDS = 1.0 V.
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interface, the differences are insignificant.

Trends similar to those of MESFETs occur when comparing different ma-
terials with different scattering characteristics. Figure 6.57 also compares the
overshoot behavior between the GaAs HFET, an InP HFET, and a Ga1−xInxAs
HFET. The overshoot in InP lags a little behind that of GaAs because of a larger
effective mass and larger low energy scattering, but the peak overshoot velocities
are nearly identical, and the peak kinetic energy is slightly larger than that of
GaAs. However, all these peak kinetic energies are still lower than the applied
drain-to-source bias. Only if the motion was ballistic would the peak kinetic
energy have reached the drain-to-source bias. The Ga1−xInxAs HFETs exhibit
similar behavior as the GaAs HFET in overshoot closer to the source end, and
the InAs HFETs exhibit a large overshoot nearly reaching the maximum group
velocity, consistent with its very low scattering rate.

The scattering into secondary valleys is highlighted in Figure 6.58, which
shows the valley distributions in GaAs and Ga1−xInxAs for our HFET examples.
Transfer to the secondary valleys is much more dominant in GaAs than in
Ga1−xInxAs, corresponding to the inter-valley separations.

In all these examples, the source contact region was maintained at nearly
identical injection conditions in order to allow an acceptable relative compari-
son. Changes in this would make differences in the observed overshoot behavior,
much as it did in comparing the GaAs MESFET and GaAs HFET example. An-
other similarity in all these is that when the carriers reach the drain contact
region, where there is a large carrier density (2 × 1018 cm−3), significant scat-
tering occurs, the energy is rapidly lost, and if there exists a satellite valley (the
exception here is InAs which has a satellite valley in excess of 1 eV), carriers
scatter into the satellite valley and eventually decay back to the Γ valley.

In this analysis, we have ignored two-dimensional electron gas effects. In
compound semiconductors, where the channel is usually formed in a region of
low background doping, for simulations at 77 K, there is very clearly a large
effect in low-field transport as reflected in the mobility. Thus, scattering ef-
fects become sufficiently different in regions of operation where electron–electron
screening becomes important and where ionized impurity scattering is also im-
portant. In a field effect transistor, at the drain end of the channel the carriers
are spread out further from the interface and carrier confinement is not sub-
stantial. Thus, the operation at the source end is the one that is affected by the
carrier confinement. At 300 K, this effect should be minimal. A look at the dif-
ferences in the velocity–field curves for highly pure GaAs (where carrier-carrier
screening is small), and a two-dimensional electron gas confirms this. An actual
simulation, without the carrier confinement effects reflected in the quantization
effects, would still include these and therefore should be an adequate represen-
tation. On the other hand, at 77 K, where energy level separation becomes
substantially larger than the thermal energy, this may be cause for concern for
the representation at the source end. A combining of the Monte Carlo proce-
dure with the quantum confinement effects, and inclusion of it in the scattering
effects, is quite a daunting task.
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Figure 6.58: The fractional Γ (solid lines), L (short dashed lines), and X valley
(long dashed lines) populations along the channel for the 0.15 µm gate-length
HFET examples. Results for GaAs are shown in (a) and Ga1−xInxAs are shown
in (b).
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Figure 6.59: Hole velocity at 300 K (curve marked a) and 77 K (curve marked
b) in GaAs at low ionized impurity density. Curve c shows observed two-
dimensional hole gas velocity–field characteristics at 77 K.

6.15 p-channel Field Effect Transistors

We have discussed the n-channel device and its behavior in detail. Because of
the unusual velocity–field characteristics, because of the lower electron effective
mass and its effect on quantization, and because of the problems associated with
DX centers and other hot electron effects, it is a structure which is considerably
complex to analyze. p-channel devices, similar to n-channel devices, are also of
interest. In the absence of scattering due to ionized impurities, low temperature
mobilities can be high for holes in compound semiconductors.

Holes, with effective mass being large, and there being no dominant sec-
ondary valley effect, do not show a negative differential velocity effect, nor
strong quantization effects. In many respects, this behavior is very similar to
that of electrons and holes in silicon. The velocity–field characteristics for holes
in low-doped GaAs and in heterostructures is shown in Figure 6.59. For com-
parison, the electron and hole velocity–field characteristics for silicon are also
shown. Because they are similar, analyses similar to those of silicon devices
are readily applicable to the p-channel structures. For example, analyses based
on the hyperbolic velocity–field relationship are applicable. Thus, our early
analysis based on the hyperbolic relationship is applicable to p-channel devices
(indeed, more accurately than it was for the n-channel devices). The practical
limitations to these structures in compound semiconductors, unlike those of sil-
icon, arise from low barrier heights to p-type material. This limits the largest
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gate voltages that can be applied before large forward gate conduction begins
to occur.

A subject of particular interest related to these devices is methods of im-
provement in the hole transport. The light hole and heavy hole bands are de-
generate at zero crystal momentum. Biaxial strain resulting from, e.g., growth
of pseudomorphic structures (Ga1−xInxAs with Ga1−xAlxAs at low InAs mole-
fraction is one example), distorts the conduction and valence band structure as
discussed earlier in this chapter. This distortion in the valence band structure
is believed to cause an improvement in the in-plane transport of holes.

6.16 Summary

This chapter developed the theory of operation of FETs based on insulators
and heterostructures. We also studied parasitic phenomena that occur in these
devices. At first, we considered the formation of heterostructures, the impor-
tance of heterostructure discontinuities, and the methods of analysis of band
bending and statistics for the subbands that form at the interfaces involving
an abrupt discontinuity. We developed criteria that would allow us to evaluate
the approximations involved due to the use of Maxwell–Boltzmann statistics,
the use of Fermi–Dirac statistics, the detailed inclusion of the density of states
of the subbands, etc. We related, later in the chapter, the importance of these
approximations to the analysis of the device in various bias and spatial regions
of the device.

Initially, we considered an ideal insulator-based FET, a MISFET, with Maxwell–
Boltzmann statistics. The theory developed, particularly suited for p-channel
and silicon devices at 300 K, served as a basis to develop the concepts and
details of the behavior of an idealized FET. We then considered the particular
case of HFETs in compound semiconductors with large bandgap materials of
limited resistivity and discontinuity. In this, we included the effects of subband
formation but ignored the effects related to the flow of diffusive current. Like
the case of the MESFET, we developed the small-signal theory for operation of
the device, studied the operation of the device during a transient and due to off-
equilibrium effects. One of the more common problems with undoped-barrier
devices is related to injection of carriers across the small band discontinuities.
We looked at the hot electron effects that cause this injection. Another prob-
lem, that occurs with n-type Ga1−xAlxAs barrier devices is due to DX centers,
centers with long emission time constants that are related to the incorporation
of donors in the lattice. We considered the underlying principles of the behavior
of these centers and their effect on device characteristics.
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Problems

1. Consider the quantization of hole energy in an inversion layer in silicon—
the situation of compound structures is analogous because the valence
band structure in most semiconductors is quite similar. Holes have mul-
tiple bands that should all be considered—the light hole band, the heavy
hole band, and the split-off band. We will ignore the anisotropy of the
bands, which is also substantial, so our results should be of interest for car-
riers whose energy is low in any of these subbands. Draw, taking account
of the masses of the holes at zone center (see Table 2.2), the positions of
the minima in energy of a quantized hole inversion layer on a (100) surface
of silicon. Also show schematically the density of state distribution.

2. As discussed, in silicon, the conduction band edge minimum occurs near
the the X point in the Brillouin zone, and the conduction band exhibits a
high degree of anisotropy, with the longitudinal mass considerably larger
than the transverse mass (see Table 2.2). We considered inversion on a
(100) surface in the text. What will the positioning of energy levels and
the distribution of states be for inversion on a (110) surface and a (111)
surface?

3. The Airy functions occur in solutions of differential equations involving a
linear variation of the independent variable in the zero’th order term, i.e.,
for equations whose simplest homogeneous form can be expressed as

d2ϕ

dz2
+ zϕ = 0. (6.305)
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Show, using the series method of finding a solution to this equation, that
the solution of this occurs in the form described in the text.

4. The density of states for three-dimensional distributions were considered in
Chapter 2. Using arguments based on orientation dependence of inversion
and considering ml and mt as the longitudinal and transverse masses for
the L valleys in germanium, find the density of state masses appropriate to
determining the density of states distribution of electron inversion layers
on a (100) surface.

5. We wish to evaluate the importance and necessity of considering quantiza-
tion effects in calculations related to HFET structures. Consider inversion
on the surface of p-type GaAs. Assume that one can manage to suitably
adjust the position of the conduction band edge on the surface. At 300 K,
consider a separation in energy of 3kT , 0, and −3kT between the conduc-
tion band edge and the electron quasi-Fermi level. Employing a consistent
calculation that accounts for the effect of the acceptor charge in the de-
pletion region, find the position of the zero’th energy level at acceptor
dopings of 1 × 1014 cm−3, 1 × 1015 cm−3, and 1 × 1016 cm−3, as well as
the sheet density of carriers in this band. In which of these cases should
one consider the effects of quantization of bands important for problems
requiring accurate determination of carrier densities?

6. We have estimated that the accuracy of ignoring quantization effects is
acceptable for conditions under which E0 < kT . Find the sheet carrier
density in GaAs, for conditions when E0 = kT , at 300 K and 77 K, for
structures with acceptor doping of 1 × 1014 cm−3, 1 × 1015 cm−3, and
1 × 1016 cm−3.

7. In Chapter 3, we evaluated the internal energy of a three-dimensional
Fermi gas at absolute zero to be W = 3nξf/5, where n is the carrier
density. Show that for a two-dimensional system, the internal energy is
given by W = nξf/2.

8. The insulator–semiconductor FET considered was an n-channel device.
The operation of a p-channel device is also instructive in emphasizing the
behavior and concepts related to these devices. Consider a hypothetical
p-channel GaAs MISFET fabricated using SiO2 as an insulator and em-
ploying aluminum as the material for the gate with the device operating
in the normal active mode of operation. Aluminum has a work-function
of 4.36 eV.

(a) What is the polarity of the bias of the gate, drain, and substrate with
respect to the source?

(b) For a cross-section running perpendicular to the surface, draw Ec,
Ev, ξn, and ξp schematically, indicating the energies corresponding
to the bias voltages at the source end and the drain end.
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Figure 6.60: Interface state distribution for an MIS structure.

(c) Draw a schematic three-dimensional perspective plot of how Ev and
ξp vary, analogous to the figure of the n-channel device. However,
include in this plot the band bending in the oxide and the gate region.

(d) The n-type substrate has a background doping of 3 × 1014 cm−3.
What is the flat-band voltage, assuming no charge?

(e) Draw schematically the capacitance–voltage characteristics of this
MIS structure as a function of bias for low-frequency and high-frequency
applied signals and for the structure going into deep-depletion. Iden-
tify which parts of the curves occur with the formation of an inversion
region.

(f) Now consider this schematic behavior in the presence of interface
states, as shown in Figure 6.60. Draw, on an additional schematic
plot, how the low-frequency and high-frequency characteristics get
distorted from the ideal characteristic.

(g) Assume a thickness of 400 Å for the insulator. Draw the accurate
low-frequency capacitance–voltage characteristics between the gate
and the substrate.

(h) Show the nature of output characteristics for a gate length of 10 µm
and 1 µm without including short channel effects. How do the latter
characteristics change with the inclusion of short channel effects?

9. We wish to show that the capacitance associated with a semiconductor
under flat-band conditions is given by

CFB =
εs
λD

. (6.306)
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This is a problem important to high injection conditions in p–n junctions
also, since near-flat-band conditions occur under those conditions. By con-
sidering the charge, field, and electrostatic potential in the semiconductor
at a metal–semiconductor junction, we can determine the semiconductor
capacitance contribution since all the charge on the metal electrode is ter-
minated in the semiconductor. We ignore the effects of current flow, so
this is strictly an MIS problem with an infinitely thin insulating layer.
Considering mobile and immobile charge due to both electrons and holes,
show that the capacitance of the semiconductor under flat-band condi-
tions, i.e., for no change in electrostatic potential, reduces to the above.
What is the general expression for charge and capacitance in terms of the
arbitrary electrostatic potential ψS at the surface?

10. The flat-band voltage of an MIS structure is influenced by charges that can
occur in a number regions of the device structures. The insulator can con-
tain charge (often charge can be trapped in the insulator due to injection
from the semiconductor during device operation), immobile charge also
accumulates at the interface, and interface states can also exist as charged
states. Consider an insulator with a sheet charge density of Qinss, whose
centroid is tinss away from the interface, and a sheet charge density at the
interface of Qints. Derive the modification to the threshold voltage and
the flat-band voltage resulting from these charges. How does this influence
the capacitance–voltage characteristics of the structure?

11. Show that the charge due to the carriers in the inversion layer in Equa-
tion 6.86 is negligible under conditions of band bending defined by Equa-
tion 6.92.

12. Show that an exact solution for the channel current of a MISFET, in
constant mobility approximation, is given by Equation 6.103. Consider
the MISFET structure at the minimum drain voltage necessary for channel
pinch-off. Show that this accurate expression gives a similar result as the
later derivation based on approximation of weak inversion charge.

13. The current–voltage characteristics of a p-channel MISFET can be best
modelled using the procedures discussed in the text, since both the con-
stant mobility approximation and the hyperbolic velocity–field approxi-
mation are relatively more accurate in the long channel and short channel
limit than for n-channel devices. Consider tins = 400 Å with a dielec-
tric constant of 11, and a device with a gate length of 2.5 µm. Derive
the current–voltage characteristics assuming a substrate of 3× 1014 cm−3

donor doping, assuming no velocity saturation and with velocity satura-
tion. Assume a zero-field mobility of 350 cm2.V−1.s−1, and a saturation
velocity of 8 × 106 cm.s−1 for the hyperbolic velocity–field fit.

14. We have derived the expression for sheet mobile charge in an electron in-
version layer for isotropic spherical conduction bands. The simplified form
of this result occurred from identical density of states in each subband.
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Hole inversion layers exhibit complications of both differing masses and
differing density of states. Find an expression similar to Equation 6.14
and 6.15 for the case of light and heavy holes in GaAs. The locations
and density of states in hole inversion layer on the surface of silicon was
considered in Problem 4.

15. We have compared the various approximations with rigorous calculations
for the variation of electron sheet charge at the interface of Ga1−xAlxAs
and GaAs where the GaAs is doped 3×1014 cm−3. We wish to see how this
differs in 1015 cm−3 acceptor doping range for the 2/3’rd power law varia-
tion when compared with Fermi–Dirac and triangular well approximation.
Consider the variation in the background acceptor density, the zero’th
energy level following Equation 6.18, and sheet electron density in the
5−10×1011 cm−2 range. Find fits for ξf0 with γ = 1.79×10−9 eV.cm4/3.

16. Consider Equation 6.207, which employs a parameterized hyperbolic velocity–
field relationship for calculation of output characteristics. Saturation of
current in high mobility transistor structures, of micron-sized dimensions,
arises from velocity saturation. A possible way of including this in cal-
culations of output characteristics is to parameterize the electric field at
the drain end at which this saturation occurs. For low-doped GaAs-based
HFET structures, a longitudinal field near the peak velocity field should
be the expected form. Consider characteristics based on the hyperbolic
velocity model of a GaAs channel HFET structure, as well as that of a
constant mobility model at 1 µm gate length. Find the electric field which
would adequately characterize the occurrence of velocity saturation in the
channel.

17. Consider an HFET structure that utilizes a metal gate and a doped bar-
rier semiconductor of Ga.7Al.3As on GaAs. The GaAs is doped p-type
3 × 1014 cm−3, the Ga.7Al.3As is doped 1.5 × 1018 cm−3 n-type and is
375 Å thick, and the metal gate has a barrier height of 0.8 eV and a
gate length of 1 µm. Plot, as a function of the gate voltage, the sheet
carrier density in GaAs and Ga.7Al.3As. Assume the Boltzmann approxi-
mation, we are interested in obtaining the approximate magnitude of the
resulting threshold voltage of the HFET and the parasitic MESFET in
the Ga.7Al.3As. At what voltage is there a substantial screening of the
HFET channel by the electron charge in Ga.7Al.3As? What would be the
easiest way of implementing this parasitic MESFET in a design model for
the HFET useful at high forward gate biases?

18. We noted that the gate-to-source and gate-to-drain capacitances in Equa-
tions 6.229 and 6.227, as derived from the quasi-static analysis, are iden-
tical at VS = VD = 0. Consider constant gate bias for a 300 Å thick
Ga.7Al.3As barrier transistor structure which has a VT0 = −5 V and a
gate length of 1 µm. Plot for VG = 0 V and VG = 0.25 V the gate-to-
source and gate to drain capacitances as a function of drain bias in the
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constant mobility approximation. Is the sum a constant as a function of
drain bias? What is the estimate of deviation from charge conservation?

19. In the small-signal analysis we had outlined the procedure for deriving the
common-source admittance parameters from the gate current phasor and
drain current phasor using the Wronskian from Stokes’ equation. Derive
these results.

20. In the small-signal analysis of MESFETs, we showed how the effect of ve-
locity saturation might be included in the extension of the admittance pa-
rameter solution. Describe how a similar methodology might be employed
to extend the small-signal solution of the HFET admittance parameters.

21. Derive the characteristic frequencies of Equation 6.265 using the conduc-
tance and capacitance per unit length for an HFET, and the general in-
tegrals for frequency series expansion derived in Chapter 5.

22. Using the characteristic frequencies, derive the expressions for gate-to-
source capacitance (Equation 6.267) and the gate-to-drain capacitance
using the input and the output admittances.

23. Consider a p-channel metal–p-Ga1−xAlxAs–i-GaAs abrupt HFET. In the
normal active mode of operation, draw schematically Ec, Ev, ξn, and ξp
for the structure at the source end and the drain end for a cross-section
running perpendicular to the surface.

24. Is a p-channel MIS capacitor structure based on Ga1−xAlxAs as an insu-
lator always in thermal equilibrium?

25. We derived the expression for current–voltage characteristics by lumping
together both the drift and diffusion currents and using the quasi-Fermi
level as the basis for analysis. We can determine the the drift and diffusion
currents at any cross-section of the device since the requisite parameters
are known. For the example chosen for illustration in the text, determine
these components at the source end and the drain end, following the drain
bias dependence at VGS = 1.0 V.

26. Consider a doped-barrier HFET structure, with a metal of barrier height
0.9 eV, a 1 × 1018 cm−3 n-doped Ga.7Al.3As region, and a 40 Å undoped
Ga.7Al.3As on a 1015 cm−3 p-doped GaAs substrate.

(a) What is the thickness of this doped region in order to achieve a
threshold voltage of 0.2 V if we assume the donors to be shallow?
We assume a long channel device and the threshold voltage as that
gate-to-source voltage necessary to obtain a carrier concentration of
5 × 1010 cm−2 in the conducting channel.

(b) Plot Ec, ξn, and the Fermi level in the metal at the condition of
threshold. Draw these to be quantitatively accurate.
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Figure 6.61: Equivalent circuit of a hypothetical HFET.

(c) If the donors are deep, assumed to be 60 meV, how do these param-
eters change? Plot again.

(d) What does the threshold voltage change to if the doping is increased
to 1.1×1018 cm−3 or the thickness is increased by 10 Å of the doped
Ga.7Al.3As region for both the shallow donors and deep donors?

27. Assuming appropriate VT0, which accounts for ξf0 (the parameter de-
fined for non-linear charge control), γ = 1.787 × 10−9 eV.cm4/3 for the
non-linear variation of the Fermi level with the channel charge, and a
hyperbolic velocity–field relationship with the fit for the parameters of
µ0 = 20000 cm2.V−1.s−1, and Ec = 1 × 103 V.cm−1, plot output charac-
teristics below the current saturation voltage for VG − VT = 0.2 V, 0.4 V,
and 0.6 V. The gate length of the device is 1.0 µm, and ignore parasitic
conduction in Ga.7Al.3As.

28. Determine the current gain and unilateral gain as a function of frequency
for the sub-micron HFET whose equivalent circuit is shown in Figure 6.61.
Calculate, using the approximate expressions of the text, the unity current
gain frequency and the maximum frequency of oscillation. Compare and
comment on discrepancies.

29. Estimate the drift and diffusion currents at the current saturation point
in the channel of a 1 µm gate-length GaAs HFET at 300 K. Is it a good
approximation to ignore the diffusive current? In what bias regions of the
device operation is diffusive current important?

30. What current transport mechanism—drift or diffusion—dominates in the
region that gives rise to current collapse in the characteristics of doped
Ga1−xAlxAs barrier HFETs?

31. Estimate the contribution of threshold voltage shift in doped-barrier Ga.7Al.3As/GaAs
HFETs due to change in density of states. Should the change lead to an
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increase in threshold voltage of an n-channel device with a lowering of the
temperature of operation?

32. Given that HFETs generally have a larger capacitance than MESFETs,
should the transmission-line effects due to propagation of the signal along
the width of the device be larger or smaller?

33. Estimate the differences in frequency limits in these transmission-line ef-
fects along the width of an HFET using a metal gate versus a semicon-
ductor gate material.

34. How will the piezoelectric effect, discussed in the context of MESFETs,
affect the operation of HFETs?

35. This question pertains to the operational basis of FET structures—HFETs
and MESFETs. Consider similar design of ideal structures, i.e., similar
depleted control regions such as the larger barrier region of an HFET and
the gate depletion region of a MESFET, as well as similar contact regions
and substrate structures. For identical gate lengths,

(a) which device should be more linear in its transfer characteristics, (i.e.,
IDS versus VDS)?

(b) which device should have a higher output conductance?

(c) which device could be designed to conduct larger currents?



Chapter 7

Heterostructure Bipolar
Transistors

7.1 Introduction

The bipolar transistor, so named to emphasize the importance of both electrons
and holes in the base to its operation, is the first of the semiconductor transistors
to be reduced to practice. It continues to be dominant in applications requiring
the highest speeds but integration levels much lower than those of field effect
transistors. The bipolar transistor has evolved significantly from its early days,
and its most recent evolution has been towards the use of heterostructures,
particularly in the emitter.

As the silicon bipolar transistor has shrunk in vertical and lateral dimen-
sions to improve its speed and frequency of operation, low access resistances,
higher current densities, and lower capacitances with reasonable current gains
have been achieved with increases in doping in the emitter, base, and collector.
Increased doping results in bandgap shrinkage, and since emitter injection effi-
ciency is largely responsible for the current gain, the emitter doping has to be
maintained considerably higher than that of the base for operation at 300 K. A
smaller bandgap in the emitter results in a smaller effective hole barrier, result-
ing in larger hole currents and a smaller effective increase in injection efficiency
as a result of larger emitter doping. Use of poly-silicon as an emitter material
results in relatively efficient blocking of the hole transport without a significant
effect on the electron transport, thus improving on the deleterious consequences
of bandgap shrinkage in the emitter.

Another method of reducing the hole injection is the use of a larger bandgap
emitter or a smaller bandgap base, e.g., silicon carbide for the former or a
pseudomorphic silicon-germanium alloy for the latter in a silicon-based bipo-
lar transistor. These embodiments exemplify the use of heterostructures in the
bipolar transistor, and are now referred to as heterostructure bipolar transis-
tors. Compound semiconductors, with the larger degree of freedom in choosing
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Figure 7.1: Energy band diagram of an n–p–n heterostructure bipolar transis-
tor under forward bias at the base–emitter junction. ∆Eg is the increase in
bandgap of the emitter material compared to the rest of the structure; the al-
loy composition at the junction has been assumed to be graded to avoid any
discontinuities in the band edges.

compositional variations that allow changes in bandgap while maintaining lat-
tice integrity, offer additional degrees of freedom in addition to the advantages
related to semiconductor transport.1

Consider Figure 7.1, where a larger bandgap material is employed for the
emitter than the rest of the bipolar transistor structure. We had considered
the p–n heterojunction diode problem, similar to the case here at the base–
emitter junction, in Chapter 4, as an example of the application of the modified
Gummel–Poon model. The increase in bandgap ∆Eg in the structure, under
the modest injection conditions employed, appears in the valence band. This
structure also assumes that alloy grading was accomplished over a long enough
length scale to prevent appearance of any discontinuities in the band edges at
the junction or anywhere else. In the absence of discontinuities, the conduction
in this structure is by similar means as in the homojunction bipolar transistor,
i.e., via drift and diffusion in the junction region, and limited by the transport
in the quasi-neutral regions over much of the bias range of operation. Low-level
injection implies that the quasi-Fermi levels are constant, the junction does not
limit the transport, and hence the carrier concentration at the edges of the

1The article H. Kroemer, “Heterostructure Bipolar Transistors and Integrated Circuits,”
Proc. of IEEE, 70, p. 13, 1982, comments extensively on the various aspects of the utility of
heterostructures.
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space regions are related exponentially through the barriers of the junctions
for the corresponding carrier. To the first order, ignoring the density of state
variations, etc., the barrier for electrons is still the same as in a homojunction
bipolar transistor, while the barrier for holes has increased by ∆Eg. The hole
concentration is correspondingly less by ≈ exp (∆Eg/kT ) (equivalently, hole
concentration decreases proportionately to the change in n2

i ), and hence the
diffusive minority carrier hole current in the emitter is correspondingly less,
and hence the injection efficiency is correspondingly higher.

The larger latitude in controlling these features, the introduction of bandgap
changes in the quasi-neutral base region to obtain modest quasi-fields for aiding
carrier motion, and the advantages of fast carrier transport are some of the at-
tributes appealing in their compound semiconductor implementations. There is
one distinguishing difference between the silicon bipolar transistors and the com-
pound semiconductor bipolar transistors, and this is related to the significantly
poorer lifetime both in the bulk and at the surface due to their direct bandgap
(the usual case of compound semiconductors of interest) and due to HSR re-
combination centers. Thus, whereas injection efficiency is the major hindrance
in the scaling of silicon bipolar transistors and hence a reason to incorporate
heterostructures, in compound semiconductors, they are a necessity since homo-
junction compound semiconductor bipolar transistors are limited both in gain
and performance. There are several additional advantages accrued with the
use of heterojunctions—the heterojunction barrier, e.g., allows lowering of the
emitter doping while still maintaining injection efficiency, thus allowing lower
input capacitances.

Our discussion of the compound semiconductor heterostructure bipolar tran-
sistor (HBT) is organized in a similar way as the discussion of MESFETs and
HFETs. We discuss the quasi-static behavior of the devices first by expanding
on the modelling of the p–n junction discussed earlier. Recall that the Gummel–
Poon model discussion of this was made using the intrinsic carrier concentration
as a parameter; to a first order this includes in it the bandgap variation since
it is the one primarily responsible for variations in intrinsic carrier concentra-
tion. Subsequently, this quasi-static analysis will be expanded to discuss effects
that are important and specific to compound semiconductors HBTs related to
injection, collection, and recombination effects, and then we will follow it with
discussions of small-signal behavior and off-equilibrium effects in these devices.
The small-signal behavior, and the development of the network parameters and
equivalent circuits in it, will point out some of the limitations of the quasi-static
modelling. The discussion of off-equilibrium effects will point out the effects
of the short dimensions and the limitations of using drift-diffusion in analyzing
small structures.

7.2 Quasi-Static Analysis

Our discussion of the quasi-static modelling of HBTs will extend the develop-
ment of p–n junction theory of Chapter 4. In our extended Gummel–Poon anal-
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ysis of the p–n junction, we had included effects related to the variation of the
intrinsic carrier concentration. Thus, the extended expressions, which explicitly
involve intrinsic carrier concentration in the analysis, are applicable directly,
provided drift-diffusion theory is applicable. The latter requires the absence of
discontinuities, since transport in the presence of discontinuities requires consid-
eration of transport limitations due to thermionic emission and tunneling. To a
first order, the intrinsic carrier concentration varies as

√
NCNV exp (Eg/2kT );

the pre-factor of this varies but is a smaller effect than the exponential half
power dependence on the bandgap. Thus, the effective Gummel numbers incor-
porate the variation in bandgap, and the drift-diffusion approach is applicable
so long as the changes are gradual and follow the constraints established in
Chapter 4. Time-dependent modelling of the Gummel–Poon approach will lead
us to equivalent circuit representation, applicable under quasi-static conditions,
for the HBT.

The extended Gummel–Poon modelling approach is the preferred technique
for quasi-static analysis of arbitrary structures. General approaches, by neces-
sity, are also considerably more demanding in the use of numerical techniques.
Computer-aided design models that use these analysis techniques, therefore,
also adopt some simplifications. One such form is the Ebers–Moll2 embodi-
ment, which we will derive as a simplification of the extended Gummel–Poon
modelling approach. This will lead us to the simpler equivalent circuits based on
diodes, capacitors, and resistors, and will be particularly useful in time domain
analysis in the quasi-static limit.

As an introduction, we will consider here the behavior of an HBT (n–p–n
Ga1−xAlxAs/GaAs/GaAs, with a 0.10 µm base doped to 5 × 1018 cm−3). This
device will serve as a standard example for our discussion of quasi-static and
small-signal analysis. The band edges and quasi-Fermi levels, the electron and
hole densities, and the electron and hole velocities, in this structure are shown
in Figure 7.2, for a variety of bias conditions ranging from low injection to high
injection. These are based on a numerical analysis of the problem using drift-
diffusion and modelling ohmic contacts with infinite recombination velocities.

At low bias conditions, where low-level injection conditions prevail, the quasi-
Fermi levels at the base–emitter junction are flat, Shockley boundary conditions
prevail, and the electron density in the base and the hole density in the emitter
change exponentially with bias. The hole density in the emitter is much smaller
than the electron density in the base, even though the electron density in the
emitter is smaller than the hole density in the base. This is a reflection of the two
different barriers to the two different carriers, and is considered in Chapter 4.
The holes see a barrier that is larger by ∆Eg, leading to an exponentially smaller
carrier density. So, at low-level injection, at the base–emitter junction, Shockley
boundary conditions prevail. Now consider the base–collector junction. At low-
level injection any incident electron gets swept off by the base–collector electric
field. At low-level injection there exists a very small electron concentration in

2J. J. Ebers and J. L. Moll, “Large-Signal Behavior of Junction Transistors,” Proc. of

IRE, 42, p. 1761, Dec. 1954.
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Figure 7.2: Band edges and quasi-Fermi levels (a), the electron and hole densities
(b), and the electron and hole velocities (c) in an n–p–n HBT structure of
Ga1−xAlxAs/GaAs/GaAs, with a 0.10 µm base doped to 5× 1018 cm−3. In (b)
and (c) the electron characteristics are identified by a solid line and the hole
characteristics by a dashed line.



508 7 Heterostructure Bipolar Transistors

the base–collector junction region. For normal operation, the electron diffusion
current is from the collector to the base, and since the collector doping is low
and the junction either biased to a low forward voltage, or zero, or reverse
voltage, it is very small. A high forward bias voltage at the base–collector
junction, as at the base–emitter junction, leads to the saturation region of the
operation of the transistor with large injection of electrons into the base from
the collector. This will be considered separately in our quasi-static discussion.
Electron diffusion current being small, and the electric fields in the junction
region being large, any incident electron in the depletion region gets swept
away into the collector. The electron density in the collector depletion region
is small, significantly smaller than the background donor or acceptor density,
and the base–collector region is not perturbed to any significant extent by the
presence of these carriers. The electron density at the edge of the quasi-neutral
base is very small, significantly smaller than at the base–emitter junction edge.
Since the carrier velocity in the base–collector depletion region is close to the
saturation velocity, the highest velocities carriers can have in the drift-diffusion
approximation, the carrier density needed to sustain the current in the low-
level injection region is very small. For example, to sustain a current density of
1×103 A.cm−2, with a saturated velocity of 1×107 cm.s−1, a carrier density of
6.25×1014 cm−3 is necessary. For this 1000 Å base device, assuming a mobility
of 1000 cm2.V−1.s−1, Einstein relationship, and a diffusive transport in the base
region (the base is homogeneously doped with no compositional variation), the
carrier density at the base–emitter junction edge should be 3.6 × 1015 cm−3,
sufficiently large that the carrier density at the base–collector junction edge can
be ignored. For practical purposes, for modelling transport in the base, we may
approximate the base–collector junction region with negligible carrier density
in the forward mode of operation for carrier transport from the emitter to the
collector. One could also look upon this as a boundary with a nearly infinite
velocity. The concept of velocity was adopted with respect to the ohmic contact
in the form of a recombination velocity. The base–collector junction differs
from the ohmic contact in this one substantial aspect—there exists negligible
recombination at the base–collector junction, even though the electron quasi-
Fermi level still changes in the junction region just like the ohmic contact. So,
unlike the ohmic contact, there is negligible majority carrier current at the base–
collector junction under normal operating conditions. The quasi-Fermi levels are
still separated by a substantial margin at the base–collector junction, and can
only merge at the collector ohmic contact. The electron quasi-Fermi level in the
junction depletion region decreases to maintain the appropriate electron density
in the junction region.

As current density increases beyond the low-level injection limit, the hole
density in the base also changes, and the carrier density at the base–collector
junction begins to increase more rapidly to sustain this current density even
though the carrier velocity in the base–collector depletion region may still be
large. The hole density change in the quasi-neutral region of the base is no-
ticeable since the electrons in the base are a fair fraction of the background
hole concentration. Shockley boundary conditions are no longer representative
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of the conditions prevailing at the base–emitter junction. A change in the hole
concentration leads to a finite drift field in the base with composition and dop-
ing homogeneity. This behavior in the base is analogous to the high injection
condition of the p–n junction considered in Chapter 4.

As the injection is increased even beyond this condition, the electric field
in the base–collector depletion region is reduced and the highest fields move
towards the sub-collector junction. The electron density is now very large at
the base–collector junction, comparable to or larger than the collector doping,
leading to the phenomenon of push-out of the base to the sub-collector region,
where the collector doping is sufficiently large to allow for the depletion region
to form. This phenomenon, in homostructures, is known as the Kirk effect
and is largely responsible for the drop in performance of devices at high current
densities. Under these conditions, the quasi-Fermi levels do change as a function
of position in the structure, in device regions critical to our analysis, largely as
a result of pushing the current density in the structure to values close to the
maximum limits available from the structure in the diffusion or drift limit.

The behavior of the structure in the medium and high current density limit is
sufficiently complex that simpler formulations can only be employed for explain-
ing and understanding specific phenomena alone. An example is the condition
for onset of the Kirk effect. They cannot, however, be employed in developing
a general theory of the device, which is best done using numerical approaches
as in Figure 7.2.

The behavior of the HBT structure in low-level injection, however, does lend
itself to general analysis. We may treat the base–emitter boundary condition as
one where the quasi-Fermi level remains flat, and hence the Shockley boundary
condition is still applicable. Since the control equations are linear, we may use
superposition to describe the behavior of the transistor structure in the various
bias regimes.

7.2.1 Extended Gummel–Poon Model

The application of the extended Gummel–Poon modelling approach for ana-
lyzing carrier transport was first considered in Chapter 4. It is an approach
based on integrated charge densities and the parameters of the semiconductor
and device structure and it was applied there in analysis of p–n junctions based
on both homostructures and heterostructures. It is continued here as a natural
extension to HBTs. In addition to its generality, extending to doping and com-
positional changes, one particular attribute of the extended approach, of special
significance in compound semiconductor structures, is the consistent inclusion
of recombination.

The p–n junction analysis allowed us to write, explicitly, the current equa-
tions for electron and hole transport in the two regions, provided we could
mathematically model the boundary conditions at the contacts. We employed
boundary conditions based on a finite recombination velocity at the contact
(Problem 29 of Chapter 4), as well as infinite velocity boundary conditions (i.e.,
vanishing excess minority carrier concentration) as examples of application of
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Figure 7.3: The breaking up of an arbitrary biasing condition (solid lines) of
the bipolar transistor as a superposition of a forward mode (dashed lines) and
reverse mode (dot-dashed lines) of operation. Excess carrier densities are shown
schematically in this figure.

the technique. Use of this technique in bipolar transistors follows in a similar
manner, so long as we can formulate the boundary conditions. These follow in
the light of our discussion of the operation of bipolar transistor above.

The problem of arbitrary biasing of the base–emitter and base–collector
junctions can be broken into a superposition of the forward mode of opera-
tion (base–emitter forward biased, base–collector zero-biased), and the reverse
mode of operation3 (base–collector forward biased, base–emitter zero biased),
as shown in Figure 7.3. The reverse mode of operation, i.e., biasing of the
base–collector junction, which has its most significant impact when it is for-
ward biased and injects minority carriers into the quasi-neutral base region, can
be looked upon as simply exchanging the roles of emitter and collector. Device
design makes the reverse mode of operation, the collector acting as an emit-
ter, highly inefficient. The superposition of the forward and reverse mode is
a direct consequence of the linearity of the operating equations in quasi-static
approximation.

Our derivation will also assume that the bandgap changes due to composi-
tional variations all take place within the junction depletion regions. These are
regions whose transport characteristics do not influence the behavior of the tran-
sistor directly, since the current transport in low-level injection is determined by
the characteristics of the quasi-neutral region. We can write even more general
equations (see Problem 1) where we may consider the compositional changes in
the quasi-neutral regions such as that considered in the final example of Chap-

3Forward active mode, by definition, refers to operation with forward bias at the base–
emitter junction and reverse bias at the base–collector junction. Reverse active mode, by
definition, refers to operation with forward bias at the base–collector junction and reverse
bias at the base–emitter junction. Saturation mode refers to operation with both junctions
forward biased.
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ter 4. These lead to complicated equations; most problems of interest, however,
occur with the compositional changes in the high field regions of the junction
depletion region. The equations describing this behavior are considerably more
simplified and will be considered here.

Using the superposition, and under the approximations discussed above, our
derivation is an extension of the p–n junction analysis, where we may consider
the emitter–base part of the device as being akin to the p–n diode for minority
carrier transport. For reverse mode, we may treat the collector as the emitter.
Thus, we may write the equations for electron and hole currents at the edges
of the junctions of the base–emitter space charge region. In our analysis, we
assume, for simplicity, that the base and the collector are made of the same
material, i.e., they have identical intrinsic carrier concentration niB, while the
emitter has an intrinsic carrier concentration niE . Problem 2 considers the
effect of different materials for collector in the analysis. The current densities,
for forward mode, are

Jn(wE) =
qDnBn

2
iB

GN ′

B

[
exp

(
qVBE
kT

)
− 1

]

and Jp(wE′ ) =
qDpEn

2
iE

GN ′

E

[
exp

(
qVBE
kT

)
− 1

]
. (7.1)

Here, our definitions of the effective Gummel numbers associated with the base
and the emitter are

GN ′

B =
GNB

1 +
∫wC
wE

(
pJBgr(z)/qDnn2

iB

)
dz
, (7.2)

and

GN ′

E =
GNE

1 +
∫ w

E
′

0

(
nJEgr(z)/qDpn2

iE

)
dz
. (7.3)

The recombination current integrals and the base and emitter Gummel numbers
are defined as

JBgr(z) =

∫ z

wE

q [R(z) − G(z)]dz, (7.4)

JEgr(z) =

∫ z

0

q [R(z) − G(z)] dz, (7.5)

GNB =

∫ wC

wE

pdz, (7.6)

and

GNE =

∫ w
E

′

0

ndz. (7.7)

Similarly, the effective diffusivities, following our earlier p–n junction analysis,
are

DnB =

∫ wC

wE
pdz

∫ wC

wE
(p/Dn) dz

, (7.8)
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and

DpE =

∫ w
E

′

0 ndz
∫ w

E
′

0 (n/Dp) dz
. (7.9)

We may now write a similar set of equations for the reverse mode of op-
eration, i.e., we now consider the base–collector junction as being biased by
the potential VBC which was ignored earlier, and assume that the base–emitter
junction is short circuited. The equations are alike (see Problem 3) with the
emitter and the collector reversed. The consequence of this is that we may
now write the net electron and hole currents at the edge of the base–emitter
depletion region with the quasi-neutral base and with the emitter. The current
densities follow by superposition as

Jn(wE) =
qDnBn

2
iB

GN ′

B

[
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)
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(
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kT

)]

and Jp(wE′ ) =
qDpEn

2
iE

GN ′

E
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qVBE
kT

)
− 1

]
. (7.10)

We have considered the processes of injection and collection occurring in the
transistor structure under operating conditions. The net flow can be broken up
into flow associated with forward and reverse conditions. The net current in the
collector quasi-neutral region, which is also the current that is collected by the
ohmic electrode, can be expressed in terms of products of ratios of the inflow and
outflow of currents in the base–emitter space charge region, the quasi-neutral
base region, and the base–collector space charge region as

J(wC′ ) =
J(wC′ )

J(wC)
× J(wC)

J(wE)
× J(wE)

J(wE′ )
× J(wE′ ). (7.11)

The current in the collector quasi-neutral region as well as in the base–collector
space charge region is largely carried by electrons, the junction being at most
modestly forward biased except when operating in saturation. As a result, the
net ratio of outflow in the collector and the inflow in the emitter, the common-
base current gain of the transistor (α), is written as

α =
Jn(wC′ )

Jn(wC)
× Jn(wC)

Jn(wE)
× Jn(wE)

Jn(wE) + Jp(wE′ )
. (7.12)

The first ratio in this equation represents the effect of transport in the collector
space charge region, to be called the collector transport factor and to be rep-
resented by ζ. Under quasi-static conditions, it may differ from unity predomi-
nantly due to carrier multiplication caused by avalanche multiplication or band-
to-band tunneling at high fields. The second term in the equation represents
the changes in electron current density due to transport in the quasi-neutral
base region; it is commonly called the base transport factor and represented by
αT . The last term in the equation is the ratio of the electron current density
injected into the quasi-neutral base to the total current density flowing in the
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base–emitter space charge region, it is called the emitter injection efficiency and
denoted by γ. The common-base current gain α, is therefore

α = ζαTγ. (7.13)

Since we have expressed the current densities at the edges of the space charge
regions at the base–emitter and the base–collector junctions, we can now write
the expressions for these factors. Under quasi-static conditions, the collector
transport factor deviates from unity mostly because of carrier multiplication,
i.e., only under particular operating conditions such as biases which cause car-
rier avalanching and band-to-band tunneling in small bandgap semiconductors.
These conditions are usually avoided since they can be irreproducible and lead
to excess noise. Under high frequency conditions or at small time scales it de-
viates because of the large displacement currents (dD/dt) in the space charge
regions. Thus, under the quasi-static conditions, we are principally interested
in the injection efficiency and the base transport factor given by

γ =
Jn(wE)

Jn(wE) + Jp(wE′ )
=

1

1 + DpEGN
′

B/DnBGN
′

E

, (7.14)

and

αT =
Jn(wC)

Jn(wE)
= 1 − JBgr(wC)

Jn(wE)
. (7.15)

We now express the currents in the forward operating mode of the bipolar
transistor in terms of the parameters described. The emitter current is the
sum of the forward injection current of electrons and holes at the base–emitter
junction if we ignore recombination effects within the junction. The collector
current is the electron current reaching the collector junction, i.e., the base
transport factor multiplied by the electron current at the base–emitter junction;
the base current is the difference between the emitter current and the collector
current, thus satisfying Kirchoff’s current law. These currents, as functions of
our parameters of the problem, are
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(1 − αT )
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(7.16)

This set of equations is quite general, useful for conditions of arbitrary
bandgap or intrinsic carrier concentrations in any of the device regions. The
limitations on this set are those related to low-level injection, and also that the
compositional changes take place over a sufficiently long length scale and within
the junction space charge regions. More complex equations, where we relax
the last of the conditions regarding the position of the compositional changes
in the space charge regions, are considered in Problem 1. However, all these
analyses still assume the validity of drift-diffusion transport, i.e., no disconti-
nuities should appear in the structures and the transport must be limited by
drift-diffusion processes in the quasi-neutral regions of the structures.

We have now derived the external currents, under quasi-static conditions,
using the modified Gummel–Poon approach. Similar to our approach of pertur-
bational modelling in MESFETs and HFETs, we may extend this approach to
include time-dependent effects and thus be able to model changes and effects
taking place over time scales that can be treated quasi-statically. This requires
us to analyze the capacitive effects associated with storage of charge—the dif-
fusion capacitance effects—and changes in space charge regions—the transition
capacitance effects. Our goal is to generate an objective model of the bipolar
transistor based on the charge storage concept that is valid at low and moderate
frequencies.

The approach is to utilize the changes in the stored charges in various regions
as the basis for the analysis. Its origin is in the fact that we can view the flow of
carriers in minority carrier devices to be associated with minority carrier charge
storage. The electron current at the base–collector junction, which occurs due
to the injection at the base–emitter junction, requires storage of electron charge
in the p-type base. In homogeneously doped base structures, the current flows
by diffusion; thus, there exists a gradient of electron concentration, with the
electron concentration decreasing from the emitter edge to the collector edge of
the quasi-neutral base. The existence of electrons in the base, and its gradient,
occur together with the flow of electrons into the collector. Thus, stored charge
may be considered as the basis for the quasi-static time-dependent modelling.
We consider one example to demonstrate the usefulness of this approach based
on stored charge and to show its equivalence to the approach based on transport.
The base time constant τB is, by definition, the time required by a carrier to
transit the quasi-neutral base region. Consider the coordinate system with its
origin in the quasi-neutral base region at the edge of the base–emitter depletion
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region.4 Thus,

τB =

∫ wB

0

1

v(z)
dz, (7.17)

where v is the velocity of the carrier and wB is the base width. We consider
a homogenously doped base and assume recombination to be negligible. The
electron current can be written as

Jn = qDn
d(np(z) − np0)

dz
= qDn

np(0) − np0
wB

, (7.18)

because it is by diffusion, and because in one-dimensional analysis with recom-
bination ignored, the gradient is a constant. This electron current can also
be written as a product of excess carrier concentration and the velocity of the
carrier,

Jn = q(np(z) − np0)v(z) = q(np(z) − np0)
dz

dt
. (7.19)

The two expressions allow us to write the velocity of the carriers, since current
density is constant and minority carrier density varies linearly in the base in the
absence of recombination. Thus, for 0 < z < wB,

v(z) =
Dn
wB

z, (7.20)

and hence

τB =

∫ wB

0

z

Dn
dz =

wB
2

2Dn
. (7.21)

While we estimated this based on homogeneous doping, inhomogeneously doped
structures lead to a modified expression (see Problem 4) and an analysis similar
to the treatment of the p–n junction (in Chapter 4) leads to the base time
constant as

τB =
wB

2

νDn
(7.22)

for low-level injection and forward active mode of operation, with the factor ν
determined from the transistor parameters by

ν =

{
1

wB2

∫ wC
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z

p(η)dη

]
dz

}−1

. (7.23)

The problem of alloy grading also leads to similar results (see Problem 5) and
will also be considered in our treatment of small-signal analysis.

4To simplify our mathematics, we will use two coordinate systems. The first, a more general
coordinate system, used until this point, considers z = 0 as the emitter contact. This places
z = w

E
′ and z = wE as the emitter and the base edges of the emitter–base depletion region,

and z = wC and z = w
C

′ as the base and the collector edges of the base–collector depletion
region. The second coordinate system, used when we are specifically focussing on transport in
the quasi-neutral base region, moves the origin to the base edge of the emitter–base depletion
region. The base edge of the base–collector depletion region, then, occurs at z = wB . Note,
wB = wC −wE .
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Let us now explore this time constant, the time of transit in the base, using
the stored charge approach, and show that this same result can be derived
by charge control analysis. Again, we consider the forward active mode of
operation. Most of the collector current is electron current in a conventional
n–p–n bipolar transistor. The excess minority carrier stored charge in the base
QnB, assuming unit cross-section area is given by

QnB =

∫ wC

wE

qn
′

p(z)dz =

∫ wC

wE

q [np(z) − np0]dz, (7.24)

where n
′

p(z) is the excess minority carrier population of electrons in the p-type
base at any position z. Let this charge support the collector current in this
structure. The time constant that relates the minority carrier charge QnB in
the base with the collector current is the base time constant τB. Consider the
uniformly doped base. We have

QnB =
1

2
qwBn

′

p(wE). (7.25)

The collector current density is given by

Jn(wC) = qDn
n

′

p(wE)

wB
, (7.26)

hence the base time constant is

τB =
QnB

Jn(wC)
=
wB

2

2Dn
, (7.27)

an identical result.
Now consider the same problem for a non-uniformly doped base. The col-

lector current density, for the forward mode, is given as

Jn(wC) =
qDnBn

2
iB

GN ′

B

[
exp

(
qVBE
kT

)
− exp

(
qVBC
kT

)]

≈ qDnBn
2
iB∫ wC

wE
pdz

[
exp

(
qVBE
kT

)
− exp

(
qVBC
kT

)]
, (7.28)

where the effect of recombination in the base has been ignored. The excess
minority stored charge in the base is

QnB = q

∫ wC

wE

n
′

p(z)dz, (7.29)

where the excess carrier concentration is a function of the bias. This leads to
the base time constant

τB =

∫ wC

wE
p(z)dz

∫ wC

wE
n

′

p(z)dz

DnBn2
iB [exp (qVBE/kT ) − exp (qVBC/kT )]

. (7.30)
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This is identical to the result based on carrier velocity (see Problem 4). Alloy
grading also leads to similar conclusions and an identical interpretation of the
base time constant (see Problem 5).

We have now established that under the assumption of quasi-static condi-
tions, the two approaches give identical results. The second approach is intu-
itively more appealing and is analytically more tractable for the general problem
since it is based on the extended Gummel–Poon approach. So, we now consider
it in detail, and include the effect of other charges.

Current flow through the device supports the minority charge5 in the base
quasi-neutral region QnB, which we just considered, in the emitter quasi-neutral
region QpE , and in the collector quasi-neutral region QpC . We will assume
the devices to have unit cross-section area; Qs are therefore integrated charge
densities in unit volume. The base–emitter and the base–collector space charge
regions can also be viewed to have space charge QsE and QsC associated with
them. These are the excess charges on either side of the metallurgical junction.
Changes in bias cause movements of the depletion region edge, which lead to
either uncovering or compensation of the immobile charge; the net charge on
either side of the space charge region either increases or decreases with changes
occurring at the edges of the depletion region. Thus, the transition capacitances,
characterizing the change in the charge of the space charge region, are

CtE =
∂QsE

∂VBE
(7.31)

for the base–emitter depletion region, and

CtC =
∂QsC

∂VBC
(7.32)

for the base–collector depletion region.
We consider the problem as a superposition of forward and reverse trans-

port and storage. For the forward problem we consider VBC = 0 and for the
reverse problem we consider VBE = 0. Thus, in forward mode the base–collector
junction is short circuited, and no hole injection occurs into the collector, i.e.,

QF
pC = 0, (7.33)

and based on similar arguments, in reverse mode, no hole injection occurs into
the emitter quasi-neutral region and

QR
pE = 0. (7.34)

Forward mode, thus, sustains minority carrier charge of electrons in the base
region, and of holes in the emitter region. Thus, total minority carrier charge

5See J. te Winkel, “Past and Present of The Charge-Control Concept in the Characteri-
zation of the Bipolar Transistor,” in L. Marton, Ed., Advances in Electronics and Electron

Physics, Academic Press, N.Y. (1975) for a quasi-static treatment of small-signal, large-signal,
and transient phenomena. R. S. Muller and T. I. Kamins, Device Electronics for Integrated

Circuits, John Wiley, N.Y. (1986), an introductory reference, also treats this subject in detail.



518 7 Heterostructure Bipolar Transistors

in the forward mode is given by

QF = QF
nB + QF

pE . (7.35)

Similarly, for the reverse mode, minority carrier charge is sustained in the quasi-
neutral base region and the quasi-neutral collector region, and is given by

QR = QR
nB + QR

pC . (7.36)

We now introduce time constants to relate charge storage with currents. Let
the forward time constant τF relate the total forward forward charge storage
with the forward current, i.e.,

τF =
QF

IFC
. (7.37)

Note that the base time constant is a subset of this time constant. Using F as
the superscript to identify the forward mode, the base time constant is related
as

τFB =
QF
nB

IFC
. (7.38)

Hence, the forward time constant is related to the forward base time constant
as

τF = τFB
QF

QF
nB

= τFB
QF
nB + QF

pE

QF
nB

. (7.39)

This time constant relates forward current with forward charge.
We can also define a time constant that relates the forward mode base current

with the forward charge

τBF =
QF

IFB
. (7.40)

Since the forward collector and base currents are related through the forward
current gain βF ,

IFC = βF I
F
B , (7.41)

the forward time constants for the base current and the collector current are
related as

τBF = βF τF = βF τ
F
B

QF

QF
nB

, (7.42)

with the forward time constant for base current being substantially larger than
that for collector current. The time constants τF and τBF are more basic to our
quasi-static modelling since they directly relate the forward collector current
and the forward base current with the forward charge storage. The emitter
current for forward mode follows directly from this in steady-state conditions as

IFE = QF

(
1

τF
+

1

τBF

)
. (7.43)

Similar time constants τR and τBR can be defined to relate the reverse charge
storage with the reverse currents. Note that now, the conventional emitter,
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the emitter of the forward mode of the structure, becomes the collector for
the reverse relations, and the conventional collector, the collector of the forward
mode of the structure, becomes the emitter of the reverse relations. The steady-
state can, therefore, be written as superposition of forward and reverse currents,

IC =
QF

τF
−QR

(
1

τR
+

1

τBR

)
, (7.44)

IB =
QF

τBF
+

QR

τBR
, (7.45)

and IE = QF

(
1

τF
+

1

τBF

)
− QR

τR
. (7.46)

Now consider the effect of time-dependent changes. Both the forward and
reverse charges QF and QR change, as do the space charge region charges QsE

and QsC . If the Kirk effect, i.e., the base push out effect due to large minority
carrier densities at the base-collector metallurgical junction, does not occur,
then the change in the charge QF is due to charges flowing in or out of the base
and the emitter electrodes, there being no forward charge in the collector quasi-
neutral region. Any current resulting from the time-dependent change in QF ,
the current ∂QF /∂t, flows through the emitter and the base terminal. Thus,
the time-dependent expressions for IE and IB contain the current ∂QF /∂t due
to changes in the forward charge. Similarly, the term ∂QR/∂t appears in the
expressions for IC and IB .

Ignoring high injection effects, the base–emitter space charge region responds
directly to any changes in the bias at the base–emitter junction, and the base
collector space charge region to the changes in base–collector bias. Thus, the
current ∂QsE/∂t appears in emitter and base currents, and the current ∂QsC/∂t
appears in collector and base currents. Consolidating all these terms, we obtain
the following equations for the quasi-static currents of the bipolar transistors:

IC =
QF

τF
−QR

(
1

τR
+

1

τBR

)
− ∂QR

∂t
− ∂QsC

∂t
, (7.47)

IB =
QF

τBF
+

QR

τBR
+
∂QF

∂t
+
∂QR

∂t
+
∂QsE

∂t
+
∂QsC

∂t
, (7.48)

and

IE = QF

(
1

τF
+

1

τBF

)
− QR

τR
+
∂QF

∂t
+
∂QsE

∂t
. (7.49)

These equations can be easily visualized in the schematic circuit shown in Fig-
ure 7.4.

The forward and reverse minority charges change with bias. Since the applied
bias directly modulates the barrier, the carrier densities at the junction edges
are directly related via the exponential in applied bias, hence for the simplest
of the structures, homogeneous in composition and doping, the forward and
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Figure 7.4: Schematic of a circuit representing the association of base, emitter,
and collector currents with forward and reverse charges, and temporal change
in the space charge region charge at the base–collector and the base–emitter
junctions. The capacitances shown are associated with changes in charges QF ,
QR, QsE , and QsC.

reverse charges are related as

QF = QF0

[
exp

(
qVBE
kT

)
− 1

]
, (7.50)

and

QR = QR0

[
exp

(
qVBC
kT

)
− 1

]
. (7.51)

This is a quasi-static model, i.e., it assumes that the device is always in
steady-state. Thus, it is valid only when applied signals do not vary too rapidly.
One may quantify this time scale as exceeding the largest time constant of the
system, i.e., the quasi-static model may be applied for time scales of t� τF .

We can now derive the small-signal equivalent circuit valid for the quasi-
static conditions. We use the perturbational analysis employed earlier for both
MESFETs and HFETs. The perturbation method uses superposition of a per-
turbing signal on the static signal to derive circuit elements from the response to
the perturbation. Thus, the transconductance gm, output conductance gd, etc.,
were the ratio of the small change in the drain current resulting from a small
change either in the gate voltage or in the drain voltage. Our perturbational
analysis of the time-dependent quasi-static equations will utilize the fact that
circuit elements connecting two nodes can contribute to currents only in the
corresponding nodes. Here, we consider the forward mode terms; the reverse
mode terms follow using similar arguments. The applied voltages are

VBE = V BE + ∆VBE , (7.52)

and
VBC = V BC + ∆VBC . (7.53)
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The forward mode equations, ignoring effects of QR, which is small, are

IC =
QF

τF
− ∂QsC

∂t
, (7.54)

IB =
QF

τBF
+
∂QF

∂t
+
∂QsE

∂t
+
∂QsC

∂t
, (7.55)

and IE = QF

(
1

τF
+

1

τBF

)
+
∂QF

∂t
+
∂QsE

∂t
, (7.56)

where IE is written to be positive if the current flow out of the emitter terminal.
First consider terms that are affected by the base–emitter bias. The second

term of the collector equation is not a function of the base–emitter junction, but
the first term is. Its perturbed component, i.e., that related to the perturbation
in the base–emitter voltage, can be found by finding the derivative w.r.t. VBE
using the same techniques employed in the FET quasi-static analysis. We have

∂IC
∂VBE

=
∂

∂VBE

(QF

τF

)

=
1

τF

∂

∂VBE
QF0

[
exp

(
qVBE
kT

)
− 1

]

=
QF0

τF

q

kT
exp

(
qVBE
kT

)
≈ qIC

kT
= gm. (7.57)

Thus, the QF /τF term, which occurs in both the emitter and the collector
current, results in a conductance of gm, i.e., the perturbation current in the
collector ∆IC varies as gm∆VBE . Now consider the base current. The first
three terms depend on the base–emitter potential and hence result in circuit
elements corresponding to those nodes, while the last results in a circuit element
corresponding to the base–collector potential and nodes.

We look at these individually. The derivative of the first term with VBE
gives

∂

∂VBE

( QF

τBF

)
≈ qIC
kTβF

=
gm
βF

=
1

rπ
. (7.58)

This is a conductance element between the base and the emitter terminal. The
time-derivative term of QF can be expanded in terms of the derivative w.r.t.
the impressed potentials VBE and VBC as

∂QF

∂t
=

∂QF

∂VBE

∂VBE
∂t

+
∂QF

∂VBC

∂VBC
∂t

. (7.59)

The first term has units of capacitance as its pre-factor. This capacitance is
called the diffusion capacitance CD, and it models, together with the forward
current IFC , the time delay τFB due to storage in the base.

CD =
∂QF

∂VBE
=

∂

∂VBE
(ICτF ) =

∂IC
∂VBE

τF = gmτF . (7.60)
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The space charge term QsE responds only to the base–emitter voltage and hence
corresponds to a capacitive term CtE through

∂QsE

∂t
=
∂QsE

∂VBE

∂VBE
∂t

= CtE
∂VBE
∂t

. (7.61)

So, associated with the perturbation in the base–emitter bias VBE , the changes
in the forward currents in the emitter, base, and collector can be represented by
a current source gm∆VBE between the collector and the emitter, a resistance
rπ = βF /gm, and capacitances CD and CtE between the base and the emitter.
The latter two are sometimes lumped together as Cπ.

Now consider the terms affected by changes in the base–collector potential.
The term QF/τF has a weak dependence on the base–collector potential due to
the Early effect, i.e., due to changes in the quasi-neutral base region width.

∂

∂VBC

(QF

τF

)
=

∂IC
∂VBC

=
IC
VA

=
gmkT

qVA
= −gmη, (7.62)

where VA is the Early voltage and η is the magnitude of the Early factor. The
Early effect arises from modulation of the quasi-neutral base width, which leads
to a change in the gradient of the minority carrier charge density and hence in
the collector current. It is related by

VA =

∫ wC

wE
pdz

p(wC)∂wC/∂VCB
. (7.63)

Hence, an increase in the reverse bias voltage at the base–collector junction leads
to an increase in the collector current, as shown schematically in Figure 7.5.
This implies that both the collector and emitter perturbation currents ∆IC
and ∆IE have a current component −gmη∆VBC or gmη∆VCB in them. Since
∆VCB = ∆VCE −∆VBE , the perturbation effect of the base–collector potential
results in a resistance ro = 1/gmη between the collector and the emitter, and a
current source of gm(1 − η)∆VBE .

The dependence of the term QF/τBF on the base–collector potential is small
because it models the response of the base current due to the modulation of the
base width. This is significantly smaller than that of the collector current,
which is influenced directly by the change in the gradient of minority carrier
distribution in the base. The change in base current occurs due to changes in
recombination in the base, a small quantity. We have

∂

∂VBC

( QF

τBF

)
=

∂

∂VBC

( QF

βF τF

)

≈ IC
βFVA

[
1 − VA

βF

∂βF
∂VBC

]
. (7.64)

We can derive the magnitude of the derivative of the current as

∂βF
∂VBC

=
∂

∂VBC

(
αF

1 − αF

)
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Figure 7.5: A schematic of the effect of the Early voltage, the increase in gradient
of the minority charge in the base due to reduction in the quasi-neutral base
width by a reverse biasing of the base–collector junction. This results in an
increase in collector current from the characteristics shown as dashed lines to
that shown as solid lines.
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=
1

(1 − αF )
2

∂αF
∂VBC

=
1

(1 − αF )
2

wBαT
LnVA

, (7.65)

where Ln is the diffusion length of electrons in the base of the device. This
simplifies (see Problem 6) to

∂

∂VBC

(QF

τBF

)
≈ IC
VA

[
1 − αT

(
1 − αTwB

Ln

)]
, (7.66)

which is a resistance between the base and the collector electrode of the approx-
imate magnitude

rµ =
1

1 − αT

VA
IC
. (7.67)

The time derivative of the forward charge storage has a base–collector potential
dependence

∂QF

∂VBC
=

∂

∂VBC
(τF IC )

=
τF IC
VA

= −gmτFη = −ηCD, (7.68)

where η is kT/qVA. This term leads to a storage or diffusion capacitance whose
magnitude is substantially mitigated by the small Early factor. This effect of
change in storage occurs through the modulation of the edge of the quasi-neutral
base region at the base–collector junction where the minority carrier charge
concentration is very small. Thus, this capacitive effect between the base and
the collector electrode, which is very similar to the diffusion capacitance between
the base and the emitter electrode, is a small effect whose magnitude is smaller
by the factor η. The space charge term QsC contributes a capacitive term CtC
between the base and the collector electrode similar to the capacitance CtE.

We have now modelled all the elements of the equivalent circuit representing
response of all of the terms of the quasi-static current equations based on charge
control analysis. The forward mode elements of this are shown in Figure 7.6.
This representation is usually called the hybrid-pi model of the transistor. Since
η << 1, the current source in this figure is proportional to the small-signal
voltage V̂be with the transconductance gm as the constant of proportionality.
This figure is for forward mode; elements corresponding to reverse mode can be
superposed on this in a similar manner to increase its accuracy in the saturation
mode.

7.2.2 Ebers–Moll Model

The Gummel–Poon modelling approach utilized the integrated charge in vari-
ous regions as the basis for modelling the transport and storage effects under
quasi-static conditions. The Ebers–Moll model utilizes currents as the basis for
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Figure 7.6: Hybrid-pi equivalent circuit for the forward mode of the bipolar
transistor operation derived using the charge control analysis.

the modelling, and we can derive it, in its simplest form, from the Gummel–
Poon approach in a fairly straightforward fashion. The form we derive here,
by calculating the currents associated with the charges, invokes all the approx-
imations that formed the basis of our Gummel–Poon models. We consider the
HBT with a base–emitter junction bias of VBE and base–collector junction bias
of VBC . Let us consider the forward current in the emitter of this structure.
Since V FBC = 0, we have

IFE = A
[
JFp (wE′ ) + JFn (wE)

]

= A qDpEni
2

GN ′

E

[
exp

(
qVBE
kT

)
− 1

]
+

A qDnBni
2

GN ′

B

[
exp

(
qVBE
kT

)
− 1

]
, (7.69)

where the first term represents the hole injection term in the emitter and the
second term represents the electron injection term. This can be simply written
as

IFE = IES

[
exp

(
qVBE
kT

)
− 1

]
, (7.70)

where

IES = A
(
qDpEni

2

GN ′

E

+
qDnBni

2

GN ′

B

)
. (7.71)

In this same spatial junction region of the device, there exists a current due
to the reverse mode of the device. This is the fraction of the electron current
injected due to the bias VBC , and collected following a base transport process
which is characterized by the reverse base transport factor αRT whose magnitude
is usually considerably smaller than unity. This reverse current is related as

IRE = αRTAJRn (wC)
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= −αRTA
qDnBni

2

GN ′

B

[
exp

(
qVBC
kT

)
− 1

]

= −IOE
[
exp

(
qVBC
kT

)
− 1

]
, (7.72)

where

IOE = αRTA
qDnBni

2

GN ′

B

. (7.73)

This current is opposite in magnitude to the forward mode current, and by
definition is related to the reverse injected current (occurring physically in the
collector region and hence identified as IRC ) by

IRE ≡ αRI
R
C . (7.74)

So, in the physical emitter region of the device structure, two current sources
may be identified. One is associated with the forward injection process, and
consists of both electrons and holes, a diode-like current. The other is asso-
ciated with the reverse collection process, and consists only of electrons. It is
proportional to the reverse injection current from the physical collector region.

We may write, corresponding to this, the forward and reverse currents in the
physical collector region. The forward current is composed of electrons only; it is
the fraction of the electron current injected in the forward mode at the emitter,
which is successfully transported through the base. As before, in all these we
consider the collector transport factor as unity. This current is proportional to
the diode current of the base–emitter junction. The reverse current consists of
the injection process at the base–emitter junction and consists of both electrons
and holes. This current, like the forward current in the emitter, is diode-like.
The forward collector current can be written as

IFC = αFTAJFn (wE)

= AαFT
qDnBni

2

GN ′

B

[
exp

(
qVBE
kT

)
− 1

]

= IOC

[
exp

(
qVBE
kT

)
− 1

]
, (7.75)

where

IOC = AαFT
qDnBni

2

GN ′

B

. (7.76)

Like the reverse emitter current, this current can be written as

IFC = αF I
F
E . (7.77)

The reverse injection current in the collector is

IRC = A
[
JRp (wC′ ) + JRn (wC)

]
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= −A qDpCni
2

GN ′

C

[
exp

(
qVBC
kT

)
− 1

]
−

AqDnBni
2

GN ′

B

[
exp

(
qVBC
kT

)
− 1

]

= −ICS
[
exp

(
qVBC
kT

)
− 1

]
, (7.78)

where

ICS = A
(
qDpCni

2

GN ′

C

+
qDnBni

2

GN ′

B

)
. (7.79)

The base current is interrelated with these; it consists of the hole injection
current that is available through the ohmic electrode, and the current corre-
sponding to the holes that recombine during the electron transit in the base
region. So, the forward base current can be written as

IFB = AqDpEni
2

GN ′

E

[
exp

(
qVBE
kT

)
− 1

]
+

A(1 − αFT )
qDnBni

2

GN ′

B

[
exp

(
qVBE
kT

)
− 1

]

= A
[
qDpEni

2

GN ′

E

+ (1 − αFT )
qDnBni

2

GN ′

B

][
exp

(
qVBE
kT

)
− 1

]
,

(7.80)

and the reverse base current can be written as

IRB = A
[
qDpCni

2

GN ′

C

+ (1 − αRT )
qDnBni

2

GN ′

B

][
exp

(
qVBC
kT

)
− 1

]
. (7.81)

The total currents flowing through the emitter, collector, and base electrodes
consist of the forward and reverse currents. These equations, formally known
as the Ebers–Moll equations, are

IE = IFE + IRE

= IES

[
exp

(
qVBE
kT

)
− 1

]
− IOE

[
exp

(
qVBC
kT

)
− 1

]
, (7.82)

IC = IFC + IRC

= IOC

[
exp

(
qVBE
kT

)
− 1

]
− ICS

[
exp

(
qVBC
kT

)
− 1

]
,

(7.83)

and
IB = IFB + IRB . (7.84)
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Figure 7.7: Equivalent circuits (a) and (b) based on the Ebers–Moll model.
These are the simplest representations that model the current flow.

Figure 7.8: An extension of the equivalent circuit based on the Ebers–Moll
model; this circuit is more adaptable to inclusion of higher-order effects such as
the Early effect, recombination, and saturation effects due to heterostructures
at the base–collector junction.

In these, both IES and ICS consist of electron and hole components; the form
of the terms corresponding to these assumes a diode-like form with IES and
ICS identifying the saturation currents of the diodes. The equivalent circuit
corresponding to the above set of equations is shown in Figure 7.7. The terms
corresponding to IOE and IOC are dependent terms related to the injection
terms through the forward and reverse current transfer ratios; they represent
the coupling between the two regions, which is the basis for transistor action.
Assuming unity collector transport factor,

IOC = αF IES = γFEα
F
T IES , (7.85)

and

IOE = αRICS = γFCα
R
T ICS . (7.86)

This is what has been called the injection version of the Ebers–Moll model.
The injection version is not the only form in which the Ebers–Moll model is

employed. Other forms exist; one example is shown in Figure 7.8. The appeal
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of these other adaptations is in their extendibility for inclusion of secondary or
higher-order effects in modelling. They are also numerically more adaptable.
The first of these extensions is the transport version; it follows from our deriva-
tion using a change of the reference currents from IES and ICS terms to IOE
and IOC terms, i.e., the currents that get transported across the base. These
reference currents are characterized by one identical saturation current (see
Problem 7) instead of two reference currents. In the highly parameterized envi-
ronment common to computer-aided design models, this feature is particularly
appealing. Another form (see Problem 8) can be viewed as a hybrid-pi version
of the Ebers–Moll model. It utilizes the commonality of the basis in currents,
and the properties of the transport version, to generate an equivalent circuit
similar in appearance to the small-signal equivalent circuits of FETs. Indeed,
small-signal and circuits based on perturbation analysis using linearization of
this quasi-static model, reduce to nearly identical circuits. This last adaptation
of the Ebers–Moll model has served most generally as the basis for extensions
to include effects of resistances, high injection effects of transport and storage,
etc.

7.3 Implications of Heterostructures and Alloy

Grading

We will now consider some selected aspects of the theory of operation of HBTs.
We will emphasize the distinguishing aspects of the operation vis-a-vis the quasi-
static aspects of operation discussed earlier. Our earlier discussion is restricted
to low-level injection conditions and is particularly suitable under the low-level
injection conditions for the graded HBT and the homostructure bipolar transis-
tor.

The particular difference between homojunction and heterojunction devices
is the change in bandgap that can be achieved both on the atomic distance scale
and on the device length scale. Thus, one may achieve an interface where the
conduction band edge energy changes rapidly, as well as one where it changes
very slowly. The former is the abrupt heterostructure device, the basis for
successful HFETs, hot carrier devices, etc., while the latter is the graded het-
erostructure device, quite common in the HBTs. Figure 4.24 had shown various
combinations of type I abrupt and graded heterojunctions between a large and
a small bandgap material in thermal equilibrium.

In the abrupt case, the conduction band discontinuity ∆Ec is a given from
experimental measurements. As we have discussed, although we do not yet quite
completely understand its origin, its magnitude in abrupt heterostructures for
many of the interesting cases has been precisely determined. It is not that which
is predicted by electron affinity rule. At abrupt interfaces, the vacuum level has
a discontinuous change and so does the electrostatic potential, which has been
defined with respect to some reference position of the vacuum level at some loca-
tion in the semiconductor. The abrupt structures require abruptness at a length
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scale closer to the lattice constant. The other extreme of this heterostructure is
the graded heterostructure where no discontinuity occurs in the conduction or
the valence band. This is in the limit where the alloy composition, a material
parameter, is being changed on a much larger scale than the lattice constant
scale, and the forces that give rise to the discontinuities vanish. Usually, a
grading distance of the order of 100 to 300 Å, related to the Debye length, is
sufficient to remove the discontinuity. The relationship to Debye length follows
from arguments based on the alloy fields and the electrostatic fields, and was
discussed in Chapter 4. The Debye length is related to the screening length and
hence to the electrostatic field.

The electrostatic potential change across the Debye length is of the order of
kT/q. The modelling of the two distinct extremes of heterostructure grading
is quite straightforward. The abrupt case can be shown to be similar to a
metal–semiconductor diode case, because the current that can be extracted
by drift-diffusion in the quasi-neutral region is much larger than the current
that can be supplied by the junction itself. The current transport is therefore
limited by characteristics of the junction itself. In general, one would have
to determine the thermionic and field emission components to determine this
current. In this respect it is like the Schottky diode. Note that drift-diffusion
in the junction does not determine the current if the mobility and diffusivity
are high. In the abrupt heterojunction limit, therefore, the current is limited by
thermionic emission over the barrier and field emission through the barrier for
most compound semiconductors of interest. At the other extreme, in the graded
case, the extracted current (by drift diffusion in the quasi-neutral base) is the
limiting current. This is similar to our bipolar treatment to this point, and hence
leads to a straightforward analysis. Finite element device programs actually
look at the ∆Ec for successive mesh points and use the thermionic model if the
gradient is large compared to the electrostatic field. In our treatment, we will
emphasize the graded heterostructure case. The abrupt heterostructure case
is a specialized case best treated by modelling programs that include the hot
electron effects that occur in the abrupt heterostructure case. Considerations
related to this were discussed in detail in Chapter 4.

While we considered grading in the base–emitter junction region, it can also
be used in the base region to effectively increase the quasi-field for electrons of
an n–p–n device. This leads to changes in storage and different signal frequency
dependence that is of considerable interest.

First, we consider the quasi-static base transport behavior in the presence
of a quasi-field. Our transport equations for the homojunction case have to be
modified for the changes resulting from alloy grading. Here, we summarize our
discussion of Chapter 3 on adaptation of the drift-diffusion equation approach to
heterostructures. Recall that we can write the carrier concentration as a function
of the quasi-Fermi level with the coordinate system chosen as in Figure 3.14.

n = NC exp

[
q(ψ + φC − φn)

kT

]
, (7.87)

where φC is the conduction band edge potential with respect to the vacuum
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level reference. It follows, then, within the drift-diffusion approximation, that

Jn = −qnµn∇φn
= −qnµn∇

{
ψ + φC − kT

q
ln

(
n

NC

)}

= qnµn

{
−∇ψ −∇

[
φC +

kT

q
ln(NC )

]}
+ qDn∇n, (7.88)

and similarly,

Jp = qpµp

{
−∇ψ −∇

[
φV − kT

q
ln(NV )

]}
− qDp∇p. (7.89)

By defining

φCn = φC +
kT

q
ln(NC)

and φV p = φV − kT

q
ln(NV ), (7.90)

we account for variations in electron and hole affinity, effective masses, etc. We
assumed Maxwell–Boltzmann statistics in deriving this. This is not necessary;
the degeneracy effects and consequences of Fermi–Dirac statistics, which are re-
lated to use of high doping, can be directly included by a pre-factor proportional
to the Fermi integrals in the density of states terms. These additional terms are
(kT/q) ln

[
F1/2(ηfn)/ exp (ηfn)

]
for n-type and (kT/q) ln

[
F1/2(ηfp)/ exp (ηfp)

]

for p-type. Thus, within the drift-diffusion approximation,

Jn = qnµn {−∇ψ −∇φCn} + qDn∇n
and Jp = qpµn {−∇ψ −∇φV p} − qDp∇p (7.91)

are the modified equations for transport in graded-alloy structures. These
together with Poisson’s equation and the current continuity equation allow us
to solve many of the interesting problems in heterostructure bipolar transport.
Quite often, we actually ignore the ∇NC and ∇NV terms of ∇φCn and ∇φV p
because they tend to be small. One of these interesting problems is the static
current through the base of a graded alloy base HBT shown in Figure 7.9. We
will return to this problem in the section on small-signal analysis. Here we wish
to analyze, for quasi-static conditions, the consequences of alloy grading on the
base transport.

We are interested in the problem of determining Jn, given compositional
grading in the base, and we are interested in determining the modifications to
the relationship

Jn =
qDnn2

i exp (qVBE/kT )
∫wB
0

NAdz
(7.92)

that exists for homojunction bipolar transistors. The denominator is one of the
Gummel numbers. Recall that we had dealt with effective Gummel numbers,
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Figure 7.9: Band diagram of a graded alloy base HBT.

etc., that accounted for recombination, changes in bandgap, changes in doping,
etc. The changes in bandgap can be ignored for the electron current in the
base of a homojunction transistor6 and hence the most basic form of Gummel
number is utilized. The base time constant for this is given by the relation (see
Equation 7.23 with the inclusion of a change in coordinate system; the base is
assumed to extend from z = 0 to z = wB)

τB =
1

Dn

∫ wB

0

1

NA

{∫ wB

z

NAdζ

}
dz, (7.93)

which determines the quasi-static base time constant when NA is allowed to
vary across the base. It reduces to

τB =
w2
B

2Dn
(7.94)

in the uniformly doped case, as expected.
We have

Jn = −qµnn∇φn
and Jp = qµpp∇φp. (7.95)

In the base of a bipolar transistor, p is large and Jp is small because a useful
device exhibits current gain. Thus, ∇φp = 0, and

Jn ≈ −qµnn∇ (φn − φp)

= −qµnn∇ (φp − φn) . (7.96)

6So long as bandgap narrowing is not significant.
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By the definition of quasi-Fermi levels,

np = n2
i exp

[
q (φp − φn)

kT

]
, (7.97)

where n2
i is now dependent on the position in the base. This expression can be

recast for the purposes of determining current density as

∇ (φp − φn) =
kT

q
∇ ln

(
np

n2
i

)
=
kT

q

n2
i

np
∇
(
np

n2
i

)
. (7.98)

Substituting for the gradient in the difference of quasi-Fermi levels,

∇np

n2
i

= −Jn
q

(
p

Dnn2
i

)
, (7.99)

and hence
np

n2
i

∣∣∣∣
wB

− np

n2
i

∣∣∣∣
z

= −Jn
q

∫ wB

z

p

Dnn2
i

dζ. (7.100)

At the base edge of the base–collector depletion region (z = wB), (np/n2
i ) →

0, at z = 0, the emitter edge of the quasi-neutral base region, the Shockley
boundary condition yields

np

n2
i

∣∣∣∣
z=0

= exp

(
qVBE
kT

)
, (7.101)

giving

Jn =
q exp (qVBE/kT )
∫wB
0

(p/Dnn2
i ) dz

. (7.102)

This is the simpler form from our extended Gummel–Poon expression where
we had allowed for variations in material parameters including effects such as
bandgap narrowing.

In the more general form, the minority carrier density of electrons in the
p-type base is

n(z) =
Jn
q

n2
i

p(z)

∫ wB

z

p

Dnn2
i

dζ, (7.103)

giving for the time constant of interest,

τB =
q
∫wB
0

n(z)dz

Jn
=

∫ wB

0

[
n2
i

p

∫ wB

z

p

Dnn2
i

dζ

]
. (7.104)

As an example of changes in τB , compare an example of constant NA, but
varying bandgap

Eg = Eg0 − qEez, (7.105)

where Ee is the magnitude of the quasi-electric field for electrons induced by alloy
grading, e.g., a change in bandgap using a linear grading at small aluminum
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mole-fractions. Eg0 is the bandgap at the emitter edge of the quasi-neutral base
region, and within this base region the bandgap change varies linearly with
position. Since the intrinsic carrier concentration varies exponentially with the
bandgap, ignoring the second-order effective mass effects, etc., we may write the
position-dependent intrinsic carrier concentration as

n2
i (z) = n2

i0 exp

(
qEez
kT

)
, (7.106)

where ni0 is the intrinsic carrier concentration associated with the bandgap
Eg0 at the emitter edge of the base quasi-neutral region. The corresponding
quantities at the collector edge are ni1 and Eg1. The current density is given as

|Jn| = −qDn
NA

n2
i0

qEe
kT

exp (qVBE/kT )

[exp (−qEewB/kT ) − 1]

=
q2EeDn
NAkT

n2
i0n

2
i1

n2
i1 − n2

i0

exp

(
qVBE
kT

)
, (7.107)

and

τB =
wBkT

qDnEe

{
1 − kT

qEewB

(
1 − n2

i0

n2
i1

)}
. (7.108)

As an example, consider a linear change in bandgap of ∆Eg across the base,
then

n2
i1 = n2

i0 exp

(
∆Eg
kT

)
, (7.109)

∆Eg = qEewB , (7.110)

and

τB =
wB

2

Dn
kT

∆Eg

{
1 − kT

∆Eg

[
1 − exp

(
−∆Eg
kT

)]}
. (7.111)

If the bandgap change is sufficiently large, then

τB =
wB

2

2Dn

(
2kT

∆Eg

)
. (7.112)

For a total change in the bandgap of 0.1 eV at 300 K, the base time constant
reduces by a factor of ≈ 2 due to the bandgap grading.

This is a simplistic view of the transport across the quasi-neutral base region.
The solution of this problem, for transport across a graded heterojunction where
the grading may be insufficient, and hence may limit the transport, is consider-
ably more complicated. As current density increases, or electrostatic potential
decreases such as in high forward bias, the alloy potential gradient term related
to ∇φCn may actually become important. At a large bandgap/small bandgap
N–p junction, this alloy field would oppose the electrostatic field. This becomes
obvious when one considers the case of p–P and p–N heterojunctions shown
in Figure 7.10. Here we have adopted the convention of denoting the smaller
bandgap material by lower case and the larger bandgap material by uppercase
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Figure 7.10: p–P (a) and p–N (b) graded heterojunctions at thermal equilibrium.

letters. Note that while there is no barrier for electron movement from the
small bandgap to the large bandgap material for the p–N junction, one exists
for the p–P case. In fact, this is used with success in double heterojunction
lasers for carrier confinement. The p–P junction has a smaller change in the
electrostatic potential as opposed to the p–N junction. In other cases, this low
electrostatic field may come about because of charge transport in the junction.
An example of this is the base–collector junction of a bipolar transistor at high
current density. It can also come about directly due to applied bias, such as in
the base–emitter junction of a bipolar transistor.

This discussion brings up another interesting question of what the appropri-
ate grading is that results in a monotonic variation of both the conduction band
and the valence band.7. Because under depletion conditions for a uniformly
doped junction the electrostatic potential changes parabolically, a parabolic
bandgap change will appear as an additional parabolic variation of the valence
band energy at low biases. Effects related to doping in this variation are shown
in Figure 7.11. However, this is only true under low bias and low current condi-
tions. When the current density increases, the forward bias results in a decreased
electrostatic potential. Then ∇ψ may become smaller than ∇Eg/q, and some of
the change in the alloy potential, which included both the electron affinity and
the bandgap effect, may begin appearing in the conduction band. This occurs
earlier in the lower doped junction because of the lower electrostatic field.

This behavior is particularly remarkable in the collector when a wide gap
heterojunction collector is employed. When such a barrier appears in the collec-
tor, large carrier storage results in the base, i.e., a larger diffusion capacitance

7We discussed this question for isotype heterojunctions in Chapter 4. The reader is referred
to D. T. Cheung, S. Y. Chiang, and G. L. Pearson, “A Simplified Model for Graded-Gap
Heterojunctions,” Solid-State Electronics, 18, p. 263, 1975 and J. R. Hayes, F. Capasso, R.
J. Malik, A. C. Gossard, and W. Wiegmann, “Optimum Emitter Grading for Heterojunction
Bipolar Transistors,” Appl. Phys. Lett., 43, No. 10, p. 949, 15 Nov. 1983.
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Figure 7.11: Effects of parabolic grading (grading length of 300 Å) in het-
erojunctions at thermal equilibrium for symmetric and one-sided junctions of
Ga1−xAlxAs/GaAs are shown in this figure. The parabolic grading occurs in the
larger bandgap n-type semiconductor. (a) and (c) show the band edge profiles
and carrier concentrations for the symmetric case. (b) and (d) show these for
a variety of doping conditions. Monotonic change in the conduction band edge
occurs for the largest doped case where the built-in field is the largest. In the
junctions with 1017 cm−3 p-type doping and 1016 cm−3 n-type doping, there
exists a small barrier which becomes more pronounced when the p-type doping
is decreased to 1016 cm−3.
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Figure 7.12: Schematic cross section of an HBT structure used for the discussion
of quasi-static characteristics. The 8 × 1017 cm−3 doped area is the wide gap
emitter region and the 1×1017 cm−3 doped area is the wide gap collector region
for those simulations in which the collector is a heterojunction. The extrinsic
base length is 0.5 µm and base width is 1000 Å. From S. Tiwari and D. J.
Frank, “Analysis of the Operation of GaAlAs/GaAs HBTs,” IEEE Trans. on

Electron Devices, ED-36, No. 10, p. 2105, c©Oct. 1989 IEEE.

exists, and consequently there is an increase in recombination and a decrease in
current gain of devices. Note that this occurs at high current densities because
that is when reduction in the electrostatic field occurs in the base–collector
junction due to injected charge.

Compound semiconductor HBTs exhibit several additional effects8 that we
have not discussed. Use of heterojunctions leads to additional phenomena, par-
ticularly at high currents, which we have also not discussed. The primary op-
erational differences are in the bias dependence of both charge transport and
storage. These differences are caused by several processes that occur in the HBT:
the injection of carriers at a varying bandgap heterostructure, the collection of
carriers at a varying bandgap heterostructure, and hot carrier and quasi-drift
field effects in the base. In addition to these primary effects, recombination at
the surface is important as a parasitic effect, while it is virtually non-existent in
silicon bipolar transistors. We will now look at these and other effects, within
quasi-static and drift diffusion approximation. Figure 7.12 shows the cross-
section of the device that we will elaborate on. Our discussion will consider

8This discussion closely follows S. Tiwari and D. J. Frank, “Analysis of the Operation of
GaAlAs/GaAs HBTs,” IEEE Trans. on Electron Devices, ED-36, No. 10, p. 2105, 1989.
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heterojunctions in the emitter as well as heterojunctions in the collector; the
former is called the single heterostructure bipolar transistor and the latter the
double heterostructure bipolar transistor. The latter usually employs a graded
junction at the collector in order to suppress inefficiencies in the transport of
injected carriers arising from any barriers.

7.3.1 Charge Transport and Storage in the Base–Emitter
Junction

The current flow through a heterojunction is considerably more complicated
than the flow through a homojunction. It depends on whether the hetero-
junction is graded or abrupt, since graded junctions can support drift-diffusion
transport throughout the junction region, while abrupt junctions are limited
by thermionic and thermionic field emission at the abrupt heterostructure. For
both the graded and the abrupt junctions, the transport depends on details of
the grading or abruptness. Graded junctions, e.g., have a changing alloy poten-
tial associated with the change in electron or hole affinity. This causes an alloy
field, ∇φA, which adds to the usual electrostatic fields and modifies the current
flow. Thus, parabolically and linearly graded junction regions exhibit differing
total fields on the carrier as it transports through the graded region. These may
be the limiting bottleneck of a transport. For the p–P graded heterojunction,
the electron is confined to the narrow bandgap region by this alloy field, while
the holes are free to move around. As mentioned, though, this phenomenon is a
function of several other factors that influence the total field and the electrostatic
potential change in the junction region. In the p–N graded heterojunction, the
electron is confined in the n-type region largely by the same electrostatic con-
siderations that apply to the homojunction. The holes, though, have both the
electrostatic force and the force due to alloy potential change confining them to
the p-type region. So, at low currents, with appropriate heterostructure grad-
ing, the built-in quasi-electric fields for electron transport remain essentially
the same as in the homojunction transistor, except for minor second-order ef-
fects related to the density of states, donor ionization energy, etc. The built-in
potentials are now different for electrons and holes. Heterostructure grading
results in an increase of the hole potential barrier by the difference in bandgap
and adjusted by the second-order effects mentioned above. The resulting sup-
pression of hole injection allows the unique design advantage of allowing higher
doping in the base while still maintaining good injection efficiency. A significant
practical result of this is a reduction in recombination in the depletion region
of the base–emitter junction even though compound semiconductors have low
carrier lifetimes due to HSR recombination. The magnitude of this suppression
is proportional to the hole suppression.

At large forward bias and current, both the electrostatic potential and the
space charge region width are reduced, leading to anomalies in transport and
storage. The anomalies occur because as the electrostatic field decreases, the
relative importance of the alloy field in the conduction band increases. Fur-
thermore, the hole suppression property of the alloy grading region becomes
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less effective as the space charge region width becomes shorter than the alloy
grading width.

In this section, we discuss the charge transport effects at the base–emitter
junction. Later on, we will expand on this to include transport effects in the
quasi-neutral base and the base–collector regions, and the charge storage effects
corresponding to them.

7.3.2 Alloy Grading, Doping Design and Transport at the
Base–Emitter Junction

From the practical standpoint of using a bipolar transistor, the central require-
ments of the design of the alloy grading at a heterojunction are maximizing the
current drive capability, maintaining the device gain, and minimizing the delays
associated with the resistance, capacitance, and transit time. The transit time
associated with the base–emitter junction is generally much smaller than the
delays associated with the base–collector junction since it is a narrow region.
This small base–emitter junction transit time will also form the basis for our
assuming instantaneous equilibrium when deriving small-signal response of the
bipolar transistor. Similarly, except at the largest forward bias, the time con-
stant associated with the charging of the base–emitter depletion capacitance is
smaller than the base–collector delays, because of the relatively large collector
area. Thus, maximization of the injection current becomes a more important
design criterion at the base–emitter junction. In a heterojunction, high currents
occur at small differences in electrostatic potential between the two sides of the
junction, i.e., at low electrostatic fields; this is the condition at which the effect
of alloy potential and alloy field would begin to dominate.

In homojunction transistors such as in silicon, high-level injection effects at
the base–emitter junction are primarily caused by a reduction in the forward
bias voltage, due to lateral ohmic drop in the base, vertical ohmic drop in the
emitter, and base push-out effect in the collector. In such transistors, secondary
effects due to majority carrier–induced drift-field are kept low by choosing an
adequate base doping level. This secondary effect is even more insignificant in
the HBT because the doping levels are even higher than those of the homojunc-
tion transistor. Homojunction transistors are designed with emitter dopings
in excess of ≈ 1020 cm−3 and base dopings exceeding ≈ 1018 cm−3 in order
to maintain sufficient injection efficiency. Since HBTs have a much higher in-
jection efficiency, they are usually designed with much smaller emitter dopings
in order to reduce the emitter capacitance and the tunneling effects associated
with heavier doping in both the emitter and the base. There is a minimum to
this emitter doping because it limits the number of minority carriers that can be
injected into the base as well as the resulting reduction in electrostatic field for
any injected carrier density. Thus, low dopings and associated low electrostatic
fields enhance the role of the opposing effect of the alloy potential and alloy
fields.

This alloy potential effect is significant not only at the emitter heterojunc-
tion, but also at the collector heterojunction. At high electrostatic fields, the
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barrier due to the difference in the bandgaps appears in the valence band, but
at low electrostatic fields (i.e., high biases) it also begins to appear in the con-
duction band. As a result, at significant forward bias, the alloy potential causes
an “alloy barrier” to the flow of carriers.

This effect, which does not exist in the homojunction case (the smaller
bandgap in the emitter causes an alloy field in the opposite direction from
that in the heterojunction), has to be suppressed to obtain the desired cur-
rent density of operation. For any current density in the base–emitter junction,
suppression of this alloy barrier effect can be assured by having a monotonic
increase in the total electron potential (electrostatic and alloy) from the emitter
to the base. This implies that the alloy field should be maintained lower than
the electrostatic field throughout the grading region. Using Poisson’s equation
and the knowledge that for a device with high injection efficiency the electron
space charge is the dominant mobile charge, this condition can be written in
the mathematical form

∫ z

w
E

′

q

εs

(
ND − Jne

qv

)
dz ≥ −dφ

A
C(z)

dz
(7.113)

anywhere in the base–emitter depletion region. The limits of integration are
from wE, the emitter edge of the space charge region or the emitter edge of the
graded region, whichever comes first, to the point z in the space charge region.
Alloy barrier suppression requires that this inequality hold for all points z in
the junction region.

By differentiating and solving forND , one obtains the following upper bound
on the minimum ND needed to guarantee the earlier inequality:

ND(z) ≥ −εs
q

d2φAC(z)

dz2
+

Jne
qv(z)

. (7.114)

Lower values for ND can in fact be sufficient if the space charge region is wider
than the grading length, as will be discussed later in connection with the base–
collector junction. On the right hand side of this equation, the first term is asso-
ciated with the alloy barrier, and the second term is simply the concentration of
mobile carriers in the depletion region. Although the first term is readily deter-
mined, the carrier concentration in a depletion region does not yield to analytic
solution except in special cases such as the metal–semiconductor junction. In
the situation of interest—high current density and substantial degeneracy—the
carrier mobility and diffusivity are non-linearly dependent on the carrier density,
the alloy composition, the quasi-electric field, and the doping concentration. To
ascertain the practical implications of this constraint, we consider the case of
a parabolically graded, uniformly doped junction, where the mole-fraction u(z)
for parabolic grading is given by

u(z) = uf − uf

(
z + z0
z0

)2

for − z0 ≤ z ≤ 0. (7.115)

Here the origin is taken at the base–emitter junction, z0 is the grading length,
and uf is the final mole fraction in the parabolic grading. Note that the largest
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alloy field for this parabolic grading occurs at the junction (z = 0). Using
φAC(z) = γu(z) for the alloy potential of Ga1−xAlxAs relative to GaAs, and this
parabolic grading, gives

ND ≥ εs
q

2γuf
z2
0

+
Jne
qvmin

(7.116)

as the minimum value for a uniform ND in order to maintain proper hetero-
junction operation at high current density. Here vmin is the minimum carrier
velocity in the graded region.

Since the Jne/vmin term is strongly dependent on the base–emitter junc-
tion bias, numerical simulations must be used to clarify the importance of the
individual terms. This is quite illuminating in itself—this velocity is the net
particle velocity resulting from drift-diffusion effects; in high fields such as at
the base–collector junction, it is close to the saturation velocity, but at low
fields such as in a forward biased p–n junction, it can be a lot smaller since
the carrier concentrations are very large. Representative results of conditions
in forward biased operation for the conduction band edge and the velocity are
shown in Figure 7.13. Note that the velocities are orders of magnitude smaller
than the saturated velocity. This is, however, not necessarily at odds with our
assumption of ignoring the related time constant. The space charge region is
very small compared to all other dimensions, the quasi-neutral base region, and
particularly the base–collector junction region, and hence we may ignore the
associated time constant. Returning to the practical implications of constraints
related to preventing an alloy potential–related barrier, the simulations show
that for a Ga1−xAlxAs/GaAs junction with parabolic alloy grading of 0.3 over
300 Å, the contributions of the two terms are approximately equal at a current
density of 105 A.cm−2. Because of the low velocity of injected electrons in the
forward biased junction, emitter dopings exceeding 8×1017 cm−3 are needed in
order to assure operation in the 105 A.cm−2 range.

Recall our discussion of Figure 4.25 which showed the behavior of a 2×1017

and a 8 × 1017 cm−3 doped n-type emitters as a function of forward bias. The
lower doped emitter device showed an alloy barrier at 1.4 V forward bias, while
the higher doped device did not. Clearly, an alloy barrier such as this can be
expected to reduce the current which can be injected into the base. In this
particular example, the current density through the device with 2 × 1017 cm−3

emitter doping is only ≈ 1.6 × 104 A.cm−2 at 1.4 V forward bias, while it is
≈ 6 × 104 A.cm−2 in the higher doped emitter device.

The effects of this alloy barrier and its emitter doping dependence are shown
more completely in the device characteristics plotted in Figure 7.14, which shows
the Gummel plots for the two emitter dopings and plots the excess voltage (i.e.,
the forward bias voltage needed in excess of the extrapolated low current expo-
nential characteristics) and the current gain in the absence of surface recombi-
nation.

The low current fit of the Gummel plot shows an increase in current den-
sity varying at ≈ 60 mV/decade. This is a characteristic of the exponential
dependence of the collector current on the base–emitter voltage. So long as the
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Figure 7.13: Conduction band edge (a) and the net velocity of carriers (b) in
forward biased Ga1−xAlxAs/GaAs n–p junction. Forward biases of 0.9 V, 1.1 V,
and 1.3 V are shown. The metallurgical junction is at 0.35 µm with the emitter
region extending from 0 to 0.35 µm.
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Figure 7.14: Gummel plots are shown in (a) for single heterojunction devices
with emitter doping of 8×1017 cm−3 and 2×1017 cm−3 and parabolic grading.
The collector current density is identified by JC and the base current by JB .
The figure also shows a low current fit to the collector current density plot.
This fit is used to derive the excess voltage shown in (b), the voltage beyond
the low current extrapolation, of the base–emitter bias. From S. Tiwari and D.
J. Frank, “Analysis of the Operation of GaAlAs/GaAs HBTs,” IEEE Trans. on

Electron Devices, ED-36, No. 10, p. 2105, c©Oct. 1989 IEEE.
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electrostatic barrier between the emitter and the base is directly modulated by
the applied base–emitter bias, the carrier density injected in the base can be
related by the exponential factor related to this bias. This is the origin of the
[exp(qVBE/kT ) − 1] term in the Gummel–Poon model. A necessary condition
for this direct modulation is the requirement that parasitic voltage drops such
as ohmic drops be negligible, and for the graded junctions that the recombi-
nation effects be small enough that the quasi-Fermi levels are relatively flat.
An interesting aside is the nature of low current characteristics in abrupt base–
emitter heterojunctions. Here, since the injection mechanism is thermionic in
most instances, it is naturally related by the exponential factor and hence the
≈ 60 mV/decade characteristic slope at 300 K. In the calculations of Figure 7.14,
the surface recombination is set to zero. The rapid increase in excess voltage
shows the onset of saturation in current. Note the larger deviation from the low
current extrapolation in the lower doped device. This device has significantly
smaller current handling capability. This is clearly illustrated in the lower part
of Figure 7.14, where the rapid increase in excess voltage occurs at current den-
sities which are ≈ 5 times lower in the lower doped device. The higher current
gain of the lower doped device at lower current densities is a result of lower
space charge region recombination.

A lower alloy field can be achieved at the junction by employing linear grad-
ing instead of parabolic grading. However, in this case the alloy field is larger at
the emitter end of the grading region where the electrostatic fields are even lower.
The barrier now appears at the emitter edge of the grading region. Figure 7.15
demonstrates this by plotting the conduction band edge and the quasi-Fermi
level at VBE = 1.5 V for a linearly graded and a parabolically graded junction
for 8× 1017 cm−3 emitter doping. The linearly graded junction shows a barrier
to injection at the emitter end of the grading region. In fact, this barrier to
injection also exists at lower bias currents; Figure 7.16 shows an example at
1×104 A.cm−2 current density. One consequence of this barrier is that the cur-
rent carried by the linearly graded device is less than that in the parabolically
graded device for the same bias. A comparison between parabolically graded
and linearly graded devices shows that the limiting current of the parabolically
graded device is about a factor of three higher than that of the linearly graded
device. But, it is important to recognize that the barrier due to alloy grading
potential results in a dynamic resistance that restricts the current flow through
the device.

7.3.3 Base–Emitter Capacitance

The substantially faster transport in the base of the compound semiconductor
HBT due to high diffusivity of electrons (i.e., a small base time constant τB) in-
creases the relative importance of the emitter capacitance. Since the devices are
operated at high currents and in large forward bias, this capacitance has to in-
clude both the immobile charge component (i.e., the depletion capacitance) and
the mobile charge component (i.e., that due to the charges which are carrying the
current—primarily electrons, but also holes at sufficiently large forward biases).
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Figure 7.15: Conduction band edge (Ec) and quasi-Fermi level for electrons
(ξn) at a base–emitter junction bias of 1.5 V for parabolic and linear grading
in a single heterojunction transistor. The junction is located at 0.35 µm. The
current density is ≈ 3 × 105 A.cm−2 through the parabolically graded device,
and ≈ 2.3 × 105 A.cm−2 through the linearly graded device. From S. Tiwari
and D. J. Frank, “Analysis of the Operation of GaAlAs/GaAs HBTs,” IEEE

Trans. on Electron Devices, ED-36, No. 10, p. 2105, c©Oct. 1989 IEEE.
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Figure 7.16: Conduction band edge and electron quasi-Fermi level for a linearly
graded base–emitter junction biased at 0.9 V, 1.1 V, and 1.3 V of forward bias.

The capacitances were introduced during our discussion of the Gummel–Poon
and Ebers–Moll models. One limit of the capacitance is at the very lowest biases
where the effect of mobile charge can be ignored, i.e., the limit of no diffusion ca-
pacitance with a depletion approximation for the junction space charge region.
This capacitance is simply the parallel plate capacitance. Another limit is the
capacitance associated with near flat-band conditions. This is the capacitance
with the Debye length as the characteristic length scale encountered during our
discussion of MIS structures in the absence of current flow. Transport of carri-
ers and the presence of both mobile and immobile charge results in deviations
from these two limits. Under active bias, and especially bias where the current
density is large, we must again apply numerical techniques, using charge parti-
tioning and bias perturbation. The capacitance can then be derived from the
change of total charge in steady-state on the emitter side of the junction as a
result of the change in bias. Such a perturbation technique can not separate the
mobile and immobile charge contributions because they cannot be determined
independently. The injected hole charge (which can be separately considered)
is generally quite small and gives rise to a negligible diffusion capacitance. So,
in such a technique, we can separate the depletion and diffusion capacitance
(due to electron storage) in the base. The depletion region charge is the same
as the net charge on the emitter side, and the storage charge is calculated by
the integration of the increase in electron population in the base region. In the
calculation of these capacitances in the bipolar transistor, the partitioning of
the charge occurs quite naturally because of the p–n junctions, and hence is not
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Figure 7.17: The total capacitance in fF.µm−2 at the base–emitter junction as
a function of the applied base–emitter voltage. The base–collector voltage is
0 V. The alloy grading at the junction is parabolic, and the doping in emitter is
8× 1017 cm−3, and that in the base is 5× 1018 cm−3. Capacitances for a single
heterojunction device and a double heterojunction device are plotted. From S.
Tiwari and D. J. Frank, “Analysis of the Operation of GaAlAs/GaAs HBTs,”
IEEE Trans. on Electron Devices, ED-36, No. 10, p. 2105, c©Oct. 1989 IEEE.

subject to the inaccuracies that are natural to this approach. We now analyze
the capacitance problem in the presence of heterostructure grading and high
currents.

Figure 7.17 plots the total capacitance (depletion and diffusion) of the base–
emitter junction for a single and a double heterojunction transistor. Since hole
injection is significantly smaller than in the homojunction transistor, this ca-
pacitance is primarily determined by the depletion region thickness and the
electron space charge in the depletion region. Both of these are in turn sensitive
to the behavior of the potential in the presence of this injected charge. These
junction characteristics for the single heterojunction device are illustrated in
Figure 7.18, which shows the conduction band edge energy, the electron den-
sity, the hole density, and the total charge density versus depth for forward bias
voltages of 0.8, 1.1, and 1.4 V. Note that the hole density is, indeed, very small
because of the high injection efficiency. Even at a bias of 1.4 V, where the de-
pletion region has become smaller than the grading region, the contribution of
hole density continues to be small except in a region a few 10’s of Å wide at the
junction. Only at extremely low emitter dopings does the alloy barrier effect
become large enough that hole injection becomes significantly important.
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Figure 7.18: Plots of the conduction band edge energy (a), the electron density
(b), the hole density (c), and the total charge density (d) at the base–emitter
junction (located at 0.35 µm) for a single heterojunction device, with bias vary-
ing from low-level injection conditions (0.8 V) to moderately high-level injec-
tion conditions. From S. Tiwari and D. J. Frank, “Analysis of the Operation of
GaAlAs/GaAs HBTs,” IEEE Trans. on Electron Devices, ED-36, No. 10, p.
2105, c©Oct. 1989 IEEE.
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The behavior of the capacitance—first a rapid increase and then a drop-off
at large forward bias—is very similar to that observed in homojunction transis-
tors, with the maximum capacitance limited by Debye lengths at near flat-band
conditions. As the applied bias becomes larger and the junction reaches or
exceeds flat-band, the ability of the applied bias to modulate the current de-
creases, leading to a decrease in the charge modulation and, hence, a decreasing
capacitance. As in the homojunction transistor, large mobile charge in the space
charge region and voltage drops in the quasi-neutral regions both contribute to
the decreasing efficacy of the applied bias. In the HBT, the alloy barrier also
works to decrease the capacitance at high biases, by decreasing the modulation
of the depletion region width. At high bias, the increasing voltage is accommo-
dated by the relatively poor injection characteristics of the alloy barrier, and
does not result in a large change in depletion region charge. Another way of
viewing this is that the space charge region, under large forward bias conditions,
has a strong conductivity modulation which limits the low of current. Indeed,
if one were to continue increasing this bias even further, the charge effect would
turn inductive because of this conductivity modulation.

HBTs employ lower emitter dopings than homojunction transistors because
of their higher injection efficiency. The low doping gives rise to a lower emit-
ter capacitance overall, and the effect of the alloy barrier at high bias is to
reduce the peak capacitance even further. An increase in emitter doping leads
to higher current drive capability, but causes higher capacitance throughout the
bias range. In particular, the peak capacitance increases as a function of doping,
and the peak occurs at a higher bias voltage because of a larger built-in voltage
and a reduced effect of the alloy barrier.

The double heterojunction device capacitance–voltage curve in Figure 7.17
has a larger peak capacitance than the single heterojunction device. At these
high bias levels—as we will show later, a large storage of electrons takes place in
the quasi-neutral base. The increase in base charge influences the emitter injec-
tion behavior because a larger charge at the base–emitter junction also implies a
larger space charge in the emitter depletion region. This increase in space charge
causes most of the increase in the base–emitter capacitance at larger forward
voltages, and also causes the barrier effect to be more prominent in the base–
emitter depletion region. The barrier modulation and the increase in majority
carrier concentration due to the charge storage both lead to a larger hole dif-
fusion capacitance for the double heterojunction device, which also contributes
to the observed increase at sufficiently high bias.

7.3.4 Electron Quasi-Fields in Single Heterojunction Bipo-
lar Transistors

We now consider the effect of alloy potential in the heterojunctions by discussing
the electron quasi-fields, which include the effects of the electrostatic and the
alloy components. Figure 7.19 shows the negative of the electron quasi-field as
a function of applied forward bias at the base–emitter junction for the HBT
being discussed. In this figure, the base region can be identified by the region
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Figure 7.19: Quasi-field for an electron at the base–emitter junction, in the base,
and at the base–collector junction as a function of base–emitter junction bias
for the single heterojunction HBT. The base is 0.1 µm wide, and the different
plots are shifted to allow a perspective view. The scales of distance and field are
located in lower left corner. The base can be identified as the region of near-zero
electric field. From S. Tiwari and D. J. Frank, “Analysis of the Operation of
GaAlAs/GaAs HBTs,” IEEE Trans. on Electron Devices, ED-36, No. 10, p.
2105, c©Oct. 1989 IEEE.
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of constant low electric field; the region of high field on the left is associated
with the emitter, and the one on the right with the collector. We discuss the
field variation in the base–collector junction in the next section, together with
the differences between single and double heterojunction collectors. At low
biases, the quasi-field varies nearly linearly with distance and is dominated by
electrostatic considerations that are valid for depletion approximation. As the
bias increases, the quasi-field decreases and the depletion region shrinks, until
at a bias of about 1.3 V most of the region lies inside the base–emitter alloy
grading region. At this bias, the alloy field dφAC/dz acts to substantially reduce
the electrostatic contribution to the net field. At higher biases the quasi-field,
which is the sum of the electrostatic and alloy fields, decreases and even changes
direction due to the influence of the alloy field (this is quite significant at the
1.5 V bias). The negative spikes in the quasi-field at the beginning and end of
the grading region for 1.3 V bias and above are due to the abrupt changes in
d2φAC/dz

2 at the grading region edges, which cause short range breakdown of
quasi-neutrality.

Although the quantitative magnitudes of the various emitter–base effects we
have described can be changed by varying the modelling parameters, such as
the diffusivity, mobility, etc., and their dependence on alloy composition, the
qualitative variations remain the same. The largest difference in base–emitter
junction behavior between HBTs and homojunction bipolar transistors is the
influence of the alloy field in the junction region.

7.4 High Current Considerations of the Base–

Collector Junction

We have looked at, so far, the high current and high forward bias effects in
the base–emitter junction; next we consider the base–collector junction. Our
discussion of the base–emitter junction dwelt on designing a junction capable of
injecting large currents. We also need to assure that the device is capable of col-
lecting large currents with low storage and transit time to assure a desired speed
or frequency characteristic. The following analyzes these properties for hetero-
junction collectors, and provides comparisons with homojunction collectors. In
particular, we discuss the alloy barrier effects that occur in heterojunction col-
lectors at high current densities, and the two-dimensional storage and transport
characteristics which result consequently.

7.4.1 Barriers and their Influence in Heterojunction Col-
lectors

Under low current operation, the homojunction theory of collector transport
applies quite well to the heterojunction transistor. Since hole transport at the
collector does not play a significant role, the junction being usually reverse
biased, a heterojunction collector has little effect on the transport physics and
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the collector is an efficient transporter of electrons for the graded collector. In
an abrupt collector, a barrier at the junction limits the flow of carriers since
tunneling or thermionic emission occurs at the barrier. Both tunneling and
thermionic emission are barriers to the flow of electrons, as opposed to the
barrier-less situation of a graded collector.

In homojunction transistors, at medium and high current densities, various
effects are known to become important, e.g., the Kirk effect (base push-out),
and the Webster effect (base field and conductivity modulation). The Kirk
effect is related to the compensation of the background immobile charge density
by the mobile charge density; this results in a net decrease of the total charge
density in the space charge region, and hence initially a broadening of the space
charge region and ultimately a pushing out of the quasi-neutral base region in
to the metallurgical junction region. At these high current densities, the newer
collecting region occurs at the higher doped contact region of the collector, a
region commonly referred to as the sub-collector region. The Webster effect,
another high current effect, results from an increase in the minority carrier
charge density in the quasi-neutral base region to a magnitude comparable to
the majority carrier density. As discussed in Chapter 4 for p–n junctions under
high injection, the consequences of this excess charge are excess potential drops.
It also causes an increase in charge storage, which in turn causes an increased
non-linearity from the ideal exponential modelled behavior in the Gummel–
Poon analysis. For compound semiconductors with their low lifetimes, it would
also result in a decrease in current gain of transistors. The Webster effect is,
however, negligible in heterostructure bipolar transistors since the base doping
is relatively large.

However, the Kirk effect remains equally important in HBTs. In addition, in
an HBT with a heterojunction collector, the effect of the alloy barrier appears,
and can be more important than the Kirk effect.

In discussing the existence of alloy barriers at high current in the emitter
region of the HBT, we alluded to the importance of this effect in the heterojunc-
tion collector. The nature and origin of the effect in the collector are essentially
the same as in the emitter: at low currents the alloy potential difference appears
in the valence band, resulting in the usual hole-retarding barrier and field, while
at higher currents it appears partially in the conduction band as a barrier to
the flow of the minority carriers. The consequences of this barrier are excess
storage of charge in the base and thus an increase in the associated capacitance,
a decrease in the device current gain due to recombination, and a saturation
in the collector current. The first of these has serious consequences because
storage is exponentially related to the potential barrier. These effects worsen as
the collector-base junction becomes forward biased, and thus limit the minimum
usable value of VCE in circuit applications.

Figure 7.20 shows two perspective plots of the conduction band edge energy
in the base region of a double heterojunction transistor at VBE = 1.3 V and
1.5 V, with VBC = 0 V. The region plotted extends 500 Å into both the emitter
and the collector. At the low bias condition, the potential profile is similar to
that of a well-behaved homojunction bipolar transistor. However, at the higher
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Figure 7.20: A surface plot of the conduction band edge in the base and at the
junctions with the emitter and the collector for a forward bias voltage of 1.5 V
and 1.3 V for a double heterojunction device. The emitter junction is located
in the lower right, and the collector is the broader region in the background.
The base is the constant energy region. The collector heterojunction is parabol-
ically graded. From S. Tiwari and D. J. Frank, “Analysis of the Operation of
GaAlAs/GaAs HBTs,” IEEE Trans. on Electron Devices, ED-36, No. 10, p.
2105, c©Oct. 1989 IEEE.
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injection voltage, a barrier due to both the alloy potential and the electron space
charge appears at the collector junction. This barrier is the largest where the
current density is the largest, i.e., opposite the emitter junction. The barrier
is lowered towards and in the extrinsic part of the device because the current
density is lower in those parts. There is a significant spreading of the electron
flow towards the extrinsic base–collector junction area in this device because
the alloy barrier varies proportionally with current density.

This consequence of the alloy barrier is a form of collector current spreading
effect. The emitter crowding remains low in HBTs because the base doping is
high. The spreading of the current to the extrinsic region results in an increased
storage of carriers in the extrinsic part of the device. Before quantifying the
magnitude of the storage as a result of this, we point out the serious consequence
of this in a double heterojunction bipolar transistor where a wider gap junction
is buried in the extrinsic base collector region. Such transistors are of some
interest since they confine the flow of carriers in the graded heterojunction
region and hence result in a symmetrical operation of the transistor at low
current densities. Figure 7.21 shows the same two dimensional band edge plots
as in Figure 7.20, except that now there is a buried extrinsic wider gap base–
collector junction. The large barrier on the left is a result of the extrinsic p-type
base region extending into the collector. This barrier, which is approximately
the bandgap difference, is larger than the alloy barrier formed at high currents.
The current is forced to transport to the collector in the intrinsic part, leading
to a larger storage in the intrinsic base region, and also in the extrinsic base
region due to diffusion of carriers. This transistor has even worse minority
carrier storage and current saturation than the simpler double heterojunction
bipolar transistor.

Figure 7.22 provides a comparison of the base storage effects in heterojunc-
tion and homojunction collector devices. Each figure plots the electron concen-
tration along a lateral cross-section at the middle of the base for applied biases
varying from 1.0 V to 1.6 V. The storage behavior is similar for the two devices
at low biases (up to 1.4 V of bias), with an exponential decay length of ≈ 850 Å
that is determined primarily by the base width of the device (1000 Å). At high
biases, the homojunction collector device shows only the limitations of the in-
jection process and maintains the exponential decay length. The heterojunction
device, however, develops a much longer, non-exponential decay characteristic,
which is limited by the designed spacing of 0.5 µm between the base ohmic
contact and the intrinsic base region. Thus, the increased storage in the het-
erojunction collector bipolar transistor occurs both in the intrinsic and in the
extrinsic part of the device.

The magnitude of this storage depends exponentially on the height of the
barrier between the base and the collector. As in the emitter, the height of this
barrier can be controlled by the use of doping, as discussed below. Alternately,
since a substantial portion of the barrier is due to the alloy potential, one could
reduce the base charge storage by reducing the AlAs mole-fraction uf , and hence
the alloy potential. The trade-off in so doing is that there will be more hole
injection. This trade-off could be improved by finding and using a different
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Figure 7.21: A surface plot of the conduction band edge in the base and at the
junctions with the emitter and the collector for a forward bias voltage of 1.5 V
and 1.3 V for a double heterojunction device that has a buried wide gap p-type
region in the extrinsic region. Note that compared to a double heterojunction
bipolar without a buried wide gap p-type region, there is a decrease in the
effective collector area because electrons which diffuse out into the extrinsic
base region can not be collected. From S. Tiwari and D. J. Frank, “Analysis
of the Operation of GaAlAs/GaAs HBTs,” IEEE Trans. on Electron Devices,
ED-36, No. 10, p. 2105, c©Oct. 1989 IEEE.
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Figure 7.22: Electron concentration at a cross-section in the middle of the base,
as a function of bias for a single heterojunction (a) and a double heterojunction
device (b). The figures differ at the highest biases where the tail is much larger
in the double heterojunction device (≈ diffusion length) than in the single het-
erojunction device (≈ base width). From S. Tiwari and D. J. Frank, “Analysis
of the Operation of GaAlAs/GaAs HBTs,” IEEE Trans. on Electron Devices,
ED-36, No. 10, p. 2105, c©Oct. 1989 IEEE.
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semiconductor alloy system in which the alloy potential conduction band–to–
valence band ratio φAC/φ

A
V is smaller.

A comparison between the size of the alloy barrier effect and the size of the
Kirk effect (electron space charge barrier) can be obtained by considering the
collector junction version of Equation 7.114. If one assumes a base doping much
higher than the collector doping, constant collector doping, parabolic grading,
and a space charge region thickness W greater than the grading length z0, then
one can approximately solve the collector version of Equation 7.114 for ND
(rather than differentiating it as done for the base–emitter junction) to obtain

ND >
εs
q

2γuf
z0W (ND, VBC)

+
JC
qv
. (7.117)

Here, v = 〈1/v(z)〉−1
is the harmonic mean of the carrier velocity in the col-

lector, and W depends on the doping and the bias voltage. This is a more
relaxed requirement than that for the emitter, especially when the depletion
region extends significantly farther than the grading region into the collector.
If one further assumes that JC/v is constant, one can evaluate W and solve for
ND explicitly,

ND >
εs
q

2γ2u2
f

z2
0 (−VBC + ψj0 + γuf/q)

+
JC
qv
, (7.118)

where ψj0 is the built-in potential. To illustrate the characteristics of this
constraint, we consider a specific example. For a current density of JC =
1×105 A.cm−2, a mean velocity equal to the saturated velocity of 1×107 cm.s−1,
γuf = 0.24 V, VBC = 0 V, ψj0 = 1.4 V, and a parabolic grading length z0 =
300 Å, at least some barrier appears at all doping levels below ≈ 1.2×1017 cm−3.
The second term is 6.2 × 1016 cm−3, and is due to the electrostatic effect from
the mobile charge (the Kirk effect). The first term is due to the alloy grading
and requires a compensation of at least 5.4 × 1016 cm−3 for this bias. Thus,
the two effects, Kirk and alloy barrier, are approximately equal for this set of
conditions. Since the doping requirement for a homojunction collector omits
the first term, it would be about a factor of two lower for these conditions. On
the other hand, for a heterojunction collector, the doping required by the first
term increases as the maximum forward collector–base bias at which the barrier
must be suppressed increases, until, W < z0, when this analysis breaks down.

Choosing the grading in the collector requires slightly different considerations
than those in the forward biased base–emitter junction. Most high speed circuits
are designed so that the base–collector junction is not forward biased far enough
that W < z0 during operation. Hence, the electrostatic fields at and near the
junction are larger than in the base–emitter junction, and the mobile charge
moves significantly faster than in the emitter. As a result, we obtain the lower
doping requirement in this case. Thus, designing junctions that do not show
barrier effects is easier at the collector than at the emitter. Heterojunction
collectors with linear grading that do not have alloy barriers are also possible,
since for linear grading the grading field constraint occurs at the collector edge of
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the grading region. One may obtain the following relation for a linearly graded
region:

ND >
εs
q

γuf
z0(W (ND , VBC) − z0)

+
JC
qv
. (7.119)

Solving this equation for the doping gives a much more complicated depen-
dence on the alloy grading parameters and the bias than for parabolic grading.
Typically there is only a limited range of ND for which the inequality can be
satisfied, and if the bias is increased in the forward direction, the size of the
range decreases until it vanishes and the inequality can no longer be satisfied.
Typically, also, the minimum ND that satisfies the equation (when there is one)
will be somewhat larger than for parabolic grading.

7.4.2 Collector Electron Quasi-Fields

In analyzing the electron quasi-electric fields in the collector, we first consider
the homojunction collector HBT. The field in the base–collector region decreases
as the current density increases (due to the space charge of the electrons in
the collector space charge region), until finally base push-out occurs (the Kirk
effect). This push-out can actually be seen in the hole concentration, a reason
why it is called base push-out since it extends the quasi-neutral region. This is
shown in Figure 7.23 for both the single and the double heterojunction devices
at 1.4 V and 1.5 V forward base–emitter bias. In the double heterojunction
device, the holes are not significantly injected into the collector, even at high
current density, but in the single heterojunction device, there is substantial hole
injection at the higher current density (1.5 V) because of junction debiasing
and the absence of a hole barrier. Thus, at the higher current density (1.5 V
emitter–base bias), the single heterojunction device has an aiding field at the
collector junction due to electrostatic considerations, followed by a decrease to
low values because of the Kirk effect. Finally the field increases again near the
sub-collector where the donor density is higher.

Figure 7.24 shows the variation in the electron quasi-electric field for a double
heterojunction HBT in the base and the junction regions surrounding it. The
collector junction behavior is very different from that of the single heterojunction
device. Here, at high forward base–emitter bias, the quasi-electric field goes
through a reversal in direction, and there is no high field region at the sub-
collector. There are two major differences. First, there is a valence band alloy
barrier which prevents injection of holes into the collector, thus allowing a rapid
decrease in electrostatic field at the junction in the presence of large electron
charge. Second, there is the conduction band alloy barrier. The influence of this
electron alloy field, together with the decrease in the electrostatic field, results in
the retarding field to electron motion that appears at the base–collector junction
in Figure 7.24 for base–emitter biases of 1.4 V and 1.5 V. Unlike the situation
in the homojunction collector, base push-out does not occur in this device at
the highest current density bias point (1.5 V). This is so both because the
hole injection is blocked and because the electron alloy barrier diminishes the
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Figure 7.23: Hole concentration in the base and into the emitter and collector
regions as a function of an applied bias of 1.4 V and 1.5 V for a single het-
erojunction (S) and double heterojunction (D) device. The base extends from
0.35 µm to 0.45 µm. The single heterojunction shows additional hole storage
in the collector depletion region. From S. Tiwari and D. J. Frank, “Analysis
of the Operation of GaAlAs/GaAs HBTs,” IEEE Trans. on Electron Devices,
ED-36, No. 10, p. 2105, c©Oct. 1989 IEEE.
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Figure 7.24: Quasi-field for an electron at the base–emitter junction, in the
base, and at the base–collector junction as a function of base–emitter bias for
the double heterojunction HBT. Field for a single heterojunction HBT was
plotted in a previous figure for identical conditions. The base is 0.1 µm wide,
and the different plots are shifted to allow a perspective view. The scales of
distance and field are located in the lower left corner. From S. Tiwari and D. J.
Frank, “Analysis of the Operation of GaAlAs/GaAs HBTs,” IEEE Trans. on

Electron Devices, ED-36, No. 10, p. 2105, c©Oct. 1989 IEEE.
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numbers of electrons entering the collector depletion region by a factor between
1.5 and 2.

7.4.3 Diffusion Capacitances

We have described qualitatively the additional storage in the base that results
from the alloy barrier in the heterojunction collector. Figure 7.22 showed the
electron charge distribution in the middle of the base under various forward bias
conditions. It is useful to show the stored minority carrier charge in the base
and quantify it as a time constant in order to account for the two-dimensional
nature of the effect and also for purposes of comparison. Figure 7.25 shows
the integrated stored electron density (in cm−2) and the base time constant
(obtained by dividing total stored charge in the base by the collector current)
for both the heterojunction collector and the homojunction collector. The stored
charge in the base begins to differ substantially for the heterojunction collector
case at bias levels exceeding 1.4 V (corresponding to a current density of 6 ×
104 A.cm−2). The charge storage can differ by as much as a factor of two at
the highest bias conditions. The time constant associated with the base charge
storage in the heterojunction collector is ≈ 3 ps at low currents, decreases with
more forward bias because of minute aiding drift fields (the Webster effect), and
then increases to greater than 12 ps under conditions of extreme forward bias
where current densities reach ≈ 1×105 A.cm−2. Under these conditions the base
time constant certainly becomes a significant portion of the total time constant
of the device. In the homojunction collector device, the low and medium current
behavior is similar to that of the heterojunction collector device, and increases
to ≈ 6 ps at high currents (current densities ≈ 4×105 A.cm−2) due to the Kirk
effect.

While the heterojunction collector leads to an increase in the base storage,
it continues to suppress the hole injection. The homojunction collector does
not have a hole alloy barrier, and hole injection into the collector does become
important in these devices. Figure 7.23 showed a comparative hole distribution
profile at the base–collector junction for the homojunction and the heterojunc-
tion collector case. It can be seen in this figure that ≈ 4×1011 cm−2 of holes are
stored in the collector in order to sustain a current density of 2.5× 105 A.cm−2

(an additional time constant of τ ≈ 0.3 ps). Thus, while the heterojunction
collector bipolar transistor had an increase in diffusion capacitance component
associated with the electron storage in the base, the homojunction collector
device has a hole storage component associated with the collector.

7.4.4 Current Gain Effects

The increase in base charge storage reduces the gain of HBTs because of in-
creased base recombination current. Thus, in addition to both surface and bulk
recombination effects and their voltage-dependent features, the HBT shows an
anomalous decrease in gain at high current density when heterojunction collec-
tors are used. This decrease is mostly due to quasi-neutral base recombination.
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Figure 7.25: Part (a) shows total electron density in the base, and part (b)
shows the base time constant as a function of applied forward bias at the base–
emitter junction for a single heterojunction and a double heterojunction device.
From S. Tiwari and D. J. Frank, “Analysis of the Operation of GaAlAs/GaAs
HBTs,” IEEE Trans. on Electron Devices, ED-36, No. 10, p. 2105, c©Oct.
1989 IEEE.
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Figure 7.26: Excess voltage and current gain derived from Gummel plots for
parabolic grading at an emitter doping of 8 × 1017 cm−3 and collector dopings
of 1×1017 cm−3, 3×1017 cm−3, and 6×1017 cm−3 for a double heterojunction
transistor. The rapid increase in excess voltage shows the onset of saturation in
current. It occurs together with a decrease in gain and an increase in storage
in the quasi-neutral base. From S. Tiwari and D. J. Frank, “Analysis of the
Operation of GaAlAs/GaAs HBTs,” IEEE Trans. on Electron Devices, ED-
36, No. 10, p. 2105, c©Oct. 1989 IEEE.

However, the base charge storage also affects the transport of the carriers to the
surface. Hence, surface recombination should also be increased slightly at high
current densities by the presence of a heterojunction collector. In the absence
of excess storage, the device gain continues to improve with current.

Figure 7.26 shows the current gain and the excess voltage at various collector
dopings. The decrease in gain at ≈ 1.4 V for the 1× 1017 cm−3 doped collector
occurs because of increased base charge storage. Along with the increase in
base current that this implies, there is a saturation of the collector current. The
saturation of collector current is reflected in the rapid increase in the excess
voltage as the current gain drops. The removal of this effect at 6 × 1017 cm−3

is correlated with the suppression of the alloy barrier effect. The saturation of
the collector current density occurs at factors of six greater current density in
the higher doped collector structure.

7.5 Generation and Recombination Effects

Recombination is a more important parasitic effect in GaAs HBTs than in sil-
icon bipolar transistors because of the significantly lower bulk recombination
lifetime and higher surface recombination velocity of GaAs. At moderate and
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low doping levels, the bulk recombination life time is dominated by deep trap re-
combination centers (centers that can capture electrons and holes nearly equally
efficiently), and lifetime can be as much as three orders of magnitude lower than
in silicon at similar doping levels. At higher doping levels, the radiative lifetime
may predominate , and since GaAs is a direct bandgap material this lifetime
can be very low—even reaching 100’s of pico-seconds. In silicon, the lifetime is
also low at high doping levels, because of Auger recombination. Surface recom-
bination is higher for GaAs than for Si because the unpassivated GaAs surface
contains a significant number of interface states (1013cm−2 and higher), which
lead to mid-gap pinning of the Fermi level at the surface, as well as recombina-
tion. As a result of the poor lifetime and surface pinning, the current–voltage
behavior of p–n junctions and HBTs deviates substantially from the ideal due to
recombination. We emphasize here the bulk and surface recombination behavior
of graded junction devices at high surface recombination velocities.

The non-idealities in current–voltage behavior are introduced by generation
and recombination of carriers at HSR centers in the space charge region of
the p–n heterojunctions and at the interface states at the surface of the semi-
conductors. Figure 7.27 shows the relative recombination rate of these regions
compared to the quasi-neutral recombination by plotting the volume recombina-
tion density of our HBT example. This figure shows that the electrons injected
into the base recombine copiously at the surface of the GaAs base, and at the
base–emitter junction, and there are holes injected from the base that recombine
at the emitter surface. Of these, the base surface and the p–n junction recom-
bination are the dominant components. The bulk recombination occurring in
the quasi-neutral region is actually the smallest and is generally dominated by
the surface recombination in this unpassivated device.

The bulk recombination taking place in the base–emitter space charge region
contributes to degrading the injection efficiency. The non-idealities correspond-
ing to these recombinations appear in the form of multiple exponential regions
in the forward characteristics, and as non-saturating current in the reverse char-
acteristics. The forward characteristics also have non-idealities due to the het-
erojunction injection phenomena, which we have considered, but these occur
only at high currents. At low currents the generation–recombination effects
dominate.

7.5.1 Bulk Effects

We first consider the bulk effect—the recombination taking place in the space
charge region and in the quasi-neutral region. The former has been studied ex-
tensively for homojunctions. Simple theories that take into account the HSR re-
combination by integrating the net recombination rate in the junction show that
it results in a “2kT” dependence, i.e., varying as exp(qV/2kT ). We had treated
this example in the discussion of Gummel Poon models as applied to p–n junc-
tions in Chapter 4. The pre-exponential term of this exponential dependence is
proportional to the volume of the recombination region (i.e., proportional to the
depletion width), which has a weak voltage dependence. The “2kT” exponen-
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Figure 7.27: Perspective plot of volume recombination current density for a
surface recombination velocity S of 2 × 105 cm.s−1, for the HBT example of
earlier figures. The base-to-emitter forward bias voltage is 1.3 V and base-to-
collector voltage is 0 V. From S. Tiwari, D. J. Frank, and S. L. Wright, “Surface
Recombination in GaAlAs/GaAs Heterostructure Bipolar Transistors,” J. of

Appl. Phys., 64, No. 10, p. 5009, 15 Nov. 1988.
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tial dependence results from the fact that while current flow across the junction
requires the carriers to cross the whole barrier, recombination requires each of
the carriers to surmount only half of this barrier, on average. This results in an
exponential dependence that varies as V/2, which is “2kT”. In practice, even
for homojunction devices, such recombination is rarely exactly “2kT”, and has
been shown to result from junction asymmetry, asymmetric capture statistics,
position dependent trap distributions, and electric field dependence of capture
statistics. This results in a recombination dependence that is “2kT”-like in-
stead of being exactly “2kT”. In heterojunctions, in addition to these effects,
we have to consider the suppression of hole injection into the emitter. In fact,
this is crucial to limiting space charge region recombination. Homojunctions in
GaAs have orders of magnitude higher space charge region recombination than
heterojunctions.

Figure 7.28 shows the volume recombination current density in the junction
space charge region for the parabolically graded junction, and the ideality of this
volume recombination current density (the factor n in exp(qV/nkT )) as a func-
tion of position. The ideality is derived from the rate of exponential increase in
the local volume recombination density, as determined by steady-state analysis
of a small perturbation at the bias point. The junction grading extends from
0.32 to 0.35 µm. At these biases, the peak in the volume recombination density
occurs in the junction alloy grading region, within 100 Å—a region where the
effective barrier is changing with bias because of varying bandgap. The ideality
of the volume recombination current density peaks in this junction region but
not at the same position as the peak of the volume recombination density. This
is a result of the recombination process, which drives the system towards equi-
librium (i.e, reducing the np product to n2

i—a position-varying quantity). The
np product does not peak at the junction itself in a heterojunction but close to
it because of the efficient suppression of holes. The ideality of the recombina-
tion current depends on the carrier transport to the position of recombination.
While further away from the junction space charge region edge, and at its edge,
the ideality begins to approach the “kT”-like dependence; within the junction
space charge region it rapidly increases. It can exceed “2kT” because of the
heterojunction effect and junction asymmetry. Note in this figure that at the
highest biases the quasi-neutral recombination (the “kT” recombination beyond
the junction) nearly reaches the magnitude of the volume recombination density
in the space charge region, and has a faster exponential dependence. Thus at
sufficiently high biases the bulk recombination component will begin to domi-
nate the space charge region component, resulting in a “kT”-like dependence.

We discussed earlier the Gummel plots and the current gain behavior of
single and double heterojunction devices in the absence of surface recombina-
tion. That is, this past discussion included only bulk space charge region and
quasi-neutral region contributions of recombination. For this condition, it is
only in the high current region of a double heterojunction device that the bulk
base transport factor becomes significant in determining the gain of the device.
At low currents, the dominant factor is recombination in the space charge re-
gion and at the surface, and in the medium current range it is mostly surface
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Figure 7.28: Recombination current density (a), and ideality factor of the re-
combination current density (b), versus depth, for biases varying from 0.8 V to
1.4 V. The base–emitter junction is located at 0.35 µm. From S. Tiwari and
D. J. Frank, “Analysis of the Operation of GaAlAs/GaAs HBTs,” IEEE Trans.

on Electron Devices, ED-36, No. 10, p. 2105, c©Oct. 1989 IEEE.
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recombination.

7.5.2 Surface Effects

Surface effects have been a dominant source of gain-degradation in GaAs HBTs.
Experimental evidence shows that they give rise to a“2kT”-like dependence
going towards a “kT”-like dependence at high bias conditions. The surface
is a dominant recombination source in most common designs as a result of a
high rate of recombination through surface states and the presence of Fermi
level pinning at the surface. The first by itself would give rise to recombination
dominated transport only in the low current regime, but the presence of Fermi
level pinning causes an excess of electrons at the surface, leading to significantly
higher recombination. The surface recombination can be minimized for the
operating current densities of interest by various surface passivation techniques
or by preventing the appearance of carriers with the use of a barrier from a wider
bandgap semiconductor at the surface of the extrinsic base. This could be a p-
type Ga1−xAlxAs obtained by converting the polarity of the injecting emitter, or
a depleted Ga1−xAlxAs emitter region by thinning of the heterojunction emitter.
Minimum lateral dimensions for such layers are discussed later. The use of a
graded base layer can also reduce the surface recombination. In the following, we
analyze surface recombination in the absence of surface recombination reduction
techniques.

Surface recombination at medium and low current densities is dominated by
a “2kT”-like recombination process, just as the bulk recombination process. The
cause for this is the presence of Fermi level pinning. The argument consists of
two parts. First, a high density of surface states (as required for surface pinning)
causes the electron-to-hole ratio at the surface to remain constant and close to
unity. Second, if there is essentially equilibrium between the surface and the
bulk and only a small charge flow to the surface, such that the quasi-Fermi levels
remain essentially flat, then the np product remains constant. Putting these two
parts together yields a surface carrier concentration that depends on the square
root of the bulk minority carrier density, ns ∝ √

nb × pb, and hence a “2kT”
dependence for the surface recombination. At moderate recombination velocity,
the rate-limiting process is the recombination velocity, and the assumptions used
in deriving the “2kT” dependence are valid.

At high recombination velocity, however, significant deviations from the as-
sumptions can occur. This was alluded to in our discussion of surface recombi-
nation in Chapter 3. In particular, numerical simulation of this problem in the
limit of high surface recombination velocity shows that the electron quasi-Fermi
level does not remain flat between the surface and the bulk. For example, at
S = 2×106 cm.s−1, the quasi-Fermi level bends by more than 200 meV near the
injecting junction for a bias of 1.2 V. Figure 7.29 shows the total surface recom-
bination current density as a function of device current density for moderate-
to-high surface recombination velocity using a single donor and single acceptor
mid-gap trap at the surface. At low currents the surface recombination current
density follows a “1.8kT” behavior. The higher current behavior is a function
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Figure 7.29: Surface recombination current density (normalized to the emitter
area) as a function of collector density, with S as a parameter varying from
2 × 103 cm.s−1 for the lowest curve to 2 × 106 cm.s−1 for the highest curve
in steps of a decade. The low current behavior in this plot has a “2kT”-like
dependence and the high current behavior for the higher surface recombination
velocities has a “kT”-like dependence. From S. Tiwari, D. J. Frank, and S.
L. Wright, “Surface Recombination in GaAlAs/GaAs Heterostructure Bipolar
Transistors,” J. of Appl. Phys., 64, No. 10, p. 5009, 15 Nov. 1988.
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Figure 7.30: Current stream lines in our HBT example, showing the way in
which the currents reach the surface of the extrinsic base, at which recombina-
tion takes place. The solid lines are electron flow lines, and the dashed lines
are hole flow lines. The base–collector junction is at the top of the figure, and
the emitter–base junction is at a depth of 0.35 µm. The exposed surface of the
extrinsic base, at which surface recombination occurs, stretches between 0.0 and
0.5 µm laterally, and is at the same depth, 0.35 µm. From S. Tiwari and D. J.
Frank, “Analysis of the Operation of GaAlAs/GaAs HBTs,” IEEE Trans. on

Electron Devices, ED-36, No. 10, p. 2105, c©Oct. 1989 IEEE.

of surface recombination velocity. At high surface recombination velocity the
ideality shows a deviation towards a “1.2kT” dependence. These high surface re-
combination velocity characteristics are in general agreement with experimental
observations at high current densities. The lower surface recombination velocity
characteristics are in general agreement with the simple analytic theory, as they
ought to be. The high surface recombination velocity behavior occurs because
the recombination is dependent upon the rate at which carriers are provided to
the surface, and this depends on device geometry, surface conditions, and the
design of the injecting junction. The Fermi level of electrons is no longer flat
between the surface and the bulk—and there is no simple relationship between
ns and nb and pb.

To better understand the high surface recombination velocity behavior, one
needs to understand how the carriers reach the surface to recombine. Figure 7.30
plots the electron and hole current flow lines in the vicinity of the extrinsic
base, showing the way in which the carriers get to the surface. Note that the
electron current to the surface is almost entirely due to injection of carriers into
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Figure 7.31: A surface plot of the negative of the conduction band energy at
the intersection of the base–emitter junction with the base surface, showing the
saddle point, which allows easier flow of the injected electrons into the surface
depletion region. Note that this view is rotated about 90 degrees clockwise
relative to the earlier figures. From S. Tiwari, S. L. Wright, and D. J. Frank,
“Compound Semiconductor Heterostructure Bipolar Transistors,” IBM J. of

Research and Development, 34, No. 4, p. 550, July 1990.

a surface channel at the base–emitter junction. This surface electron channel is
caused by the surface Fermi level pinning. Only a very small flux of electrons
into this channel from the quasi-neutral base region is observed and it occurs
at the intersection of the surface with the base–emitter junction, where two-
dimensional effects are strong. Note also that the hole current for recombination
is mostly perpendicular to the surface, and originates in the quasi-neutral base
region.

Because of its close proximity to the surface, this electron injection phe-
nomenon is a function of the boundary conditions that have been chosen. Entry
into the channel is through a saddle point in the conduction band edge poten-
tial, as shown in Figure 7.31. This complex barrier shape is the result of the
interface state distribution at the surface that caused the Fermi level pinning,
the choice of band gap grading, and the choice of bias. This barrier causes,
at low bias conditions, a narrow constricted region through which it is ener-
getically favorable for the carriers to stream into the surface channel. At high
surface recombination velocity, this constriction is the rate-limiting step in the
surface recombination, and the magnitude of current transported to the surface
is determined by the barrier height and the cross-section of this saddle point,
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Figure 7.32: Conduction band edge energy and electron quasi-Fermi level along
the base surface, at 1.0 V and 1.4 V forward bias, with the base–emitter junction
intersecting at 0.5 µm on the horizontal scale. Solid line is for Ec and the dot-
dashed line is for ξn. From S. Tiwari and D. J. Frank, “Analysis of the Operation
of GaAlAs/GaAs HBTs,” IEEE Trans. on Electron Devices, ED-36, No. 10,
p. 2105, c©Oct. 1989 IEEE.

which are non-linearly dependent on the bias because of the changing junction
depletion thickness.

Once the carriers reach the surface, the HSR statistics determine the spatial
dependence of the recombination of these carriers. At high surface recombina-
tion velocities, these carriers recombine very rapidly in a very short region. At
moderate surface recombination velocities, many of these carriers drift-diffuse
down the channel before they recombine. Figure 7.32 shows the conduction band
edge energy and the electron quasi-Fermi level as a function of position along
the surface at two forward bias conditions, 1.0 V and 1.4 V. At the low bias con-
ditions further away from the intersection of the surface with the base–emitter
junction (at 0.5 µm of the horizontal scale), the electron current is mostly dif-
fusive, with drift only becoming important close to the junction. At the higher
bias, however, drift and diffusion contribute approximately equally to the trans-
port process. The rapid fall-off of the Fermi level shows that recombination
leads to a very rapid depletion of electrons.

Just as the electron concentration rapidly diminishes with distance from the
junction, so also the surface recombination density is highest at the injecting
point and rapidly decreases thereafter. The length scale of this fall-off is ≈
1250 Å at S = 2 × 105 cm.s−1, and ≈ 500 Å at S = 2 × 106 cm.s−1, giving
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between a square and cube root dependence on S. The effective ideality of the
surface recombination current density (determined as for Figure 7.28) depends
on recombination velocity, bias, and weakly on position. At S = 2×105 cm.s−1,
the ideality varies from ≈ 1.7 at 0.95 V forward bias to ≈ 1.3 at 1.25 V bias.
At S = 2× 106 cm.s−1, the idealities behave similarly, but are somewhat lower.
Figure 7.33 shows the surface recombination density and its effective ideality as
a function of position.

These characteristics of the ideality and the magnitude of the surface recom-
bination current depend not only on the value of surface recombination velocity,
but also on the geometry, surface conditions, and design of the device, because
of the strong two-dimensional nature of the phenomenon. Thus, surface re-
combination is quite variable. Thick bases allow a larger flux of carriers to the
surface, quasi-fields that pull the carriers away from the junction cause a smaller
flux of carriers, and abrupt heterojunctions cause a larger voltage barrier at the
surface and hence cause a smaller flux of carriers. The total surface recombina-
tion current is proportional to the flux of electrons—hence, these devices show
different surface recombination behavior.

7.5.3 Current Gain Behavior

Current gain behavior in the absence and presence of surface recombination is
plotted in Figure 7.34 for single heterojunction, graded base (an electron quasi-
field of 10 kV/cm created by grading the aluminum mole-fraction to GaAs at
the collector), and double heterojunction bipolar transistors. In the absence of
surface recombination, Figure 7.34 shows, at large current densities, the largest
current gains in the graded base device followed by the single heterojunction
device and then the double heterojunction device. The larger current gain in
the graded base device is due to the aiding quasi-electric field for electrons,
which reduces the storage of electrons in the base, and hence the neutral base
recombination. The double heterojunction device shows a drop in gain at high
currents due to the increased base storage, as discussed previously. Although
the graded base device has a lower barrier to hole injection into the emitter,
its gain actually continues to be comparable to that of the other devices at low
current densities. The increased hole injection does not result in increased re-
combination in the base–emitter space charge region because it is compensated
by a decrease in electron density due to the quasi-electric field in the neutral
base. Figure 7.34 shows the behavior of these devices with surface recombina-
tion, again for a perimeter-to-area ratio of 1 × 104 cm−1. The general trends
of Figure 7.34 still apply, with the largest gains at the highest currents in the
graded base device, and a decrease in gain of the double heterojunction device
due to excess storage at high currents. The current gain of the graded base
device is significantly higher than that of the single heterojunction device be-
cause the quasi-drift field results in fewer electrons to inject into the surface
recombination region.

The dependence of current gain on perimeter-to-area ratio—the device size
effect—is shown in Figure 7.35 at forward biases of 1.5 V and 1.4 V, respectively,
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Figure 7.33: Magnitude (a) and ideality (b) of volume recombination density
at the surface as a function of position along the surface of the base region.
Different base–emitter forward bias conditions are shown.
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Figure 7.34: (a) Current gain dependence in the absence of surface recombina-
tion, for single heterojunction, graded base, and double heterojunction bipolar
transistors. The perimeter-to-area ratio is 104 cm−1. (b) Gain for the same
devices at S = 2 × 105 cm.s−1 and S = 2 × 106 cm.s−1. From S. Tiwari and
D. J. Frank, “Analysis of the Operation of GaAlAs/GaAs HBTs,” IEEE Trans.

on Electron Devices, ED-36, No. 10, p. 2105, c©Oct. 1989 IEEE.
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for the graded base and single heterojunction devices. The current flowing
through the graded base device is approximately a factor of ten smaller at 1.4 V,
and a factor of two smaller at 1.5 V, due to the different injection characteristics
of the two devices. At 1.4 V, where current saturation effects are not large, the
graded device (which is operating at a lower current density) clearly shows less
sensitivity to surface recombination velocity. The current gain behavior is in
good agreement with the measured current gains of large area (small perimeter-
to-area ratio) and small area (large perimeter-to-area ratio) devices that utilize
no surface passivation. For small digital devices, with perimeter-to-area ratios
of ≈ 2 × 104 cm−1, the figure indicates current gains should be in the range
of 10 to 40. Using a one-dimensional model, the highest current gain in these
structures, if it were determined only by neutral base recombination, would
be ≈ 380 (Dn ≈ 38 cm2.s−1, τn ≈ 0.5 ns, and hence the diffusion length
Ln ≈ 1.38 µm). The current gains in Figure 7.34 approach this value, but are
lower and are dependent on the device size because the base transport factor
has to include recombination in the extrinsic region. The lateral extent of the
extrinsic base that needs to be included is of order the base width in a single
heterojunction device and the diffusion length in a double heterojunction device.
Hence, the gain of HBTs shows perimeter dependence even in the absence of
surface recombination.

7.6 Small-Signal Analysis

Bipolar transistors are high frequency devices with strong displacement cur-
rent effects in the collector depletion region. Thus, during both fast transients
and prediction and operation near the limit frequencies, non-quasi-static anal-
ysis is particularly important. We may actually draw some parallels, under
these rapidly time-varying conditions, between the field effect transistors and
the bipolar transistor. In the normal active mode of operations, the source end
of the channel of an FET is a low field region (< 104 V.cm−1) with a slow
variation in time. The drain end of the channel is a high field region, with large
displacement current changes during parts of a transient. Displacement current
also flows in the gate control region during these time-dependent rapidly varying
conditions. Thus, in the operation of the field effect transistor, the transport
in the low field region near the source end of the channel and the transport in
the high field region near the drain end and signal delay effects corresponding
to them become important. The equivalent regions in the homogeneous base
bipolar transistor are the quasi-neutral base region and the base–collector de-
pletion region. Strong displacement current effects occur in the base–collector
region during the transit of carriers. Another important consideration in high
frequency modelling is the majority carrier transport in this minority carrier
device. Note that the displacement current effects, in the base–collector deple-
tion region, take place in a part of the device where the electrons are actually
majority carriers.

Our analysis of small-signal operation of bipolar transistor follows early ho-
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Figure 7.35: Current gain plotted as a function of perimeter-to-area ratio for
S = 2 × 105 cm.s−1 and S = 2 × 106 cm.s−1. (a) is for a base–emitter forward
bias of 1.5 V and (b) is for 1.4 V. From S. Tiwari and D. J. Frank, “Analysis
of the Operation of GaAlAs/GaAs HBTs,” IEEE Trans. on Electron Devices,
ED-36, No. 10, p. 2105, c©Oct. 1989 IEEE.
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mojunction bipolar theory.9 We will employ network parameters based on one-
dimensional analysis. This is quite adequate since the high frequency bipolar
transistor has a thin base; and in the emitter, base, and the collector, the
intrinsic and critical behavior—transport of minority carriers—occurs largely
one-dimensionally and orthogonally to the plane of the junctions. Transport of
holes in the base, as well as of electrons in the quasi-neutral emitter and collec-
tor, can be introduced in this analysis as lumped elements without appreciably
sacrificing accuracy.

7.6.1 Parameter Notation and Assumptions

We will use the admittance matrix (y-parameters) as the basis for our anal-
ysis, and like FETs where we considered common-gate configuration for the
small-signal discussion, we will consider the common-base configuration. Other
configurations, the common-emitter hybrid-pi model, e.g., as well as inclusion
of parasitics, extrinsic elements, etc., will follow from this with suitable matrix
manipulations. Like the FETs, the common-base y-parameters follow from the
current equations, and lend themselves to physical insight following approxi-
mations for equivalent circuit modelling at high frequencies. These equivalent
circuits, as well as the more accurate network parameters, can then be extended
to the common-emitter configuration, which is of the most interest in applica-
tions. We wish to derive the four network parameters—input, output, and the
two transfer elements of the y-matrix—and we base this on one-dimensional
flow of carriers as shown in Figure 7.36. Adding extrinsic elements, parasitic
elements, etc., extends this to two-dimensional or three-dimensional structures
for frequencies where lumped parameter representation is still valid.

We considered the quasi-static analysis and the low frequency physics of the
bipolar transistor in an earlier part of this chapter. The technique employed in
the analysis of small-signal non-quasi-static response should become clear from
the context; it is similar to that employed for FETs. The perturbational quasi-
static solutions will be referred to in order to show similarities and differences
between them and these small-signal solutions.

In evaluation of network parameters such as the y-parameters, the terminal
currents are considered as going into a port. Our current density and current
continuity equations, however, evaluate currents as flowing in the +z direction.
The emitter current at the emitter port Ĩe, ignoring recombination effects in the
base–emitter depletion region, is composed of the electron and hole currents at
the edges of the base–emitter depletion region (Ĩne and Ĩpe). Both the network
parameter-based convention and the transport-based convention are identical
for this. However, the network parameter convention for the collector current
at the port is to treat it as flowing in, i.e., in the −z direction, while the electron
and hole currents evaluated at the collector edge of the base–collector depletion
region (Ĩnc and Ĩpc) are treated as flowing in the +z direction. Since this is

9See the general reference R. L. Pritchard, Electrical Characteristics of Transistors,
McGraw-Hill, N.Y. (1967).
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Figure 7.36: Current flow in an idealized transistor structure, showing the no-
tations employed for small-signal analysis (a), together with its simplification
where the smaller components are ignored (b).

also the current that flows in the quasi-neutral region of the collector during the
small-signal conditions, displacement effects being absent in the quasi-neutral
region, this is also the collector current (Ĩc). The current necessary for defining
the y-parameters is −Ĩc. Hence our common-base y-parameters are based on
the currents

Ĩe = Ĩne + Ĩpe

and − Ĩc = −Ĩnc − Ĩpc (7.120)

determined from analysis of the device.

In analyzing the device, we will make some of the usual assumptions that
were employed in the quasi-static analysis, as well as a few additional assump-
tions related to small-signal aspects. We consider one-dimensional carrier flow,
normal active mode of operation, i.e., a forward biased base–emitter junction
and a reverse biased base–collector junction. The injected carrier density in
the base is considered small compared to the majority carrier density present
in thermal equilibrium. This is the assumption of low-level injection and al-
lows us to employ Shockley boundary conditions and treat the quasi-neutral
base region as an equi-potential region. We also ignore transit time effects in
the base–emitter region where the electric fields can be large. The rationale
for this assumption is that the base–emitter depletion region is very short; and
the delay effects, except in ultra-short structures, are substantially smaller than
the delay effects in the base–collector depletion region, the quasi-neutral base
region, or delays corresponding to the charging of transition capacitances. A
base–emitter small-signal potential thus is assumed to instantaneously result
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in a new carrier distribution within the depletion region that is equal to the
corresponding equilibrium distributions at the new electrostatic potential. This
implies that, in the base–emitter space charge region, the holes and electrons
are very nearly in equilibrium with the distributions governed by the potential
barrier. For quasi-static conditions, because the electric field E, the gradient in
electron concentration ∇n, and the gradient in hole concentration ∇p are large,
the changes involved cause a very small disturbance from equilibrium. The cur-
rent extracted is much smaller than the individual drift and diffusion current
components, and hence equilibrium is not disturbed significantly. Under small-
signal conditions, this implies that the time and phase delay and attenuation
are negligible, and the reason is that time constants other than those due to
transit in the base–emitter depletion regions dominate. We also assume that the
small-signal voltages applied are significantly less than the thermal voltage. Use
of this assumption allows us to decouple the static and small-signal solutions.
Breakdown of this assumption, i.e., large-signal analysis, is also important but
will not be considered.

Initially we will ignore effects related to emitter injection efficiency. Both un-
der quasi-static and small-signal conditions, the hole injection current into the
emitter (Ĩpe) will be considered to be significantly smaller than the electron cur-

rent injected into the base (Ĩne). Subsequently, we will remove this assumption,
and show that there can be important phase delay effects that result from the
base–emitter injection process. We will also consider the multiplication process
to be absent in the collector depletion region, i.e., for quasi-static conditions,10

ζ =
| Inc |
| Inc′ |

=
| Ic |
| Ic′ |

= 1. (7.121)

These simplify the analysis of our problem to that shown in the part (b)
Figure 7.36, where a number of components shown in part (a) are now removed.
We have

Ĩe = Ĩne

and Ĩc = Ĩnc. (7.122)

Under our small-signal conditions, Ĩe and Ĩc are related, using the base as a
reference, to the emitter-base junction voltage Veb and collector–base voltage
Vcb by

Ĩe = ybeeṼeb + ybecṼcb

and − Ĩc = ybceṼeb + ybccṼcb. (7.123)

The four complex admittance parameters—the input admittance ybee, the for-
ward transfer admittance ybce, the reverse transfer admittance ybec, and the out-

10Note that I
c
′ is the current entering the base-collector depletion region from the quasi-

neutral, i.e., at z = wC , and Ic is the current exiting the base-collector depletion region into
the quasi-neutral collector, i.e., at z = w

C
′ .



7.6 Small-Signal Analysis 581

put admittance ybcc—are

ybee ≡ Ĩe

Ṽeb

∣∣∣∣∣
V cb

,

ybce ≡ −Ĩc
Ṽeb

∣∣∣∣∣
V cb

,

ybec ≡ Ĩe

Ṽcb

∣∣∣∣∣
V eb

,

and ybcc ≡ −Ĩc
Ṽcb

∣∣∣∣∣
V eb

. (7.124)

Some of these parameters can be related to each other using factors of direct
interest to us. For example, the forward transfer admittance,

ybce = − Ĩc

Ṽeb

∣∣∣∣∣
V cb

= − Ĩc
Ĩe

∣∣∣∣∣
V cb

× Ĩe

Ṽeb

∣∣∣∣∣
V cb

= −α̃ybee, (7.125)

where α̃ is the small-signal current transfer ratio, defined as

α̃ =
Ĩc

Ĩe

∣∣∣∣∣
V cb

, (7.126)

and, as in quasi-static analysis, it can be written as

α̃ =
Ĩne

Ĩe
× Ĩnc′

Ĩne
× Ĩnc

Ĩnc′

= γ̃α̃T ζ̃. (7.127)

All of these are the small-signal quantities, which can differ substantially from
their quasi-static magnitude. Here, the first term γ̃ is the injection efficiency,
the second term α̃T is the base transport factor, and the third term ζ̃ is the
collector transport factor.

Initially, in our analysis, we are assuming negligible hole injection into the
emitter, hence, the emitter admittance is associated only with electron injection
into the base, i.e., with ybne,

ybee ≈ ybne

=
Ĩne

Ṽeb

∣∣∣∣∣
V cb

. (7.128)
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For purposes of comparison, we consider the input conductance and base
diffusion capacitance using perturbational analysis from the quasi-static solu-
tion first. These will serve as a reference for our discussions of differences in
between the small-signal solution and its magnitude at the highest frequencies,
and the small-signal solution and its magnitude at very low frequencies. We
should expect the limit of low frequency to be the same as the quasi-static
limit. Consider the emitter admittance, due to electron injection into the base.
In the low frequency limit,

yne =
dIE

dV eb

∣∣∣∣
V cb

=
d

dV eb

{
IES

[
exp

(
qV eb
kT

)
− 1

]
− αRICS

[
exp

(
qV cb
kT

)
− 1

]}

=
q

kT
IES exp

(
qV eb
kT

)
≈ q

kT
Ie ≡ ge. (7.129)

The inadequacy of the perturbational technique becomes evident here. This
analysis indicates that assuming static conditions prevail, the input admittance
should be a conductance, a conductance similar to that of a p–n junction diode.
This is only true at zero frequency. Application of bias at the base–emitter
junction also changes the amount of minority charge stored in the quasi-neutral
region, a charge that is made available by the flow of current. Thus diffusion
capacitances exist and are associated with the imaginary part of the input ad-
mittance. To extend the accuracy of this perturbation procedure to any finite
frequency, we include the effects related to stored charges. This should result
in a capacitance in parallel with the conductance derived. Note that implicit in
deriving stored charge from quasi-static distributions is the assumption that the
perturbation is such that steady-state has been achieved at all times, so that
our steady-state equations are still valid. Small-signal analysis does not make
this assumption. Under the quasi-static assumption, the response to a change in
bias from VBE to VBE + ∆VBE , the electron concentration at the emitter–base
junction changed from nBE to nBE + ∆nBE . The incremental charge ∆QB is
added by the external circuit, and the capacitance associated with this is the
emitter diffusion capacitance CDe,

CDe = A× ∆QB

∆VBE

= A×
1
2q∆nBEwB

∆VBE

=
AqwBnp0

2

{exp [q (VBE + ∆VBE) /kT ]− exp (qVBE/kT )}
∆VBE

= A1

2
qwB

1

∆VBE
np0 exp

(
qVBE
kT

)
q

kT
∆VBE
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=
q

kT

wB
2

2Dn
AqDnnp0

wB
exp

(
qVBE
kT

)

≈ q

kT

W 2
B

2Dn
Ine

= ge
W 2
B

2Dn
. (7.130)

Hence, we have the model for the junction as a parallel assembly of a constant
conductance and capacitance at low frequencies. As the frequency increases for
the applied signals, we may not use our steady-state equations and solutions,
and derivation of parameters and equivalent circuits at these higher frequencies
is the objective of the following section.

7.6.2 Static and Small-Signal Solutions

The transport of electrons in the base is diffusive in low-level injection for a uni-
formly doped base. The current equation, under drift-diffusion approximation,
is

Jn = qµnnpE + qDn
dnp
dz

≈ qDn
dnp
dz

. (7.131)

We also have, from the continuity equation,

∂np
∂t

= Gn −Rn +
1

q

dJn
dz

, (7.132)

which can be written as

∂np
∂t

=
np − np0

τn
+

1

q

dJn
dz

(7.133)

for a single time constant approximation of carrier generation and recombination
processes.

Since these are linear differential equations, under small-signal conditions, we
may assume that the electron concentration np(z, t) is separated into a steady-
state component np(z) and a small-signal component ñp(z, t), so

np(z, t) = np(z) + ñp(z, t). (7.134)

Using phasor notation, with ω as the angular frequency of the small-signal,

np(z, t) = np(z) + n̂p(z) exp (jωt) . (7.135)

We may now separate the current continuity equation into a time-independent
and time-dependent part, each of which must be satisfied separately,

∂np
∂t

= −np − np0
τn

+
1

q

dJn
dz
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= −np − np0
τn

+ Dn
d2np
dz2

⇒ jωn̂p exp (jωt) = −np − np0
τn

− n̂p(z) exp (jωt)

τn
+

Dn
d2np
dz2

+ Dn exp (jωt)
d2n̂p
dz2

. (7.136)

The steady-state part of this equation is

0 = −np − np0
τn

+ Dn
d2np
dz2

, (7.137)

and one form of the solution is

np = np0 + A cosh(
z

Ln
) + B sinh(

z

Ln
), (7.138)

where Ln is the diffusion length (=
√Dnτn). The small-signal part of this

equation is

jωn̂p(z) = − n̂p(z)
τn

+ Dn
d2n̂p(z)

dz2

d2n̂p(z)

dz2
− n̂p(z)

[
jω

Dn
+

1

Dnτn

]
= 0

d2n̂p(z)

dz2
− n̂p(z)

Ln2/(1 + ωτn)
= 0. (7.139)

Let us define the parameter

ς =

√
1 + jωτn
Ln

, (7.140)

then the solution of this second-order differential equation can be written in the
form

n̂p(z) = C cosh(ςz) +D sinh(ςz). (7.141)

So, the solution of the continuity equation (Equation 7.132) is of the form

np(z, t) = np + n̂p exp (jωt)

= np0 + A cosh

(
z

Ln

)
+B sinh

(
z

Ln

)
+

[C cosh(ςz) +D sinh(ςz)] exp (jωt) . (7.142)

We also need the boundary conditions to obtain the distribution of carriers in
the quasi-neutral base region. At the base edge of the base–emitter junction (we
define this for convenience as the point where z = 0), we assume instantaneous
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equilibrium of carriers and use the Shockley boundary conditions

np(0, t) = np(0) + n̂p(0) exp (jωt)

= np0 exp

(
qVbe
kT

)

= np0 exp

(
qV be
kT

)
exp

(
qṼbe
kT

)

= np0 exp

(
qV be
kT

)
exp

[
qV̂be exp (jωt)

kT

]

≈ np0 exp

(
qV be
kT

)[
1 +

qV̂be
kT

exp (jωt)

]

= np0 exp

(
qV be
kT

)
+

np0 exp

(
qV be
kT

)
qV̂be
kT

exp (jωt) . (7.143)

The first term in the last equation is the boundary condition for steady-state
analysis—it is the boundary condition we have employed in our quasi-static
analysis—and the second term is the boundary condition for small-signal anal-
ysis.

At the collector edge, all the carriers are immediately swept out due to the
high field. The carrier concentration is therefore significantly below that of the
emitter edge during normal active mode of operation. Thus, the carrier concen-
tration can be assumed to vanish at the collector edge of the quasi-neutral base
region. Even though the carrier concentration vanishes, since output admit-
tance is small, the movement of the base edge of the base–collector boundary
can have a strong relative effect. Recall that this was the cause of Early effect
in the bipolar transistor and gave rise to an output conductance. We need to
introduce this boundary condition, which is a moving boundary condition, in
our small-signal analysis. The variation of the base edge of the base–collector
depletion region also follows the frequency of the small-signal. Let it vary as
wB+ŵ exp (jωt), where ŵ involves the same reasoning that led to the Early volt-
age under quasi-static conditions. Under the applied collector bias our collector
edge boundary conditions are

np(wB, t) = np(wB + ŵ exp (jωt) , t) = 0. (7.144)

This equation does not imply that the static and small-signal component of
the charge concentration are individually negligible. The sum vanishes and
both the static and small-signal quantities are individually quite small. We can
now determine the coefficients of our solution of np(z, t) in terms of the device
parameters. First, consider the base–emitter junction boundary conditions.

np(0, t) = np0 exp

(
qV be
kT

)
+ np0 exp

(
qV be
kT

)
qV̂be
kT

exp (jωt)
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= np0 + A+ C exp (jωt) . (7.145)

In order to satisfy this, both the steady-state and time varying parts of the
carrier concentration have to be negligible, i.e.,

A = np0

[
exp

(
qV be
kT

)
− 1

]

and C = np0 exp

(
qV be
kT

)
qV̂be
kT

. (7.146)

At the collector edge,

np (wB + ŵ exp(jωt), t) = 0, (7.147)

which implies

np0 +A cosh

[
wB + ŵ exp(jωt)

Ln

]
+ B sinh

[
wB + ŵ exp(jωt)

Ln

]
+

[C cosh (ςwB + ŵ exp(jωt)) +D sinh (ςwB + ŵ exp(jωt))] exp (jωt) = 0

(7.148)

Expanding the hyperbolic terms,

0 = np0 + A

[
cosh

(
wB
Ln

)
cosh

(
ŵ exp(jωt)

Ln

)
+

sinh

(
wB
Ln

)
sinh

(
ŵ exp(jωt)

Ln

)]
+

B

[
sinh

(
wB
Ln

)
cosh

(
ŵ exp(jωt)

Ln

)
+

cosh

(
wB
Ln

)
sinh

(
ŵ exp(jωt)

Ln

)]
+

C [cosh(ςwB) cosh (ςŵ exp(jωt)) +

sinh(ςwB) sinh (ςŵ exp(jωt))] exp (jωt) +

D [sinh(ςwB) cosh (ςŵ exp(jωt)) +

cosh(ςwB) sinh (ςŵ exp(jωt))] exp (jωt) . (7.149)

The phasor of the base width modulation due to the small-signal V̂cb is given
by the following if we assume instantaneous response to the applied signal:

ŵ ≈ dwB
dVCB

V̂cb

≈ V̂cb
VA

wB , (7.150)

where VA is the Early voltage. Since transistors have large Early voltages,
and useful transistors also employ wB << Ln, the magnitude of the terms



7.6 Small-Signal Analysis 587

ŵ exp(jωt)/Ln and ςŵ exp(jωt) are small, and we do a perturbation expansion
of the hyperbolic terms, approximating,

cosh

(
ŵ exp(jωt)

Ln

)
≈ 1,

sinh

(
ŵ exp(jωt)

Ln

)
≈ ŵ exp(jωt)

Ln
,

cosh (ςŵ exp(jωt)) ≈ 1,

and sinh (ςŵ exp(jωt)) ≈ ςŵ exp(jωt). (7.151)

Using these approximations, the boundary condition at the collector edge of
the quasi-neutral base region assumes the form

0 = np0 + A

[
cosh

(
wB
Ln

)
+ sinh

(
wB
Ln

)
ŵ exp(jωt)

Ln

]
+

B

[
sinh

(
wB
Ln

)
+ cosh

(
wB
Ln

)
ŵ exp(jωt)

Ln

]
+

C [cosh(ςwB) + sinh(ςwB)ςŵ exp(jωt)] exp (jωt) +

D [sinh(ςwB) + cosh(ςwB)ςŵ exp(jωt)] exp (jωt) . (7.152)

Considering only the steady-state and the first harmonic terms (i.e., ignoring
the second-order terms of exp (2jωt)), we obtain

0 = np0 +

[
A cosh

(
wB
Ln

)
+B sinh

(
wB
Ln

)]
+

[
A sinh

(
wB
Ln

)
ŵ

Ln
+B cosh

(
wB
Ln

)
ŵ

Ln
+ C cosh(ςwB) +D sinh(ςwB)] exp (jωt) . (7.153)

So, we obtain the coefficient B in terms of the coefficient A that has already
been determined.

B = −np0 +A cosh (wB/Ln)
sinh (wB/Ln)

= −np0 + np0
[
exp

(
qV be/kT

)
− 1
]
cosh (wB/Ln)

sinh (wB/Ln)

≈ −np0 exp

(
qV be
kT

)
coth

(
wB
Ln

)
. (7.154)

Finally, we obtain D in terms of A, B, and C, which are now determined.

D = −
[
A sinh

(
wB
Ln

)
ŵ

Ln
+ B cosh

(
wB
Ln

)
ŵ

Ln
+C cosh(ςwB)

]
×

1

sinh(ςwB)
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= −
{
np0

[
exp

(
qV be
kT

)
− 1

]
ŵ

Ln
sinh

(
wB
Ln

)
−

np0 exp

(
qV be
kT

)
ŵ

Ln
coth

(
wB
Ln

)
cosh

(
wB
Ln

)
+

np0 exp

(
qV be
kT

)
qV̂be
kT

cosh(ςwB)

}
1

sinh(ςwB)

≈ −
[
np0 exp

(
qV be
kT

)
ŵ

Ln
sinh2(wB/Ln) − cosh2(wB/Ln)

sinh(wB/Ln)
+

np0 exp

(
qV be
kT

)
qV̂be
kT

cosh(ςwB)

]
1

sinh(ςwB)

= −
[
−np0 exp

(
qV be
kT

)
ŵ

Ln
1

sinh(wB/Ln)
+

np0 exp

(
qV be
kT

)
qV̂be
kT

cosh(ςwB)

]
1

sinh(ςwB)

= np0 exp

(
qV be
kT

)
ŵ

Ln
csch

(
wB
Ln

)
csch(ςwB) −

np0 exp

(
qV be
kT

)
qV̂be
kT

coth(ςwB), (7.155)

and the complete equation for carrier distribution is

np(z, t) = np0 + np0

[
exp

(
qV be
kT

)
− 1

]
cosh

(
z

Ln

)
−

np0 exp

(
qV be
kT

)
coth

(
wB
Ln

)
sinh

(
z

Ln

)
+

np0 exp

(
qV be
kT

)
qV̂be
kT

cosh(ςz) exp (jωt) +

np0 exp

(
qV be
kT

)
ŵ

Ln
csch

(
wB
Ln

)
×

csch(ςwB) sinh(ςz) exp (jωt) −

np0 exp

(
qV be
kT

)
qV̂be
kT

coth(ςwB) sinh(ςz) exp (jωt) .

(7.156)

The first two terms are the steady-state distribution of carriers while the last
three terms constitute the small-signal distribution of carriers. In order to
evaluate the matrix elements, we now evaluate the currents. From now on,
for the sake of simplicity, the unity term occurring with exp

(
qV be/kT

)
will

also be ignored because it is negligible in the active mode of operation for any
appreciable current flow. The electron current in the base at the base–emitter
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junction,

Ine = Ine + Ĩne

= Ine + Îne exp (jωt)

= qDnA
dnp
dz

∣∣∣∣
z=0

= qDnAnp0 exp

(
qV be
kT

)[
− 1

Ln
coth

(
wB
Ln

)
+

ŵ

Ln
ςcsch

(
wB
Ln

)
csch(ςwB) exp (jωt) −

qV̂be
kT

ς coth(ςwB) exp (jωt)

]
. (7.157)

The small-signal component of this equation, after substituting for ŵ ≈
(dwB/dVCB) V̂cb, is

Ĩne = qDnAnp0 exp

(
qV be
kT

)
q

kT
ς coth(ξb)V̂eb +

qDnAnp0 exp

(
qV be
kT

)
1

Ln
dwB
dVCB

csch

(
wB
Ln

)
ςcsch(ξb)V̂cb,

(7.158)

where we have defined a new variable ξb,

ξb = ςwB, (7.159)

because it will appear as a parameter relating the frequency effect in the base
in several of our network parameter relationships.

The electron current exiting the base at the base–collector junction is

Inc′ = Inc′ + Ĩnc′

= Inc′ + Înc′ exp (jωt)

= qDnA
dnp
dz

∣∣∣∣
z=wC

= qDnAnp0 exp

(
qV be
kT

)[
1

Ln
sinh

(
wB
Ln

)
−

1

Ln
coth

(
wB
Ln

)
cosh

(
wB
Ln

)
+

qV̂be
kT

ς sinh(ςwB) exp (jωt) +

ŵ

Ln
csch

(
wB
Ln

)
ςcsch(ςwB) cosh(ςz) exp (jωt) −

− q

kT
V̂beς coth(ςwB) cosh(ςz) exp (jωt)

]
. (7.160)
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The small-signal component of this equation, after substituting for ŵ ≈ (dwB/dVCB)V̂cb,
is:

Înc′ = −qDnAnp0 exp

(
qV be
kT

)
q

kT
ς [sinh(ςwB)−

coth(ςwB) cosh(ςwB)] V̂eb +

qDnAnp0 exp

(
qV be
kT

)
1

Ln
dwB
dVCB

csch

(
wB
Ln

)
×

ςcsch(ςwB) cosh(ςwB)V̂cb

= qDnAnp0 exp

(
qV be
kT

)
q

kT

1

wB
ξbcsch(ξb)V̂eb +

qDnAnp0 exp

(
qV be
kT

)
1

Ln
dwB
dVCB

csch

(
wB
Ln

)
×

1

wB
ξb coth(ξb)V̂cb. (7.161)

We have now determined the currents at the emitter edge and the collector
edge of the quasi-neutral base region in terms of the applied emitter–base and
collector–base potentials. This was the necessary step in the determination of
the admittance matrix for contributions from transport in the base. We can
now utilize this essential result in determining the admittance matrix of the
device taken in its entirety. As part of this discussion we also consider the
approximations that lead to simplified modelling.

7.6.3 Network Parameters and their Approximations

The currents that we have determined, Îne and Înc′ , establish the effects of

transport in the quasi-neutral base. Expressed as a function of the signals V̂eb
and V̂cb, these determine the admittance effects of electron transport. We need
to add to these effects related to both the transport and the displacement effects
in the base–collector depletion region and the emitter–base depletion region. For
convenience, we will include these as additions to the admittance parameters
associated with electron transport in the base, denoted by ybnee, y

b
nec, y

b
nce,

and yncc, and representing the input, reverse transfer, forward transfer and the
output admittances.

Consider ybnee first. It is the coefficient of V̂eb in Equation 7.158. In the
limit of ω → 0, the input admittance should reduce to the static conductance
resulting from electron transport, i.e., gne. So, by definition

gne ≡ qDnAnp0 exp

(
qV be
kT

)
q

kT
ς coth(ξb)

∣∣∣∣
ω=0

= qDnAnp0 exp

(
qV be
kT

)
q

kT

1

Ln
coth

(
wB
Ln

)
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=
qIne
kT

. (7.162)

This is the same result we had derived from perturbation analysis, and it
shows the contribution of electron transport. The conductance and admittance
also have a contribution from hole transport in the emitter, which has not
yet been included. The result that we have derived is, however, more general
than this relationship in low frequency limit. The input admittance component
due to base transport, for any arbitrary frequency, within the drift-diffusion
approximation, can now be written as

ynee = gne
1

coth(wB/Ln)
Ln
wB

ξb coth(ξb)

= gneξb coth(ξb). (7.163)

In deriving this, we have assumed that the bipolar transistor has reasonable gain
at low frequencies, and hence wB << Ln. This implies that (Ln/wB)/ coth(wB/Ln) ≈
1. This is a very simple and yet general format of the complex equations that
we have been dealing with.

Now consider the output admittance yb
ncc′

which is the negative of the coef-

ficient of V̂cb in Equation 7.161 because network network parameters are defined
with current flowing into a port. The limit of this at ω → 0 is a conductance
which we denote by gnc.

gnc = − qDnAnp0
Ln

exp

(
qV be
kT

)
dwB
dVCB

csch

(
wB
Ln

)
1

wB
ξb coth(ξb)

∣∣∣∣
ω=0

= −qDnAnp0Ln
exp

(
qV be
kT

)
dwB
dVCB

csch

(
wB
Ln

)
1

wB

wB
Ln

coth

(
wB
Ln

)

= −qDnAnp0
wB

exp

(
qV be
kT

)
1

wB

dwB
dVCB

= −Ine
1

wB

dwB
dVCB

. (7.164)

Since the coefficient of Ine in the above represents the Early factor, a small
quantity, the output conductance is significantly smaller than the input con-
ductance qIne/kT (see Problem 9). Also, it is positive because the base width
decreases with an increase in collector-to-base voltage. The ratio of the two
conductances,

gnc
gne

= − kT

qwB

dwB
dVCB

<< 1. (7.165)

This is to be expected since the collector junction is reverse biased and the base–
emitter junction is forward biased. The same ratio holds for the admittances.
The forward admittance is much larger than the reverse admittance. Using gnc
as the magnitude of the output admittance in the zero frequency limit, we have

ync′c′ = gncξb coth(ξb), (7.166)
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again a very simple relationship.
The coefficient of the second term of Equation 7.158 is the reverse admittance

contribution of base transport, yb
nec′

. This can also be simplified, following the
form above. The low frequency limit of this is a real term that is gnc and given
by

yb
nec′

∣∣
ω=0

= qDnAnp0 exp

(
qV be
kT

)
1

Ln
dwB
dVCB

1

wB
csch

(
wB
Ln

)
×

ξbcsch(ξb)|ω=0

≈ qDnAnp0
wB

exp

(
qV be
kT

)
1

wB

dwB
dVCB

= −gnc. (7.167)

From this, the reverse admittance may be written as

yb
nec′

== −gncξbcsch(ξb), (7.168)

again a simple but accurate relationship.
The transfer admittance can be found from the coefficient of V̂eb in Equa-

tion 7.161 together with the sign reversal to account for the definition of current
for the network parameters.

yb
nc′e

= −qDnAnp0 exp

(
qV be
kT

)
q

kT

1

wB
ξbcsch(ξb)

= −gneξbcsch(ξb). (7.169)

We have now derived the simple relationships of the admittance parameter
terms resulting from electron transport in the base. Summarizing them here,

ybnee = gneξb coth(ξb),

yb
nec

′ = −gncξbcsch(ξb),

yb
nc′e

= −gneξbcsch(ξb),

and yb
nc′c′

= gncξb coth(ξb). (7.170)

So far we have considered only the electron current part of the transport in
the base. If the collector junction is not reverse biased into breakdown, the hole
current is insignificant, and hence we may substitute gc = gnc, i.e., the output
conductance at low frequency is entirely due to electron transport. We have
not included the collector transition region capacitance, i.e., the modulation of
the space charge region by changes in the bias. This is the capacitance CtC,
applicable both in the quasi-static and the high frequency conditions, because
the dielectric relaxation time is significantly smaller than the times of even this
model.
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Figure 7.37: Transit of charge in between two parallel plates and the associ-
ated termination of fields during the transit (a), and a schematic of the time
dependence of current in the external circuit (b).

We also have to consider the effect of the collector transport factor, which
relates the current collected at the collector ohmic contact as well as flowing
through the quasi-neutral collector region with the electron current entering
the base–collector depletion region. These are generally not identical, since a
transiting carrier in a depletion region has displacement effects associated with
it. The quasi-neutral regions abutting the depletion region can be viewed as
the equi-potential surfaces of the base–collector capacitor. A moving charge
between two parallel conducting electrodes, as it moves between the plates (see
Figure 7.37), has a changing termination in its associated electric field lines from
one electrode to other. An electron very close to the quasi-neutral base region,
e.g., terminates on a hole in the base at the edge of the base–collector depletion
region. Similarly, an electron very close to the quasi-neutral collector region
requires uncovering of an ionized donor. So while the electron is transiting,
continuity of the total current is maintained at all cross-sections of the structure
by the particle current in the quasi-neutral regions required to supply and collect
charge flow, and by the particle current and the displacement current related to
the changing of the electric field in the depletion region itself.

We consider the problem of current due to moving charges in the depleted
space charge region, at the base–collector junction, using the current continuity
equation under small-signal conditions. The electric field in the region, under
the bias and small-signal conditions, is

E(z) = E(z) + Ẽ(z)

= E(z) + Ê(z) exp (jωt) , (7.171)
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and the carrier density as a function of position is

n(z) = n(z) + ñ(z)

= n(z) + n̂(z) exp (jωt) , (7.172)

in response to a collector bias of

Vcb = V cb + V̂cb exp (jωt) . (7.173)

The total current density at any position z is

J(z) = Jn + Jnd

= Jn +
∂D
∂t
. (7.174)

The current Jn is the electron current density due to particle flow, i.e., the sum
of the drift and diffusion components, and Jnd is the displacement current of
electrons, D being the displacement vector. The small-signal component of this
equation is

Ĵ = Ĵn + jωεÊ . (7.175)

Integrating over the width of the depletion region,

Ĵ(wC′ − wC) =

∫ w
C

′

wC

Ĵndz + jωε

∫ w
C

′

wC

Êdz. (7.176)

The last integral is the small-signal voltage across the collector space charge
region, V̂cb, and hence

Ĵ =
1

(wC′ − wC)

∫ w
C

′

wC

Ĵndz + jω
ε

(wC′ −wC)
V̂cb. (7.177)

Multiplying by the area A, we recognize the fraction part of the last term as the
transition capacitance of the base collector junction, CtC . The current in the
quasi-neutral collector region, corresponding to the collector electrode, follows
as

Î =
1

(wC′ −wC)

∫ w
C

′

wC

Îndz + jωCtC V̂cb. (7.178)

The first term in this equation is usually referred to as the induced charge com-
ponent and the last term is the transition charge component of currents. If we
now assume that the electrons move with constant velocity vs—the saturation
velocity because the electric fields are high—then we may write the position-
dependent carrier concentration as

ñ(z, t) = n̂(0) exp

(
−jω z

vs

)
, (7.179)

and the position- and time-dependent carrier concentration as

n̂(z, t) = n̂(0) exp

[
jω

(
t− z

vs

)]
. (7.180)
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The particle current phasor is

În = −qAn̂(0) exp

(
−jω z

vs

)
vs, (7.181)

and the particle current phasor at the base edge of the base–collector depletion
region is

Înc′ = −qAn̂(0)vs. (7.182)

The induced term can now be evaluated as

1

(wC′ − wC)

∫ w
C

′

wC

Îndz

= − 1

(wC′ −wC)

∫ w
C

′

wC

qAn̂(0) exp

(
−jω z

vs

)
vsdz

= − 1

(wC′ −wC)

1

(−jω/vs)
qAn̂(0)

[
exp

(
−jωwC′ −wC

vs

)
− 1

]

= Înc′
sin(ωτ

′

c)

ωτ
′

c

exp
(
−jωτ ′

c

)
. (7.183)

where

τ
′

c =
(wC′ −wC)

2vs
. (7.184)

The ratio of particle current exiting the base–collector region at any instant
to the particle current entering is the collector transport factor (ζ),

ζ =
Înc

Înc′

=
sinωτ

′

c

ωτ
′

c

exp
(
−jωτ ′

c

)
. (7.185)

This time constant, τ
′

c, is the collector signal delay time, i.e., the delay
in the exiting particle current signal with respect to that entering the base–
collector depletion region. The actual time that any particle takes to traverse
this collector depletion region is the collector transit time,

τc =
wC′ − wC

vs
, (7.186)

under our assumption of constant velocity transit. The signal delay is half that
of the particle transit delay. Since,

Înc = ζÎnc′ , (7.187)

we may now modify the admittance parameters related to the collector current
by including the effect of base–collector region to our analysis of the transport in
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a quasi-neutral base. This results, following Equation 7.187, in both the output
and forward admittance contributions of the base particle transport being mod-
ified to their product with ζ. Following the above analysis, the admittance of
the collector transition capacitance can be included additively. These modified
parameters are

ybcc = ζgcξb coth(ξb) + jωCtC , (7.188)

and
ybce = −ζgcξbcsch(ξb). (7.189)

For the emitter admittance, ybpee due to hole injection into the emitter, if
substantial, has to be taken into account. In addition, we have to consider,
similar to the case of base–collector depletion region transport, the effect of
transit in the base–emitter depletion region and the admittance contribution of
the emitter transition region capacitance. In our analysis, including the small-
signal modelling, we have always assumed instantaneous equilibrium of carrier
concentrations at the edges of the base–emitter depletion region. The basis
of this assumption has been that the depletion region is considerably thinner
than other transit regions under normal active mode operating conditions, and
that other charging and transit effects overwhelm any contribution from this
transit. This argument is still valid under the small-signal conditions, and hence
we ignore the effect of transit in the base–emitter depletion region. We have
discussed the quasi-static effects of the use of heterostructures at the base–
emitter junction. It leads to an appreciable reduction of the hole injection under
quasi-static conditions, and, by extension, to similar relative effects under small-
signal conditions. The effect of small-signal operation should be to decrease the
magnitude of the device, etc. Let the contribution of the hole part be called
ybpee. Including this, and the effect of emitter transition capacitance CtE, we
obtain

ybee = ybpee + gncξb coth(ξb) + jωCtE . (7.190)

We now consider the relative magnitude of these parameters. First, consider
ybpee for a heterostructure bipolar transistor. Since the hole injection has been
decreased, the quasi-static magnitude of the injection efficiency is very high,
and ybpee << ybnee under most bias conditions. Consider the graded barrier
heterostructure bipolar transistor. The change in bandgap of the materials ∆Eg
appears as an excess barrier in the valence band. So, the difference between the
heterostructure and homostructure is that under low-level injection conditions
with the quasi-Fermi levels flat, the equilibrium hole concentration in the wide
gap material has been reduced by this excess barrier. The hole concentration
at the depletion region edge is given by the Shockley boundary conditions. It
is lowered by the decrease in the intrinsic carrier concentration and reduction
of pn0 from the homostructure case. Recall that the ratio of hole concentration
between the heterostructure and the homostructure, all the other parameters
remaining constant, is

pn(wE′ )|1
pn(wE′ )|2

=
ni

2|1
ni2|2
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= exp

(
−∆Eg
kT

)
<< 1, (7.191)

where 1 identifies the heterostructure and 2 the homostructure bipolar tran-
sistor. The hole carrier concentration is negligible at the ohmic contact or a
higher doped region used to reduce emitter resistances. So this position serves
as a boundary condition similar to that of the base–collector junction for base
transport. The admittance equations are therefore identical, with the electron
parameters replaced by hole parameters. We may write ybpee as

ybpee = gpeξe coth(ξe). (7.192)

Here,

ξe =
wE′

Lp
(1 + jωτp)

1/2
, (7.193)

analogous to electron transport in the base, and

gpe = gne exp

(
−∆Eg

kT

)
, (7.194)

which is the quasi-static conductance limit of the admittance. In these expres-
sions, τp and Lp are the lifetime and the diffusion length in the n-type emitter.
In view of the exponential factor, and limitations already placed on the applica-
bility of our model, we will ignore the hole injection term in the following. For
specialized cases, it can be included in the form described. We may therefore
summarize our input admittance as

ybee = gcξb coth(ξb) + jωCtE . (7.195)

Let us also consider the effect on injection efficiency. Since, by definition,

ybnee =
Îne

V̂eb

∣∣∣∣∣
V̂cb=0

and ybpee =
Îpe

V̂eb

∣∣∣∣∣
V̂cb=0

, (7.196)

we obtain the small-signal injection efficiency γ̃ as

γ̃ =
Îne

Îne + Îpe

=
ybnee

ybnee + ybpee
. (7.197)

Figure 7.38 shows a representative example of variation of the small-signal
injection efficiency with frequency for an HBT structure; a structure that we
will use as an example for rest of small-signal modelling. The parameters for
this calculation are provided in the figure.
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Figure 7.38: The magnitude and phase of small-signal injection efficiency of
an idealized one-dimensional Ga.7Al.3As/GaAs/GaAs n–p–n HBT. The device
structure has a Ga.7Al.3As emitter doped to 5× 1017 cm−3 and a base of GaAs
doped to 5 × 1018 cm−3. The base thickness is 1000 Å. This device structure
will also be used in discussing the behavior of other small-signal parameters.
The collector of the structure is doped to 1× 1017 cm−3. ω0 has the magnitude
of 7.77× 1011 rad.s−1.
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We have now considered transport at the emitter–base junction, in the quasi-
neutral base, and at the base–collector junction. Using these, we can write the
final form of our admittance parameters ignoring the effect of ypee,

[
Î
]

b
=

[
geξb coth(ξb) + jωCtE −gcξbcsch(ξb)
−ζgeξbcsch(ξb) ζgcξb coth(ξb) + jωCtC

] [
V̂
]

b
. (7.198)

These are straightforward in form and particularly suited for numerical ap-
proaches since they use complex mathematics. To gain insight, and to relate to
our quasi-static discussion, we now consider some approximate ways of looking
at this problem. These lend themselves to analysis in the form of poles, i.e., as
resistive and capacitive elements and hence equivalent circuits of more general
validity then the quasi-static derivations. Let us look at the input admittance
term first.

ybee = geξb coth(ξb), (7.199)

where

ξb =
wB
Ln

(1 + jωτn)
1/2

=

[(
wB
Ln

)2

+ jω
wB

2

Dn

]1/2

=

[(
wB
Ln

)2

+ j2ωτB

]1/2

. (7.200)

The time parameter τB = wB
2/2Dn was encountered in quasi-static analysis

as a time constant of charge storage in the quasi-neutral base, as well as the
average transit time of carriers in the quasi-neutral base. We will use it as a
parameter in our simplifications. The inverse of this time constant, which is the
base transit frequency,

ω0 =
1

τB
, (7.201)

is also sometimes used as a parameter in our approximations.
The low frequency and high frequency approximation of the general result

can be obtained by expansion of the hyperbolic and the square root terms,

ybee = ge
(
1 + 2

3ωτB
)

ωτB << π

ybee = ge(2jωτB)
1/2

coth
(
(2jωτB )

1/2
)

ωτB >> π
(7.202)

Figure 7.39 shows the conductance and the susceptance of the input admittance
as a function of frequency, for the accurate expression and for the approxima-
tions. The low frequency limit exhibits a susceptance that is proportional to the
frequency, and hence can be modelled by a capacitance. Thus, the input admit-
tance, in the low frequency limit, is clearly amenable to an equivalent circuit
model comprising of a resistor and a capacitor in parallel. The susceptive part
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Figure 7.39: Normalized conductance and susceptance part of the input admit-
tance in the common-base configuration, together with the low frequency and
high frequency approximations. Note that the conductance is nearly a constant
and the susceptance varies linearly with frequency in the low frequency limit.
ω0 has the magnitude of 7.77× 1011 rad.s−1.
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corresponds to a capacitance (a diffusion capacitance that we denote as C
′

De )
whose magnitude corresponds to

C
′

De = ge
2

3
τB =

gewB
2

3Dn
. (7.203)

This capacitance is two-thirds of the diffusion capacitance derived in our quasi-
static modelling. This is, however, not in contradiction. This the capacitance
corresponding to the input admittance in the common-base configuration. Our
discussion of the quasi-static model was with respect to the common-emitter
configuration. The diffusion capacitance derived here appears between the emit-
ter and the base contacts when the collector-to-base voltage is kept constant.
The earlier quasi-static calculation corresponds to a capacitance appearing be-
tween the base and the emitter with the collector-to-emitter voltage kept con-
stant. The difference between these two should, therefore, appear between the
emitter and the collector. Let us look at the forward admittance and its ap-
proximation to determine if this is so. The exact and the approximations, based
on expansions for the base transport contribution to the forward transfer ad-
mittance in the low frequency limit, i.e., for ωτB � π, are

ybnce = −geξbcsch(ξb)

≈ −ge
[
ξb

(
1

ξb
− 1

6
ξb

)]

≈ −ge
(

1 − 1

6
ξb

2

)

≈ −ge
(

1 − 1

3
ωτB .

)
(7.204)

So, in the low frequency limit, the susceptance can be modelled by a capacitance
between the base and the collector (C

′′

De ), where

C
′′

De = ge
1

3
τB =

gewB
2

6Dn
. (7.205)

In the low frequency limit of the small-signal admittances, the sum of this
base–collector component of diffusion capacitance in the common-base configu-
ration with the base–emitter component of diffusion capacitance is geW

2
B/2Dn,

identical to the quasi-static diffusion capacitance in the common-emitter con-
figuration. The approximation of the base contribution to the forward transfer
admittance, in high frequency limit ωτB � π, is

ybnce = −geξbcsch(ξb)

≈ −ge(2jωτB)
1/2

csch
(
(2jωτB )

1/2
)
. (7.206)

An estimate of the magnitude and the accuracy of these approximations for
the forward transfer admittance can be obtained from Figure 7.40.
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Figure 7.40: Base contribution of the normalized forward transfer admittance
of the Ga.7Al.3As/GaAs/GaAs HBT together with the low and high frequency
approximations.

The approximations for the reverse transfer admittance and the output ad-
mittances follow in a similar manner. The low frequency approximation of the
reverse transfer admittance, i.e., for ωτB � π, is

ybec = −geξbcsch(ξb)

≈ −ge
(

1 − 1

3
ωτB

)
. (7.207)

It can be modelled as a resistance and capacitance also. The high frequency
approximation of the reverse transfer admittance, i.e., for ωτB � π, is

ybec = −geξbcsch(ξb)

≈ −ge(2jωτB)1/2csch
(
(2jωτB )1/2

)
. (7.208)

The low frequency approximation for the base transport contribution to the
output admittance, i.e., for ωτB � π, is

yb
cc

′ = gcξb coth(ξb)

≈ gc

(
1 +

2

3
ωτB

)
, (7.209)

and the high frequency approximation, i.e., for ωτB � π, is

yb
cc

′ = gcξb coth(ξb)
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≈ gc(2jωτB )
1/2

coth
(
(2jωτB)

1/2
)
. (7.210)

These relationships, involving the collector current, i.e., the output and the
forward admittance parameters, do not yet include the contribution from the
transport in the base–collector depletion region. We will discuss this as part
of our discussion of the transport factors. The forward transfer admittance
contributes to the collector current as a product with the emitter–base small-
signal voltage. Thus, it appears as a current source. The transport factors,
therefore, appear as a necessary part of the modelling related to behavior of
output port. The small-signal injection efficiency for an HBT is quite close to
unity. It is best treated by considering the expression in its original form or
approximated to unity, i.e.,

γ̃ =
ybnee

ybnee + ybpee

=
geξb coth(ξb)

geξb coth(ξb) + geξe coth(ξe)

≈ 1. (7.211)

The base and the collector signal delays are still important. We have made a
first-order analysis of the collector transport factor and the associated collector
signal delay after assuming that the velocity of a carrier there is a constant.
We will now look at the base transport factor, whose information is already
contained in the parameter derivation of base transport. We are interested in
the base transport factor αT , its frequency dependence, and its approximations.
By definition,

α̃T =
Înc′

Îne

∣∣∣∣∣
V̂cb=0

. (7.212)

These currents have been evaluated previously. Substituting,

α̃T =
qDnnp0 exp

(
qV be/kT

) (
qV̂be/kT

)
ςcsch(ξb)

qDnnp0 exp
(
qV be/kT

) (
qV̂be/kT

)
ς coth(ξb)

= sech(ξb). (7.213)

Recombination processes dominate the base transport effect, i.e., the most
likely event occurring to a travelling electron is an annihilation process involv-
ing another hole, or an annihilation process involving an Auger process. Both
of these can be approximated by the single time constant τn that we have em-
ployed. There are a few exceptions to this, e.g., punch-through operation dur-
ing avalanching, but these are rarely of interest in practical structures. Thus
α̃T < 1. In general, it is complex, with both magnitude and phase varying with
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Figure 7.41: Variation of the magnitude of the small-signal base transport factor
with frequency for the Ga.7Al.3As/GaAs/GaAs HBT example together with the
various approximations.

frequency. The static value of this is

αT = sech

(
wB
Ln

)

≈ 1

1 +wB2/2Ln2

≈ 1 − wB
2

2Ln2
(7.214)

for wB/Ln � 1.
Figure 7.41 shows this variation as a function of frequency for our bipolar

transistor example. We now look at some approximations of this in various
frequency ranges. For ωτB ≈ 1,

α̃T = sech

(
wB
Ln

)
sech

(
(2jωτB )1/2

)
. (7.215)

Another approximation, which is often employed for intermediate frequencies,
is to fit a pole that approximates the magnitude of α̃T at the 3 dB point.
This provides a good match to magnitude where α̃T is down to half of its low
frequency value. The frequency at which this occurs is commonly referred to
as the alpha-cutoff frequency ωαT

. Let us introduce the notation of ταT

B , which
denotes the inverse of the alpha-cutoff frequency. Using this,

α̃T =
αT

1 + jωταT

B

. (7.216)
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The frequency at which αT drops to half its static value is

ωαT
=

2.43Dn
wB2

≈ 1.22ω0 (7.217)

for a homogeneous base transistor. On the other hand one may prefer to stay
with our standard time constant τB, and obtain a simultaneous approximate fit
to both the magnitude and the phase with

α̃T ≈ αT
1 + jωτB

. (7.218)

This expression actually slightly overestimates the phase delay. This is so be-
cause our accurate expression is actually a hyperbolic secant and does not lend
itself to an easy approximation. A significantly more accurate expression that
serves well for both low and high frequencies for the current transport factor is

α̃T ≈ αT
exp (−δωταT

B )

1 + jωταT

B

≈ αT
exp (−δωτB )

1 + jωτB
, (7.219)

where δ ≈ 0.22. Recall that from our previous treatment of these time con-
stants,

ταT

B ≈ 0.82τB. (7.220)

The phase delay at low frequencies looks like a pole response, but at frequencies
in excess of 0.1ωαT

, an additional phase delay should be included. Figure 7.41
shows the variation of the exact expression together with the variation of these
approximate expressions as a function of frequency for our bipolar transistor
example.

Note that the complete current transport factor for HBTs is

α̃ = γ̃α̃T ζ̃ ≈ sech(ξb)
sin(ωτ

′

c)

ωτ
′

c

exp
(
−ωτ ′

c

)
≈

exp (−δωτB ) exp
(
−ωτ ′

c

)

1 + jωτB
.

(7.221)
Figure 7.42 shows the common-base current gain (α̃) and its components for
our transistor example. At frequencies near ω0, the effect of transport in the
base and the collector is quite similar in magnitude and is significantly larger
than that of the injection efficiency.

These various approximations are summarized for the admittance parame-
ters, including the collector transport effects, together with the accurate expres-
sions, in Figure 7.43 for reverse and Figure 7.44 for output y-parameters in the
common-base configuration.

Finally, we now use the approximations to obtain equivalent circuit models
with limits of validity significantly beyond those of quasi-static models. Our
complete y-parameters for this common-base condition result in a network model
that can be represented as in Figure 7.45. We may now include the single
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Figure 7.42: Variation of small-signal common-base current gain and its com-
ponents with frequency for the Ga.7Al.3As/GaAs/GaAs HBT. Part (a) shows
the magnitude of the gain and part (b) shows the phase for the total and the
components.
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Figure 7.43: Variation of the normalized reverse admittance and its approxima-
tions with frequency for the Ga.7Al.3As/GaAs/GaAs HBT example.

Figure 7.44: Variation of the normalized output admittance and its approxima-
tions with frequency for the Ga.7Al.3As/GaAs/GaAs HBT example.
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Figure 7.45: Two network model representations of the common-base y-
parameters. Note that the model in (b) eliminates the current source in the
input circuit.

Figure 7.46: Common-base model with pole approximation to input and output
admittances.
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pole approximation for the input and output admittances for this, resulting in
Figure 7.46.

This theory is based on one-dimensional flow of carriers. Actual device struc-
tures are significantly more complicated, and require inclusion of bulk resistive
effects such as due to base resistance. These parasitic and extrinsic effects are
related to transport of majority carriers and charging of parasitic capacitances.
Most of these, for the frequency ranges of interest, i.e., near and lower than the
frequency limits, can be modelled as discrete lump elements in an equivalent
circuit. For example, in the simplest implementations, the extrinsic base resis-
tance may be included by adding it as a lumped resistance in series with our
approximate model.

For applicability to medium frequency range, we could, finally, make most
of the pole zero approximations, except in the current transport factor. This
results in a more complicated current source representation but a simple equiv-
alent circuit representation which has fairly broad validity.

Inclusion of other lumped elements or transformation to other network pa-
rameters can now be accomplished using procedures that have been discussed
earlier; the transformations are included in the Appendix A. For all these we
begin with our complete admittance parameter relationship (Equation 7.198)
or its approximation. It can be manipulated to add whatever elements are de-
sired, or to derive it in any other configuration. If one wished to add an emitter
resistance to these common-base parameters, one could accomplish it by con-
verting to an impedance matrix, and then the emitter resistance adds to the
input impedance term. If one wanted to add the base resistance, however, one
would have to do that by converting to common-emitter parameters. Conversion
from one common node to another is another example of matrix manipulation,
and is accomplished using indefinite matrices, as discussed in Appendix A, and
small-signal analysis of FETs.

These transformations can affect one or more than one of the of parameters.
Both an equivalent circuit and the matrix relationship indicate why many of
the admittances are affected in some of these transformations. As an example,
all admittances of the common-base mode are affected by inclusion of the base
resistance because it has a negative feedback effect. But only the input term
is affected for impedance due to the emitter resistance. On the other hand, all
admittances of the common-emitter mode are affected by the emitter resistance
because it has a negative feedback effect. But only the input term is affected
for impedance in the common-base mode.

7.6.4 Frequency Figures of Merit

We now consider the evaluation of figures of merit of the HBT, basing these
figures of merit on the analysis undertaken. However, we will attempt this only
in the simplest of geometries; more complicated ones can best be done using
numerically intensive methods, and we will give examples of results of these
later. For determining the unity current gain frequency fT of the transistor, we
have to determine the hybrid parameter h21 in the common-emitter mode.
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Hybrid parameters for the two-port transistor are defined from

V̂be = h11Îbe + h12V̂ce

and Îce = h21Îbe + h22V̂ce. (7.222)

fT is the frequency at which the current gain is unity with a short-circuit at
the output, i.e., it is the frequency when

Îce

Îbe

∣∣∣∣∣
V̂ce=0

= h21 = 1. (7.223)

In terms of the common-base matrix of y-parameters,

[y]b =

[
yee yec
yce ycc

]
(7.224)

we obtain h21 in the common-emitter mode as

h21 =
−yce − ycc

yee + yec + yce + ycc
= [ζgeξbcsch(ξb) − ζgcξb coth(ξb) − jωCtC ] ÷

[geξb coth(ξb) + jωCtE − gcξbcsch(ξb)−
ζgeξbcsch(ξb) + ζgcξb coth(ξb) + jωCtC ] . (7.225)

We will now make our pole zero approximations in the high frequency range
with

(ynee) : geξb coth(ξb) ≈ ge(1 + j 2
3ωτB)

(yncc) : gcξb coth(ξb) ≈ gc(1 + j 2
3ωτB )

(ynec) : −gcξbcsch(ξb) ≈ −gcα0(1 − j 1
3ωτB)

(ynce) : −geξbcsch(ξb) ≈ −geα0(1 − j 1
3ωτB)

(ζ) :
(
sinωτ

′

c/ωτ
′

c

)
exp

(
−jωτ ′

c

)
≈ 1 − jωτ

′

c

(yce) : −ζgeξbcschξb ≈ −geα0(1 − j 1
3ωτB − jωτ

′

c)

(ycc) : ζgcξb coth ξb ≈ ge(1 + j 2
3ωτB − jωτ

′

c).
(7.226)

Hence,

h21|e ≈
[
α0ge

(
1 − j

1

3
ωτB − jωτ

′

c

)
−

gc

(
1 + j

2

3
ωτB − jωτ

′

c

)
− jωCtC

]
÷

[
ge

(
1 + j

2

3
ωτB

)
+ jωCtE − α0gc

(
1 − j

1

3
ωτB

)
−

α0ge

(
1 − j

1

3
ωτB − jωτ

′

c

)
+
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gc

(
1 + j

2

3
ωτB − jωτ

′

c

)
+ jωCtC

]

≈
[
α0

(
1 − jωτ

′

c − j
1

3
ωτB

)
− gc
ge

(
1 + j

2

3
ωτB − jωτ

′

c

)
−

j
ωCtC
ge

]
÷
[(

1 − α0 − α0
gc
ge

+
gc
ge

)
+ jω

(
2

3
τB +

1

3
α0τB

gc
ge

+

α0τ
′

c +
1

3
α0τB − τ

′

c

gc
ge

+ τB
gc
ge

+
CtC +CtE

ge

)]
.

(7.227)

Several of these factors are negligible compared to others for the frequencies
of interest (ω ≤ 1/τB). We use the fact that gc/ge << 1 to eliminate the related
terms, getting

h21|e =
α0 − jω

(
α0τ

′

c + 1
3
α0τB +CtC/ge

)

1 − α0 + jω
[

2
3τB + α0τ

′

c + 1
3α0τB + (CtE + CtC) /ge

]

≈ α0

1 − α0
×

1 − jω
[

1
3
τB + τ

′

c + (1/α0)(CtC/ge)
]

1 + j(ω/(1 − α0))
[

2
3τB + α0τ

′

c + 1
3α0τB + (CtE +CtC)/ge

]

≈ α0

1 − α0

1 − jω
(

1
3τB + τ

′

c + CtC/ge

)

1 + j(ω/(1 − α0))
[
τB + τ

′

c + (CtE + CtC)/ge

] ,

(7.228)

where in the final expression we used the fact that α0 ≈ 1. The imaginary
term in the denominator is significantly larger than the imaginary term in the
numerator for this reason. The current gain response is dominated by the imag-
inary term in the denominator at frequencies near fT . A good approximation
for h21, near fT , then, is

h21|e ≈ α0

1 − α0

1

(jω/(1 − α0))
[
τB + τ

′

c + (CtE +CtC)/ge

]

≈ 1

jω
[
τB + τ

′

c + (CtE + CtC)/ge

] . (7.229)

From this, by definition, the unity current gain frequencies are

ωT =
1[

τB + τ
′

c + (CtE + CtC)/ge

] , (7.230)
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Figure 7.47: Equivalent circuit representation of the h-parameter equations.

and

fT =
1

2π
[
τB + τ

′

c + (CtE +CtC)/ge

]

=
1

2π {(W 2
B/2Dn) + +[(wC′ − wC)/2vs] + (CtE +CtC)/ge}

.

(7.231)

This result is independent of the base resistance because it is derived for a
current drive at the input. If the assembly of the transistor structure was
such that base and an extrinsic part of the collector capacitance had to be
treated as a distributed network, or simple multiple stage equivalents, then it
would have been a function of that too. In the h-parameter representation, our
model appears as follows Figure 7.47. This is the hybrid-pi representation of an
equivalent circuit and is similar in appearance of the hybrid model for FETs.

To calculate the maximum frequency of oscillation, one wants to find the
unilateral gain of the transistor. Unilateral gain is the maximum gain of a
device, obtained by using ideal passive elements to unilateralize the network, i.e.,
to compensate for the feedback terms. The frequency at which this unilateral
gain goes to unity is the maximum frequency of oscillation, because this is the
ultimate frequency at which the device would oscillate in an ideal circuit. A
network is unilateralized by using loss-less reciprocal elements. In general, the
unilateral gain for y−parameters is given by

U =
| y21 − y12 |2

4 [Re [y11] Re [y22] − Re [y21] Re [y12]]
, (7.232)

which is quite a complicated equation. This would be quite difficult to evaluate
if we wanted to include the base resistance. Let us first do this by an intuitive
analysis. Since the bipolar is a highly unilateral device, we will ignore the feed-
back term in it (recall gc << ge). If we know the input and output impedance
and the current gain, we can derive the frequency at which the power gain goes
to unity. This is the maximum frequency of oscillation.
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We have already found the current source, which at the highest frequency fol-
lows from Equation 7.228. Base resistance usually dominates the input impedance
of the idealized model, the input admittance having resulted from a forward bi-
ased junction. So the input impedance is simply the input resistance rb. The
output resistance is given by h22,

h22 =
| y |∑
y

=
yeeycc − yecyce

yee + ycc + yec + yce

≈
{[
ge

(
1 + j

2

3
ωτB

)
+ jωCtE

]
×

[
gc

(
1 + j

2

3
ωτB − jωτ

′

c

)
+ jωCtC

]
−

[
α0ge

(
1 − j

1

3
ωτB − jωτ

′

c

)][
gcα0

(
1 − j

1

3
ωτB

)]}
÷

(
jge

ω

ωT

)
. (7.233)

We have used the single pole and single zero approximations. The denominator
uses the dominance of the imaginary part over the real part at the frequencies
of interest. So,

h22 ≈
{
ge

[
1 + j

2

3
ωτB + jω

CtE
ge

]
gc

[
1 + j

2

3
ωτB − jωτ

′

c + jω
CtC
gc

]
−

α0
2gegc

[
1 − j

2

3
ωτB − jωτ

′

c

]}
÷
(
jge

ω

ωT

)
. (7.234)

Since gc << ge, it dominates the rest of the terms in the second bracket of the
numerator, and hence

h22 ≈ jωCtC
[
1 + j 2

3ωτB + jωCtE/ge
]

jω/ωT

≈ ωTCtC + jω

[
2

3
ωT τBCtC + ωT

CtECtC
ge

]
. (7.235)

So the output and input can be modeled at the frequencies close to fT as in
Figure 7.48. Here the conductances are 1/rb in the input circuit and ωTCtC
in the output circuit. The capacitive element in the output can be tuned out
by an inductance during unilateralization. We have ignored the feedback term
inherent in h12. In order to obtain the maximum available gain, we need to
know the real parts of the input and output impedances only. Matching entails
use of the complex conjugate of these impedances. So the output load will be a
parallel network of a conductance ωTCtC and an inductance L,

L =
1

ω2CtC
[

2
3
ωT τB + ωTCtE/ge

] . (7.236)
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Figure 7.48: Equivalent circuit model approximation for determination of fmax.

Figure 7.49: Equivalent circuit derived using the y-parameters and including
the base resistance.

The power gain follows from this as

G =

[
(ÎbωT )/(2ω)

]2
(1/ωTCtC)

Îb
2
rb

. (7.237)

Only half of the current from the current source flows through the load resis-
tance. Power gain is unity at ωmax, and hence

ωT
2

4ωmax2ωTCtCrb
= 1

ωmax =

√
ωT

4rbCtC

or fmax =

(
fT

8πrbCtC

)1/2

. (7.238)

We have derived, including the base resistance, the equivalent circuit shown
in Figure 7.49. In making this representation, both CtE and CtC were associated
with the intrinsic device structure. This is clearly quite applicable to the emit-
ter where the extrinsic fringing capacitances as well as capacitances associated
with extrinsic base regions are smaller than the intrinsic capacitance. For the
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Figure 7.50: Common-base equivalent circuit based on y-parameters.

collector, however, this is an approximation. Conventional bipolar transistors
incorporate the emitter in the region nearest to the surface, and the transistors
are referred to as emitter-up structures. Collector-up structures are also possi-
ble, but are less common, their major appeal being in integration but usually
with a lowering of device speed. The emitter-up bipolar transistor structure
has a collector area that is larger than the emitter area. The injected electron
current passes underneath the emitter into the collector. The attached extrinsic
collector area does not have significant collector current flow through it. The
division of the lumped elements, extrinsic and intrinsic base resistances, and
collector capacitances can be complex, since both in the intrinsic and extrinsic
part lumped elements are an approximation to a distributed network. A rea-
sonably acceptable representation would be to divide the collector capacitance,
connecting some of it at either of two ends of the extrinsic base resistance. One
may also divide the extrinsic base resistance into two parts, at the least, com-
bining the contact resistance part in one term and the extrinsic semiconductor
resistance in the other.

The equivalent circuits derived can be cast in alternate forms. One example
is shown in Figure 7.50 which is a common-base representation casted with a
current source based on the the emitter current. These derived parameters may
be simplified using the pole zero approximations and this results in a network
that is a hybrid-pi equivalent circuit. It is similar to that of the FETs.

Recalling that the common-base representation can be converted to the
common-emitter representation, we can obtain the common-emitter parameters.
The discussion of derivation of these parameters is continued in our treatment
of transit time resonance effects later in this chapter together with a discussion
of the inclusion of extrinsic resistances and parasitic capacitances. The current
source term in these networks is related to the transit of carriers and delays
associated with it. In our notations, it falls out naturally when transforming to
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hybrid parameters from the y-parameters as

α̃ = γ̃α̃T ζ̃ , (7.239)

for which our excess phase approximation is

α̃ ≈ αT0
1

1 + jωτB
exp (−jδωτB ) exp

(
−jωτ ′

c

)
. (7.240)

7.7 Small-Signal Effects of Alloy Grading

The small-signal treatment considered thus far analyzed uniform doping in the
base. The limitations placed in operational frequency or in transient delays for
such structures can have a significant component of contribution from the trans-
port in the base, after making the compromises between decreased base width
and increased intrinsic resistance of the base. An additional improvement that
can be made is to introduce an electric field in the base that accelerates the
injected carriers from the base–emitter junction to the base–collector junction.
In a non-heterostructure technology, this is accomplished by using a grading in
the doping, with a higher doping at the base–emitter junction (see Problem 13).
Such a gradient occurs naturally in implanted base transistors. Heterostructure
growth techniques also allow this electric field to be introduced, in the form
of a quasi-field due to the use of an alloy composition gradient. For minor-
ity carriers with low diffusivities, such as electrons in silicon or holes in most
semiconductors, this can result in very significant improvements.

We will now consider modifications to our small-signal analysis by including
this alloy grading field in the base through its effect on base transport. In view
of the comments just made, the description of this problem is similar to that for
bipolar transistors with a doping gradient in the base. With a suitable choice of
parameterization, the underlying mathematical derivation is identical for both
of the problems. We analyze the transport equation, within the drift-diffusion
approximation, by considering the effect of the quasi-field Ee, this field being
the result of compositional variation in the base. This analysis, an extension
of the uniformly-doped base analysis, with the same underlying assumptions, is
again valid only at low-level injection conditions in the base.

In the base region, the control equations are

∂np
∂t

= G −R +
1

q
Jn,

where G − R =
np − np0

τn
,

and Jn = qnµn

{
−∇ψ −∇φC − kT

q
∇ ln(NC)

}
+ qDn∇np.

(7.241)
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In the quasi-neutral base, which is uniformly doped with NA acceptors,

−∇φC = Ee = −1

q
∇Eg, (7.242)

and

∇ψ = 0. (7.243)

Since we assume low-level injection, the hole density is relatively unchanged,
and hence the change in alloy composition with the resulting change in electron
affinity results directly in the quasi-field Ee. Let us consider the requirement
for introducing a quasi-field of 1.0 × 103 V.cm−1, a field adequate to cause an
electron velocity close to 1 × 107 cm.s−1 in GaAs. For a 1000 Å base width, a
change in bandgap of 10 meV is required. Since there is a direct dependence
between the AlAs mole-fraction and the bandgap in this composition range, a
linear change in the AlAs mole-fraction from .010 ÷ 1.24 = .008 at the base–
emitter junction to GaAs at the base–collector junction would result in the
requisite quasi-field. This is a quite minor change. With small base widths in
the transistor structures, fairly large changes in mole-fractions can be introduced
to obtain larger fields required for hole transport or for electrons in structures
involving the use of SiGe alloys, without violating practical critical thickness
requirements.

We will analyze conditions at which the alloy grading field is significantly
larger than the gradient field resulting from density of states, i.e., for (kT/q)∇NC �
∇Eg/q. In order to obtain carrier transit in the base at the highest velocities
possible, this field must be at least comparable to 1× 103 V.cm−1. Such a field
adequately satisfies the constraint. Let E denote the electric field including the
quasi-electric field. Then our current equation is

Jn = qnµnE + qDn
∂n

∂z
. (7.244)

We need not have made the above simplifying assumption. Its violation, follow-
ing Chapter 3, with the inclusion of the density of state term in the first term of
current equation, results only in a loss of the association with field. Our current
continuity equation, following the above, is

∂np
∂t

= −np − np0
τn

+ µn
d(npE)

dz
+ Dn

d2np
dz2

. (7.245)

We consider uniform fields, hence,

d2np
dz2

+
µnE
Dn

dnp
dz

− np − np0
Dnτn

=
1

Dn
∂np
∂t

. (7.246)

Now consider the steady-state and sinusoidal expansion of np(z).

np(z, t) = np(z) + n̂p(z) exp (jωt) , (7.247)
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giving rise to the steady-state equation

d2np
dz2

+
qE
kT

dnp
dz

− np − np0
Dnτn

= 0, (7.248)

and the small-signal equation

d2n̂p
dz2

+
qE
kT

dn̂p
dz

− n̂p
Dnτn

=
jω

Dn
n̂p. (7.249)

We now define the unit-less normalization parameter

κ =
qEwB
kT

, (7.250)

in order to simplify the mathematical description. This normalization parameter
can also be used for the analysis of varying doping profile in the base, with the
electric field as that resulting from the doping change. For the example of
compositional variation, in order to obtain E = 10 kV/cm in wB = 1000 Å, κ
is ≈ 3.9. We will choose a coordinate system, for mathematical convenience,
where the base–collector junction is at z = 0 and the base–emitter junction at
z = wB in our one-dimensional analysis.11 The equation for steady-state is

d2np
dz2

+
κ

wB

dnp
dz

− np − np0
Dnτn

= 0, (7.251)

with the boundary conditions

np(z = 0) = 0

and np(z = wB) = npE (7.252)

in our coordinate system.
Let Jne be the steady-state injected electron current density at the base–

emitter junction. Ignoring recombination effects in the base, but not the time-
dependent phase-delay effects, the current continuity requires

Jne = qDn
κ

wB
np + qDn

dnp
dz

. (7.253)

The minority carrier density has a solution of the form

np(z) = A+B exp

(
− κz

wB

)
. (7.254)

Using the boundary conditions, our solution is

np(z) =
Jne
qDn

wB
κ

[
1 − exp

(
− κz

wB

)]
,

with npE =
Jne
qDn

wB
κ

[1 − exp (−κ)] (7.255)

11This coordinate system is the opposite of the coordinate system chosen in much of the
treatment of base transport.
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Figure 7.51: The electron density as a function of position in the base at 3 ×
104 A.cm−2 current density. The dotted line is for no electric field, the dashed
line is for a quasi-electric field of 5 × 103 V.cm−1 and the solid line is for a
quasi-electric field of 1 × 104 V.cm−1 in the base.

as the carrier density at edge of the emitter–base depletion region. The intro-
duction of the field leads to a direct reduction in the carrier density closer to the
emitter–base junction. This reduction is exponential in κ and the field. Note
that the limitation on this derivation is that the velocity be proportional to the
field, i.e., it is only valid at low fields. When the velocity saturates, further
gains become marginal. Figure 7.51 shows this carrier density as a function of
the current density for a graded alloy base Ga1−xAlxAs transistor. This should
be compared with the distribution without the presence of alloy grading also
shown in this figure. These are for various alloy gradings such that the electrons
experience a quasi-drift field up to 10 kV/cm. We will refer to this transistor
in our subsequent examples of frequency effects also. With finite positive κ,
the value of npE is reduced compared to the situation when no quasi-field is
present. Also note that the carrier density expression and its position depen-
dence reduce to the correct value of npE for the case when κ → 0. In this sit-
uation, npE → JnewB/qDn, which is the correct value for diffusion-dominated
transport.

The small-signal equation is

d2n̂p
dz2

+
κ

wB

dn̂p
dz

− n̂p

(
jω

Dn
+

1

Dnτn

)
= 0. (7.256)
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Again, the solution is of the form

n̂p(z) = A exp

(
λ1z

wB

)
+ B exp

(
λ2z

wB

)
, (7.257)

where

λ1 = −κ
2

+ ξ

and λ2 = −κ
2
− ξ,

with ξ =

[(κ
2

)2

+

(
wB
Ln

)2

+ jω
wB

2

Dn

]1/2

. (7.258)

The boundary conditions for the small-signal carrier density, similar to our
earlier analysis, are as follows. At the collector (z = 0), the carrier density
vanishes, i.e.,

n̂p = 0, (7.259)

and at the emitter (z = wB), the carrier density can be related by perturbative
expansion assuming instantaneous equilibrium in the base–emitter depletion
region, i.e.,

n̂p = npE
qV̂be
kT

. (7.260)

The boundary condition at the collector, z = 0, yields

A = −B, (7.261)

and the boundary condition at the emitter, z = wB , yields

A exp (λ1) + B exp (λ2) = npE
qV̂be
kT

. (7.262)

Consequently,

A = −B = npE
qV̂be
kT

1

exp (λ1) − exp (λ2)
, (7.263)

the small-signal carrier density can be expressed as

n̂p(z) = npE
qV̂be
kT

1

exp (λ1) − exp (λ2)

[
exp

(
λ1z

wB

)
− exp

(
λ2z

wB

)]
, (7.264)

and the small-signal current density can be expressed as

Ĵn(z) = qDn
κ

wB
n̂p(z) + qDn

dn̂p
dz

= qDnnpE
1

wB

qV̂be
kT

1

exp (λ1) − exp (λ2)

[
(λ1 + κ) exp

(
λ1z

wB

)
−

(λ2 + κ) exp

(
λ2z

wB

)]
. (7.265)
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The current transport factor in the base α̃T , following this, is

α̃T =
Ĵnc

Ĵne
=

λ1 − λ2

(λ1 + κ) exp (λ1) − (λ2 + κ) exp (λ2)
, (7.266)

which can be rewritten as

α̃T =
exp (κ/2)

cosh(ξb) + κ sinh(ξb)/2ξb
. (7.267)

Note that when κ → 0, this expression reduces to the familiar zero field
form. The effect of increasing κ is to reduce the delay in the base and increase
the frequency range for large current gain. Figure 7.52 shows this for our alloy
graded transistor. The collector signal delay becomes by far the dominant effect
in this idealized structure. This should be compared with the same device with-
out alloy grading discussed earlier. Similar to the earlier case, an approximation
suitable for calculations is

α̃T = αT0
exp (−jδω/ωαT

)

1 + jω/ωαT

, (7.268)

where

ωαT
= 2.43

[
1 +

(κ
2

)4/3
]

and δ = 0.22 + 0.098κ. (7.269)

Since we have found Ĵne, the phasor of small-signal injected current density
at the base–emitter junction in terms of the phasor of the applied small-signal
voltage V̂be, we can now derive the electron current contribution to the input
admittance (see Problem 10) as

yne =
q

kT

qDnnpE
wB

[κ
2

+ ξb coth(ξb)
]
, (7.270)

which may be written in terms of the low frequency conductance (ge, ignoring
hole injection effects) as

yne = ge
(κ/2) + ξb coth(ξb)

(κ/2) [1 + coth(κ/2)]
. (7.271)

A suitable approximation for the diffusion capacitance (see Problem 11) is

CDe = ge
W 2
B

2Dn

{
2

κ

[
1 − 1 − exp (−κ)

κ

]}
, (7.272)

which shows the reduction in capacitance with increasing κ.
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Figure 7.52: Variation of the magnitude (a) and phase (b) of α̃T for no quasi-
electric field (dotted line), a quasi-electric field of 5 kV/cm (dashed line), and
a quasi-electric field of 10 kV/cm (solid line) for the HBT example.
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The forward transfer admittance (yce) can also be found following our earlier
derivation technique as

yce = α̃T yne

= −ge
2

κ

exp (κ/2)

1 + coth (κ/2)
ξbcsch(ξb). (7.273)

This has the single pole approximation

yce = − αT0ge

1 + j(ω/ω0)
{

(2/κ) coth (κ/2) − (2/κ)
2
} , (7.274)

which can also be approximated as

yce = −αT0ge

{
1 − j

ω

ω0

[
2

κ
coth

κ

2
−
(

2

κ

)2
]}

. (7.275)

The electronic contribution to the output admittance can also be shown
using earlier techniques as

ync = gc (ξb coth(ξb) − κ) , (7.276)

where

gc = − IC
wB

dwB
dvCB

(7.277)

is the low frequency conductance. The transfer admittance, similarly,

yec = −gc
κ exp (−κ)

1 − exp (−κ)
2

κ

exp (κ/2)

1 + coth (κ/2)
ξbcsch(ξb), (7.278)

where we have employed

yec = −ηαT yne = ηyce, (7.279)

with

η =
kT

q

1

wB

dwB
dvCB

κ exp (−κ)
1 − exp (−κ) . (7.280)

7.8 Transit Time Resonance Effects

We will look at our example of the Ga1−xAlxAs/GaAs bipolar to understand
the nature of the frequency dependence, current gain, and unilateral gain, since
in these devices the transit time effect appears to be so important. We use the
relations of y-parameters that we have derived. Although this implies that the
overshoot effects that are present in the HBT are not included, these overshoot
effects result in smaller transit times and hence even higher frequencies where
transit time–related resonances could occur. Thus, drift-diffusion approxima-
tion results in relations that are suitable for judging the nature of roll-off. We
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Figure 7.53: Schematic showing the inclusion of extrinsic parasitics to the in-
trinsic parameters derived from the transport theory of the bipolar transistor.

already know the intrinsic common-base y-parameters (yb11, y
b
12, y

b
21, and yb22),

which include the transition capacitances but exclude the intrinsic base resis-
tance. As we have discussed, the hole injection effect is quite weak ( even for
a homojunction transistor, ≈ 10% decrease in magnitude and ≈ π/5 radians
shift in phase at 2fT for γ̃). It can practically be neglected for HBTs. The
common-emitter y-parameters (ye11, y

e
12, y

e
21, and ye22) can be derived from this.

The effect of the intrinsic base resistance (rbi) can be included in this to obtain
the intrinsic common-emitter y-parameters (see Problem 12),

ybbi =
ye11

1 + rbiye11

,

ybci =
ye12

1 + rbiye11

,

ycbi = ye21

(
1 − rbiy11e

1 + rbiye11

)
,

and ycci = ye22 −
rbiy

e
12y

e
21

1 + rbiye11

. (7.281)

The simplest lumped representation for approximating the extrinsic elements of
bipolar transistor is shown in Figure 7.53, where the usually large extrinsic con-
tribution of the collector capacitance, and the parasitic resistances of the base,
emitter, and collector are also included. The block within is characterized by
the above intrinsic y-parameters. The extrinsic common-emitter y-parameters
(ye11x, y

e
12x, y

e
21x, and ye22x) can now be derived.
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Figure 7.54: Intrinsic and extrinsic current gain (| h21 |) and unilateral gain
(| U |) as a function of frequency for the HBT considered in our analysis.

The parasitic effects are estimated based on the material characteristics and
our chosen device geometry discussed in quasi-static analysis. Figure 7.54 shows
the modelled frequency dependence of the current gain and unilateral gain.
The resonance in the unilateral gain of the intrinsic device occurs at 290 GHz
due to the negative output resistance. This negative output resistance results
from the phase delay associated with the transit time in the collector and the
transport and storage effects of the base (we have assumed negligible transit time
in the emitter transition region). An approximate expression for predicting the
frequency of this resonance is tan−1(ωW 2

B/2Dn) + 0.11W 2
B/Dn + τ

′

c = π. In
this expression, the first two terms correspond to the phase delay in the base
and the last term corresponds to the phase delay in the collector. Figure 7.54
shows that this resonance is, however, effectively suppressed when one includes
the parasitics of the device.

The resonance is suppressed due to the combined effect of the base resistance
and the collector resistance in conjunction with the extrinsic collector capaci-
tance. The effect of the base resistance dominates over that of the collector
resistance, as should be expected for a low input and high output impedance
device. However, the effect of collector resistance is not negligible and can not be
ignored. In this emphasis on the external parasitics, the resonance phenomenon
is similar to that in our discussion of MESFETs and HFETs.

The accuracy of the fT and fmax expressions derived earlier can also be
assessed from this analysis. The fT relation is accurate to within 10%, with the
worst inaccuracy occurring when the parasitic collector resistance is negligible.
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The fmax relation is more inaccurate under similar conditions. Part of this
inaccuracy is due to the trans-admittance phase delay associated with collector
transport. Part of the inaccuracy results from the lumping of the time constants
of the network.

7.9 Transient Analysis

Our discussion of small-signal behavior of the bipolar transistor has considerable
bearing on the transient analysis. In the section on off-equilibrium effects, we
will discuss further the transient effects. Here, we will discuss some of the
expected effects related to the model elements we noted in the small-signal
analysis. A transient solution may be obtained by inverse Fourier transform,
or using complex notation for inverse Laplace transform from the small-signal
response of the transistor. Consider the response to an emitter current step if
the output response was dominated by the base transport factor. For a current
step in the emitter current of ∆Ie/s, the collector current is

Ic(t) = L−1

{
∆Ie
s

sech

[
wB
Ln

(1 + sτn)
1/2

]}
. (7.282)

If one may make the single pole approximation of the base transport factor, this
lets us write the current response as

Ic(t) = L−1

(
∆Ie
s

1

1 + sταT

B

)
= ∆Ie

[
1 − exp

(
− t

ταT

B

)]
. (7.283)

The excess phase factor term of exp(−δωταT

B ) in the base transport factor leads
to a δταT

B delay term as a multiplier to the above. Its result is that, for a
period of approximately δταT

B , collector current does not change. Similarly, the
collector transport factor with its approximately exponential dependence on
the collector signal delay leads to an additional delay time equal to the collector
signal delay in the transient response.

Figure 7.55 shows the transient response of the collector current, and the
build-up of the electron density in the base and the collector space charge re-
gion, due to a forward biasing of the base–emitter junction of a GaAs bipolar
transistor obtained using numerical simulation. The transient response of the
collector, referenced to the forward biasing voltage, shows the delay effects with
these transient effects.

7.10 Off-Equilibrium Effects

Off-equilibrium effects become important in bipolar transistors also, since the
hot carriers can occur in the base–collector space charge region where the electric
field changes suddenly over scales that are very short. It can also occur in the
base, if carriers are injected hot using abrupt heterostructures as an emitter, e.g.,
at abrupt Ga1−xAlxAs/GaAs junction, or are accelerated by quasi-electric fields
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Figure 7.55: Transient response of the collector current due to a rapid change
in the base current is shown in (a). The change in electron density as a function
of position for various instances of time in ps is shown in (b).
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produced by bandgap grading, or due to a very thin base and the natural filtering
process of the injection phenomenon over a base–emitter junction barrier.

Figure 7.56 shows for a collector doping of 5×1016 cm−3 the electron energy
distribution for a constant current density in various designs of an HBT. The
base width in these structures is 1000 Å. The case (c) has a quasi-electric field
of 1205 kV/cm and the case (d) an electric field of 25 kV/cm across the base.

A number of interesting features can be seen in these plots. In the Ga.7Al.3As
emitter, the electrons populate all the valleys—Γ, L, and X. While the Γ valley
is the lowest, it has a low density of states; the higher L and X valleys have
a heavier effective mass and have six or eight equivalent minima resulting in
significantly higher density of states. This results in large carrier populations in
the L and X valleys also. In Ga.7Al.3As the carriers are almost evenly divided
between the valleys. In the base, the Γ, L, and X valleys are further apart, and
the barrier to the X and L valleys is large. So, in device structures where drift-
diffusion across a barrier (Cases (a), (c) and (d) of Figure 7.56) is important,
the injected carriers in the base, are principally in the Γ valley. X and L valley
electrons in the Ga.7Al.3As emitter, by the time they pass through the depletion
region into the base mostly end up in the Γ valley. Some of these carriers may
actually be hot because they do not lose all their excess energy, and because
surmounting the barrier filters away more of the low energy carriers. Figure 7.56
in case (a) shows electrons that are higher up in the Γ valley in the emitter at
the injecting emitter–base junction. These carriers may enter the base hot if an
abrupt heterojunction transition is used, as in case (b). Compared to the other
cases, there are many more hot electrons at the emitter–base junction with the
use of an abrupt barrier. For a Γ valley electron, this excess energy, if it is just
thermionically emitted over the barrier using Ga.7Al.3As, is ∆Ec = 0.25 eV,
which corresponds to an approximate velocity of 3.7× 107 cm.s−1.

Carriers can pick up energy from the electron quasi-electric field in the base,
as in cases (c) and (d), where as they approach the collector end of the base,
there is a fair fraction of hot Γ electrons.

The collector depletion region has large electric fields in it resulting from
the p–n junction, and at the base end it rises rapidly because of the heavy base
doping. This results in rapid carrier heating in the depletion region in all the
examples over a short distance of the order of 500 Å. Carriers heat up in the Γ
valley, rapidly increasing in energy and velocity, and when they have sufficient
energy they scatter into the X and L valleys, finally resulting in transport at
the saturated velocity.

Figure 7.57 shows this velocity behavior for the structures of cases (a)
through (d) of Figure 7.56. The velocity in the base varies from the drift-
diffusion like velocity of 2-4 × 106 cm.s−1 in the uniformly doped base case, to
higher velocities in the abrupt and graded base structures. The velocity in the
collector rises very rapidly due to velocity overshoot and subsequently relaxes
to the ≈ 1 × 107 cm.s−1 saturated velocity of GaAs. The peak velocities are
near the maximum group velocity.

The interesting part, in addition to this off-equilibrium phenomenon, is the
possible transfer of an L electron or an X electron in the Ga1−xAlxAs emitter to
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Figure 7.56: Electrons displayed as a function of energy in a Ga1−xAlxAs/GaAs
HBT for a uniformly doped base (a), an abrupt injection barrier (b), a graded
mole-fraction base (c), and a graded base with higher electron quasi-electric field
(d). From R. Katoh, M. Kurata, and J. Yoshida, “Self-Consistent Particle Sim-
ulation of (Al,Ga)As/GaAs HBTs with Improved Base–Collector Structures,”
IEEE Trans. on Electron Devices, ED-36, No. 5, p. 846, 1989.
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Figure 7.57: Electron drift velocity as a function of position for the various
Ga1−xAlxAs/GaAs HBTs of the previous figure. From R. Katoh, M. Kurata,
and J. Yoshida, “Self-Consistent Particle Simulation of (Al,Ga)As/GaAs HBTs
with Improved Base–Collector Structures,” IEEE Trans. on Electron Devices,
ED-36, No. 5, p. 846, 1989.
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a hot Γ electron in the GaAs base, even for a graded junction structure. Thus,
although abrupt barriers are more efficient in injecting hot electrons into the
GaAs base, hot electrons also occur due to the natural filtering process of injec-
tion across a potential barrier and because of the transfer in reciprocal space.
These structures accomplished a reduction in base transit time by effectively
increasing the velocity in the base. We also noted the large increases in velocity
in the collector over a short distance. Since the transit delay times of both the
emitter and the collector are important, we look into the off-equilibrium effects
in the collector next by looking at various types of collector structures (see Fig-
ure 7.58). For cases (a) and (b), which employ a doping of 1 × 1017 cm−3 and
2×1017 cm−3 in the collector, the depletion region shrinks at the higher doping
in the collector, with a corresponding increase in the electric field. This leads
to transfer of electrons to the L and X valleys occurring over a shorter distance.
Cases (c) and (d) are of more interest because they decrease the electric field in
the collector depletion region as well as the rapid change in the field by employ-
ing a p-type extension of the base region. So, in addition to the 1 × 1019 cm−3

doping in the first 1000 Å of the base, a 5 × 1016 cm−3 doping over 2000 Å
(case (c)) and 1 × 1017 cm−3 doping over 2000 Å (case (d)) are also employed.
The decrease in electric field, as a result, allows the carriers to overshoot over
a longer distance, ≈ 1000 Å, because they do not pick up enough energy to
transfer to the L and X valleys during the 1000 Å of travel. In these structures,
during the transit through the collector depletion region, the average velocity
can be much larger, and the corresponding transit delay significantly shorter.

We, however, need to design the p-type base region so that it is depleted
under normal biasing conditions, including under the high bias condition when
the Kirk effect is significant. The 1× 1017 cm−3 p-type base, e.g., is undepleted
over ≈ 1000 Å under the bias conditions of Figure 7.58(d). This gives rise to
increased base charge storage. So, while the collector transit time is reduced,
the base signal delay is increased. Thus, such structures need to be designed
carefully, by including all the effects of the different biasing conditions. But they
quite convincingly demonstrate the importance of the off-equilibrium effects in
bipolar structures and also the importance of the secondary valleys and their
energies w.r.t. the primary valleys in limiting the extent of it.

Clearly, materials like Ga1−xInxAs, which have secondary valleys placed
much higher than the primary valleys, may show stronger off-equilibrium effects
than GaAs. We look at this further in the following discussion where we study
both the steady-state and the switching characteristics of the off-equilibrium
effects in the base–collector region of bipolar transistors. We will compare a few
different materials for their scattering characteristics: GaAs, InP, Ga.47In.53As,
and InAs. The small-signal as well as the transient response of the bipolar
transistor depend on the transit of the carriers, the charging of both quasi-
neutral and space charge regions, and the dispersive effects associated with
these. The collector signal delay is a fraction of the collector transit time. It
favors the behavior closer to the metallurgical junction where the field is the
maximum. For a constant velocity transit through the collector space charge
region, the collector signal delay is one-half of the collector transit time. If
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Figure 7.58: Electron energy as a function of position for a collector doping of
1 × 1017 cm−3 (a), 2 × 1017 cm−3 (b), a thicker 5 × 1016 cm−3 collector region
with a p− extension of the base region (c), and a 1 × 1017 cm−3 collector with
a p− extension of the base region. From R. Katoh, M. Kurata, and J. Yoshida,
“Self-Consistent Particle Simulation of (Al,Ga)As/GaAs HBTs with Improved
Base–Collector Structures,” IEEE Trans. on Electron Devices, ED-36, No. 5,
p. 846, 1989.
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a constant velocity overshoot occurred throughout the collector space charge
region during the change of bias in switching, then this signal delay relationship
would still be useful. However, in reality, velocities are larger closer to the
junction, and decrease towards the saturated velocity away from it. Moreover,
these velocities are changing during the transient because of changes in the
driving forces on the carrier. An extended lightly doped base region, e.g., was
seen earlier to improve the relative length of the velocity overshoot region. It
would be reasonable to conclude that one would obtain improved performance
because of a decrease in collector transit time. However, such an improvement
in overshoot length occurs with a decrease in the velocity at the metallurgical
junction, and a poorer behavior at high current densities due to excess storage
and increased Kirk effect.

Overshoot effects occur because the relaxation rate of momentum is larger
than that of energy, and a major cause of these large rates is the large scattering
rate resulting from secondary valley transfer. Ga.47In.53As, whose conduction
bands were shown in Chapter 2, has been a material of interest because of this
large Γ–L separation. In Chapter 2 we also showed the steady-state scattering
rates in the low energy range. The maximum possible velocities are related
to this and the effective mass of electrons. For large bandgap semiconductors,
transfer to the secondary valley could quite well be prevented by use of a forward
bias at the base–collector junction. This forward bias should be large enough
to cause, at the base–collector junction, a band edge energy change which is
less than the secondary valley separation and yet small enough to limit the
saturation. It may be possible to accomplish this for small-signal applications,
but is probably unlikely for digital applications such as emitter-coupled logic
where sufficiently large collector swing is required. InP is of interest since it
has a secondary valley separation similar to that of Ga.47In.53As, but a larger
bandgap and hence a larger breakdown voltage. InAs is another contrasting
choice because it has a very large secondary valley separation, an unusually
low scattering rate and effective mass, but a small bandgap and hence a small
breakdown voltage. The designs and choices are very extensive and rich.

We will consider a geometry quite similar to that considered in our quasi-
static discussion; the emitter and the collector are cladded by highly doped
layers, and the contacts to the regions are at the device edge. In this device, we
will make perturbations such as in doping, etc., to remark on various nuances
of the off-equilibrium phenomena. The results presented are averaged over the
lateral extent of the emitter. In order to maintain comparable base resistance,
the base width and doping have been kept constant at 750 Å and 5×1018 cm−3,
since the hole mobility in all these materials is relatively similar. In the case
of the device with an extended lightly doped base region, the collector width is
reduced to maintain comparable collector capacitance. The choice of collector
doping is related to the breakdown voltages considered in Chapter 2. The
breakdown voltages in InAs are the smallest but still useful in the low doping
range. Even though it has a relatively large ionization coefficient at moderate
fields, its electron ionization coefficient is only factors of five higher than that of
Ga.47In.53As at high fields. Another reason for the slightly higher than expected
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Figure 7.59: Transient evolution of the potential (a), the kinetic energy (b),
the carrier density (c), and the velocity (d) for a switching in VBE from 1.2 V
to 1.4 V, with VBC maintained at 0 V, for a GaAs bipolar transistor. From
S. Tiwari, M. Fischetti, and S. E. Laux, “Transient and Steady-State Over-
shoot in GaAs, InP, Ga.47In.53As, and InAs Bipolar Transistors,” Tech. Dig. of

International Electron Devices Meeting, p. 435, Dec. 9–12, c©1990 IEEE.

breakdown voltage in these indium-containing arsenides is that, at high fields,
the hole ionization coefficient continues to be substantially lower, while in GaAs
and InP it is actually either comparable or higher. InAs transistors are at the
least theoretically feasible with smaller logic swings and turn-on voltages. In
the discussion, they serve to contrast the limits of operation achievable.

We first consider the case of switching in GaAs bipolar transistors. Fig-
ure 7.59 shows the transient evolution of the potential, the kinetic energy, the
carrier density, and the velocity for a switching in VBE from 1.2 V to 1.4 V,
with VBC maintained at 0 V. The collector doping is 1 × 1017 cm−3 with an
epitaxial thickness of 0.175 µm, a compromise between excess storage delay due
to the Kirk effect at the 1.4 V input bias, and collector signal delay. Indeed, at
the high input bias, evidence of the Kirk effect is observable in the conduction
band edge profiles of Figure 7.59. The electron transit, as a function of time, is
observable in the collector space charge region. However, the time taken for this
transit (the collector transit time) is larger than the delay time of the collector
current in the quasi-neutral collector region (the collector signal delay). The
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collector transport factor ζ is

ζ =
1

wc′ − wc

∫ w
′

c

wc

{
exp

[
−jω

∫ z

0

dz
′

v(z
′

)

]}
dz, (7.284)

where v is the velocity. This favors the velocity at the metallurgical junction
(z = 0) as a consequence of the displacement current effect. The overshoot of
the electron velocity as a function of position changes substantially over time,
increasing at first and then decreasing. Thus, overshoot at both bias points is not
an adequate representation of the nature of overshoot during the transient, and
neither is the expression above of the actual signal delay. However, irrespective
of these limitations, the consequence is that, in most transient and steady-state
situations, it is desirable to use a compromise between a maximization of velocity
at the junction and a broadening of the overshoot region.

Note that in Figure 7.59 a broader velocity overshoot region does develop
due to the presence of a larger electron density in the collector space charge
region at the higher bias. To generalize this, consider the InP steady-state
characteristics shown in Figure 7.60. The peak velocity at the higher bias is
smaller than at the lower bias. This large bias case is actually quite similar to
that of an extended lower doped base, sometimes referred to as p− collector in
the literature. Figure 7.61 shows the steady-state low bias and high bias results
of the GaAs bipolar transistor together with similar results of an extended base
device with a 1 × 1016 cm−3 750 Å base. At a 1.2 V base–emitter bias, in the
extended base device, there is a lowering of the peak electric field because of
the broadening of the space charge region into the base. The overshoot region
is broader. With the switching to a higher bias of 1.4 V at the base–emitter
junction, the field in the base region decreases because of the higher electron
density, and the high-field region shifts towards the sub-collector interface. The
storage is larger, the collector signal delay increases, and the net delay during
switching is larger. This occurs in spite of the collector transit time being
smaller in this device. The collector signal delay is still larger. Therefore,
both the analysis of the steady-state behavior alone and a strict emphasis on
broadness of the overshoot can be deceiving.

Similar comments also hold regarding small-signal behavior, because a steady-
state Monte Carlo calculation is a simulation of quasi-static behavior. An accu-
rate analysis, similar to the transient analysis, requires the inclusion of disper-
sive effects associated with small-signal high-frequency operation throughout
the device. This can only be elucidated by performing a small-signal Monte
Carlo calculation of the problem where the signal oscillates in time, similar to
the signal delay time of the device.

Steady-state behavior, however, does provide an adequate low-order descrip-
tion of the device behavior, and is a good tool to compare the behavior of
other materials and their behavior vis-a-vis GaAs. Figure 7.62 describes the
steady-state behavior of the conduction band edge energy, the kinetic energy,
and the velocity in GaAs, InP, Ga.47In.53As, and InAs under conditions of low
Kirk effect. InP is of particular interest because of its larger secondary valley
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Figure 7.60: Conduction band edge energy (a) and the velocity in steady-state
(b) for an InP bipolar transistor in low injection (solid line) and high injection
(dotted line) conditions. From S. Tiwari, M. Fischetti, and S. E. Laux, “Tran-
sient and Steady-State Overshoot in GaAs, InP, Ga.47In.53As, and InAs Bipolar
Transistors,” Tech. Dig. of International Electron Devices Meeting, p. 435, Dec.
9–12, c©1990 IEEE.
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Figure 7.61: Conduction band edge energy (a) and velocity in steady-state (b)
for GaAs bipolar transistors in low injection and high injection conditions. The
solid lines are for a uniform 1×1017 cm−3 doped collector device and the dotted
lines are for an extended p− base device where an intervening lower doping is
employed at the base–collector junction. From S. Tiwari, M. Fischetti, and S. E.
Laux, “Transient and Steady-State Overshoot in GaAs, InP, Ga.47In.53As, and
InAs Bipolar Transistors,” Tech. Dig. of International Electron Devices Meeting,
p. 435, Dec. 9–12, c©1990 IEEE.
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Figure 7.62: Steady-state behavior of the conduction band edge energy (a), the
kinetic energy (b), and the velocity (c) in GaAs, InP, Ga.47In.53As, and InAs
under conditions of low Kirk effect. From S. Tiwari, M. Fischetti, and S. E.
Laux, “Transient and Steady-State Overshoot in GaAs, InP, Ga.47In.53As, and
InAs Bipolar Transistors,” Tech. Dig. of International Electron Devices Meeting,
p. 435, Dec. 9–12, c©1990 IEEE.
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separation. This results in the broader but still peaked overshoot behavior.
Ga.47In.53As bipolar transistors have a secondary valley separation comparable
to the bandgap, a smaller fraction of the carriers transfer at this bias condition,
and a broader overshoot occurs. InAs is an extreme example in this compari-
son. It has a low scattering rate at low energies, a significantly larger secondary
valley separation than the bandgap (> 1 eV separation compared to ≈ .4 eV
bandgap), and hence only a few carriers transfer to the secondary valleys. Con-
sequently, InAs bipolar transistors show the broadest and highest overshoot
features of all these devices.

The GaAs, InP, and Ga.47In.53As transistors can all be forward biased at
the collector in order to decrease this secondary valley transfer and to make
the velocity overshoot broader. The compromises this entails are related to
dopings, field profiles, capacitances, etc., that are suitable for logic or small-
signal operation. In the larger bandgap materials, the doping can be increased
beyond 1×1017 cm−3 in the collector to increase the field at the junction, and the
device size shrunk to maintain low collector capacitance so that similar broad
Ga.47In.53As-like overshoot features are observed. These compromises, while
adequate in a paper exercise, are technologically challenging. The behavior of
Figure 7.62 is thus a more representative picture if this technology can not be
achieved. In this case, the overshoot is broad, but due to the decrease in field
at the junction the peak overshoot is smaller.

The Ga.47In.53As bipolar transistors have a secondary valley separation com-
parable to the bandgap and do not need this forward bias to show a large and
broad overshoot. This large broadness of the overshoot is maintained over a vari-
ety of base–collector bias conditions, albeit with larger storage delays associated
with the Kirk effect at its lower doping. For Ga.47In.53As transistors, a conse-
quence of the larger scattering rate of InP is likely to be that any compositional
changes that include more phosphorous in the collector in order to increase the
breakdown voltage are also likely to result in a decrease of the broadness in
this overshoot. Both in Ga.47In.53As and InAs bipolar transistors, the break-
down voltage places the largest constraint, although the large overshoots will
lead to a decrease in ionization in the high-field overshoot region and thus to
higher breakdown voltages than those of Chapter 2. For Ga.47In.53As, the dop-
ing has to be maintained below 8 × 1016 cm−3, and for InAs bipolar transistor
it has to be maintained below 3 × 1016 cm−3, in order to obtain an adequate
collector-to-emitter breadown voltages at adequate current gains.

To relate this steady-state behavior to the scattering of carriers, consider the
scattering rates as a function of energy for these materials (see Chapter 2). This
scattering rate is a function of many factors, primary among which is the density
of states available for scattering. InAs and Ga.47In.53As bipolar transistors are
superior in this respect. InP has a large secondary valley separation, however,
it has a larger mass and a larger intra-valley LO phonon scattering. Both are
not conducive to larger velocities. As a result, both GaAs and InP appear to
be quite similar in their behavior.

Operation in a logic gate involves the change of both the base–emitter and
the base–collector bias simultaneously. Changes in the base–collector bias, such
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as its forward biasing during the turn-on of the transistor, are also important.
Usually, it occurs due to debiasing through the resistor by the increasing current
flow. If this were fast, overshoot would be expected to occur at the sub-collector
interface at the other end of the space charge region and in the opposite direc-
tion.

So, the velocity overshoot in the base–collector space charge region is a sensi-
tive function of the transient conditions due to local and non-local effects. Since
the component of the transistor delay due to transit of carriers, the collector
signal delay, is more sensitive to carrier motion in the region around the metal-
lurgical junction, a broad overshoot does not necessary result in shorter delay.
Specific bias conditions and device designs may allow comparable small-signal
operation in all these materials provided breakdown voltage constraints and de-
vice size constraints are satisfied. In logic applications, where breakdown is a
significant constraint, broader velocity overshoot profiles and higher maximum
overshoot velocities can be obtained over a wider bias range in Ga.47In.53As and
InP bipolar transistors. InAs bipolar transistors show the largest overshoot and
the smallest delay; however, because of their smaller bandgap, the operating
bias range of these devices is restricted.

7.11 Summary

This chapter considered the quasi-static, small-signal, and transient operation
of HBTs. We extended the Gummel–Poon model developed in Chapter 4 for p–
n junctions to bipolar transistors, and showed its application in the presence of
compositional grading. We then developed simpler forms of quasi-static mod-
els, the various levels of sophistication of Ebers–Moll models, that are useful
in circuit oriented modelling. The quasi-static aspects of HBT operation were
then analyzed by considering those aspects that are uniquely related to the use
of heterostructures. As examples of this, we considered consequences of alloy
grading, the behavior of quasi-fields in the junction regions, the effects that take
place at high currents, i.e., under small changes of electrostatic potential across
junction regions, and the combined effects of these in the behavior of capaci-
tances and current gains of the device. Among the parasitic effects particularly
important in compound semiconductors is the effect of poor lifetime in the bulk
and at the surface. We considered the operating principles and consequences of
this for the device.

We also developed a theory for the small-signal analysis of these devices,
with an extension to include the effect of alloy grading. Bipolar transistors pro-
vide an interesting twist involving the flow of carriers in a depleted region—the
base–collector depletion region—and hence involving interesting implications of
displacement current for small-signal analysis. This leads to a difference be-
tween the time it takes for a carrier to transit this region (the transit delay) and
the time it takes for the signal at the collector terminal to appear (the signal
delay). We noted that the latter is shorter. We also looked at the transient
behavior of the devices and how the carriers transit through the device. Finally,
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we considered consequences of off-equilibrium effects in the device.
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Problems

1. In Chapter 4 we considered the extension of Gummel–Poon models to
structures where the compositional changes may occur in quasi-neutral
regions of the device structure. Write, for the general case of varying
composition and including recombination effects, the electron and hole
current for a p–n junction. Show that this reduces to the simplified case,
covered in the text, where all compositional change occurs within the high
field region at the junction.

2. Equation 7.1 is derived assuming an efficient collector where the carriers
are swept away in a high field due to drift effect. A graded heterostructure
collector also allows this under low-level injection conditions. An abrupt
heterostructure collector, however, if it is low doped or has a large barrier,
allows minimal tunneling current and hence excess storage results from
the inefficient sweeping out of the carriers. Consider the collector junc-
tion as exhibiting small recombination velocity, and derive the equation
of electron current at the emitter junction of an n–p–n HBT. Estimate
what recombination velocity should be used for Ga.7Al.3As/GaAs and
InP/Ga.47In.53As collector–base junctions with a 5 × 1018 cm−3 doped
base and 5 × 1016 cm−3 doped collector.

3. The transport equations used in the analysis of the bipolar transistor are
linear differential equations. Argue why a necessary consequence of this is
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the reversibility of emitter and collector transport. Under what conditions
is the use of reversibility incorrect?

4. Show that the base time constant for an inhomogeneously doped base is
of the form

τB =
wB

2

νDn
, (7.285)

where

ν =

{
1

wB2

∫ wC

wE

1

p(z)

[∫ wC

z

p(η)dη

]
dz

}−1

. (7.286)

Consider an exponentially decreasing doping with a grading length of
1000 Å for a 1000 Å thick GaAs base transistor structure. At the center
of the base the doping is 5×1018 cm−3. What is the difference in the base
time constant between the exponentially doped and uniformly doped base
structures?

5. Now consider the bipolar with a linearly decreasing bandgap from the
emitter junction edge to the collector junction edge parameterized by a
constant κ with units of eV.cm−1. Derive the time constant using the
Gummel–Poon expressions. Assuming a uniform doping of 5× 1018 cm−3

p-type in the base, what is the base time constant? How does it compare
with the time constants of Problem 4?

6. Consider the Gummel–Poon model applied to a uniformly doped base
HBT structure. Show that

∂

∂VBC

( QF

τBF

)
≈ IC
VA

[
1 − αT

(
1 − αTwB

Ln

)]
. (7.287)

7. Write the transport equations of the Ebers–Moll model using IOE and
IOC as the reference currents. Show that these lead to one parameter
in current, the saturation current, which is identical for both the base–
emitter and the base–collector junction. This has sometimes been called
the transport version of the Ebers–Moll model. What is the limitation
on applying this to HBTs. Can it be used on an abrupt heterostructure
emitter HBT?

8. Adapt the results of Problem 7 to derive a model that can be cast into a
hybrid-pi equivalent circuit, similar to that encountered in our discussion
of FETs. Show that this form can also be more generally adapted to
include higher-order and parasitic effects.

9. In the quasi-static analysis we had introduced the parameter Early voltage,
defined as

VA =
1

wB

∂wB
∂VBC

. (7.288)
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Its effect is most significant in the output conductance, since any change
in quasi-neutral base width causes a change in the collector current. The
ratio of low frequency output to input conductance is related as

gnc
gne

=
kT

qVA
, (7.289)

following our analysis. Find the expression for Early voltage as a function
of device parameters and find the ratio of the conductances for the GaAs
transistor with a 1000 Å base doped to 5×1018 cm−3 p-type, and a 3500 Å
wide collector doped to 1 × 1016 cm−3.

10. For the small-signal analysis of the transistor with grading in the base, we
derived an expression for carrier concentration as a function of position and
electron current as a function of position. Derive, from this, an expression
for the electron current density at the base–emitter junction J̃ne in terms
of the applied small-signal voltage V̂be, and show Equation 7.270 from this.

11. Show that the susceptance component of the input admittance in Equa-
tion 7.270 corresponds to a diffusion capacitance of

CDe = ge
w2
B

2Dn

{
2

κ

[
1 − 1 − exp (−κ)

κ

]}
. (7.290)

12. Include the effect of base resistance at the input port to the intrinsic
common-emitter y-parameters and derive the modified y-parameters claimed
in the text.

13. Assuming low-level injection, show that the steady-state electron distri-
bution in the base of a graded junction n–p–n HBT with doping variation
in the base and in forward active bias is given by

np(z) ≈
I

qDnANA(z)

∫ wB

0

NA(z)dz. (7.291)

This equation is also valid for a homojunction device. Using this, find the
improvement in the base time constant resulting from an exponentially
graded doping profile in the base of the form NA(z) = NA0 exp (−z/`).
What is the electric field as a function of position for the exponentially
decreasing base doping?

14. Derive the expression, similar to that of Problem 13, for the steady-state
electron distribution in the base of a graded junction n–p–n HBT where
the mole-fraction changes.

15. Consider a Ga.7Al.3As/GaAs graded junction HBT with a GaAs collector.
The emitter region is doped 2 × 1018 cm−3, the grading is across a 300 Å
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and is assumed to be parabolic. The base is doped 1 × 1019 cm−3 and is
1000 Å in thickness, the collector is doped 5 × 1016 cm−3 and is 0.5 µm
in thickness, and the sub-collector is doped 5 × 1018 cm−3 and is 0.2 µm
in thickness. Assume one-dimensional geometry with hypothetical ideal
contacts at the emitter, base, and sub-collector edges. The base contact
can be assumed to not influence the minority carrier population, it being
an idealization of a contact that would be further away in an extrinsic
region in a practical device.

(a) For this one-dimensional structure, draw the conduction band edge,
the valence band edge, and the electron and hole quasi-Fermi levels in
the four quadrant of operation: (a) VBE > 0 and VBC < 0, (b) VBE <
0 and VBC < 0, (c) VBE > 0 and VBC > 0, and (d) VBE < 0 and
VBC > 0. Also draw these for the punch-through condition if it can
occur in this structure.

(b) Can one define an Early voltage for this transistor? What is its
approximate magnitude and range?

(c) At what current density will the Kirk effect become important? As-
sume a saturated velocity of 8 × 106 cm.s−1.

(d) If the structure had Ga.7Al.3As collector with a linear grading over
500 Å, what would be the current density at which the effect due to
the alloy barrier at the base–collector junction would dominate?

(e) Derive approximately the important time constants, and make a
quasi-static estimation of the unity current gain frequency at 1×102,
1 × 103, 1 × 104, and 1 × 105 A.cm−2 at VBC = −1.5 V.

16. Now consider this same device structure with the AlAs mole-fraction
changing linearly from 0.1 at the base–emitter junction to 0 at the base–
collector junction. Repeat the exercise and estimate the parameters of the
device structure.

17. We have derived an expression for the collector transport factor given as

ζ =
sin(ωτ ′c)

ωτ ′c
exp (−jωτ ′c) . (7.292)

(a) Is this the ratio of current carried by particles, the displacement
current, or the total current?

(b) Doesn’t current continuity in the the transistor structure imply ζ =
1? Explain.

18. Should the fT of an HBT increase or decrease with temperature? Explain.

19. Does surface recombination affect the injection efficiency or the base trans-
port factor in an HBT?



Chapter 8

Hot Carrier and Tunneling
Structures

8.1 Introduction

The charging of transition capacitances and the time constants associated with
carrier transit in the base and signal delay in the collector depletion region
constituted the most significant factors of the total delay in the operation of
the bipolar transistor. The transition capacitances are nearly independent of
the choice of the material and much more closely related to the design of the
device structure. Scaling of the cross-section of the device structure leads to
a significant reduction in these capacitances and the related time constants.
However, both the base time constant τB and the collector signal delay τ

′

c con-
tinue to be major factors of increasing importance in limiting the frequency
response and the speed figures of merit. This base time constant is related to
the average time a carrier spends in the base before being swept away into the
collector depletion region. It is also the time constant that relates the minority
charge stored in the base with the current carried by the device (similar storage
of minority carriers also occurs in the emitter and the collector regions, but
being small for the heterostructure devices, it is usually ignored). The other
important transit-related time constant of collector signal delay comes from the
displacement current effect due to transport of carriers through the collector
depletion region. We discussed in Chapter 7, how hot electron effects can be
utilized to decrease the time constants related to base and collector transport.
The basis of these techniques is an increase in the velocity with which these car-
riers move. For collector transport, this occurs naturally due to the gradient of
electric field and the importance of the velocity in the short collector depletion
region. For base transport, this is accomplished by hot electron injection and/or
by an appropriate quasi-field that enhances the minority carrier motion. The
increase in velocity decreases the amount of charge stored in the base to sustain
the current, and equivalently the average time a transiting carrier spends in the

645
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Figure 8.1: Tunnel-emission amplifier, an example of a hot carrier transistor as
proposed by Mead. The structure in its original form uses an aluminum emitter,
base, and collector, with anodized aluminum (a porous Al2O3 insulator) serving
to isolate the three regions and allowing for application of bias.

quasi-neutral base (see Problem 1). All minority carrier devices require this mi-
nority carrier storage in some form in order to sustain the predominant current
in the control region of the device. Additional storage effects also come about
due to minority carrier injection into other parts of the device, and all these
constitute a delay contribution that has its origin in the minority carrier–based
operation of the device.

Since the early days of transistors, there has been interest in making such
bipolar transistor–like devices, i.e., devices based on barrier-modulated current
injection, which do not suffer from many of the minority carrier–related delay
effects. Among the first of these transistors, an example of hot carrier transis-
tors, is a hot electron transistor. Mead,1 who recognized the advantages of such
a majority carrier device, called his favored implementation a tunnel emission
amplifier (see Figure 8.1).

We will use the nomenclature hot carrier transistor, and in particular hot
electron transistor, as a general classification for devices that depend on hot
carrier transport for usefulness of their operation. Bipolar transistors will op-
erate independent of hot electron effects, but hot carrier transistors depend on
the existence of the hot carriers for device amplification. The tunnel emission
amplifier is one example of a hot carrier transistor. These devices, several of
which were introduced when interest in tunnel diodes was high, were also meant
to incorporate several of the transport-related major advantages recognized in
tunneling. Tunneling forms a controlled source of carriers, and the tunneling

1C. A. Mead, “The Tunnel-Emission Amplifier,” Proc. of IRE, 48, p. 359, 1960.
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Figure 8.2: A hot carrier transistor example due to Sze and Crowell. It employs
a thin gold film deposited on germanium collector as a base, and silicon as the
emitter material.

junction can also serve to suppress processes involving injection of carriers in
the reverse direction. Tunneling junctions also exhibit a frequency response lim-
ited by current density and capacitance of the junction, since tunneling transit
times are short, commensurate with the length scale associated with de Broglie
wavelength.

The tunneling emission device of Mead used a metal base (hence the name
metal base transistor that is also applied to this structure) with the metal thick-
ness kept shorter than the mean free path for carriers in it (see Figure 8.1).
In its generic form, this metal is separated from the injecting emitter (an-
other metal) and the collecting electrode (another metal) by insulators. In the
aluminum-based device structures, Mead observed current amplification factors,
in common-base configuration, of 0.1 to 0.3. The injection of hot carriers need
not be limited to tunneling processes. It can also be achieved using thermionic
injection, another means for hot carrier injection. This basic concept of using
tunneling and hot carrier emission in forming majority carrier barrier–controlled
devices has been extended in several variations of these devices by others using
different materials: metals and semiconductors for emitters, bases and collec-
tors; and semiconductors, insulators, and semi-insulators for isolation. An ex-
ample of a thermionic emission–based device2 is shown in Figure 8.2; it uses a
metal base of gold deposited on germanium as a collector and employs a silicon
emitter. The emitter is a cantilevered silicon. For a gold film of ≈ 100 Å thick-
ness, the common-base current amplification factor αB increases to ≈ 0.46 from
≈ 0.3 of Mead’s device. Common-base current amplification factors of less than
one-half imply a common-emitter current amplification factor of less than unity,
so even though the device affords some isolation between input and output, it
does not allow for a current gain necessary to restore voltage levels in logic. A
current gain of less than unity, i.e., negligible fT also precludes utility at high

2A thorough discussion of the early work of C. R. Crowell and S. M. Sze on this subject can
be found in C. R. Crowell and S. M. Sze, “Hot Electron Transport and Electron Tunneling
in Thin Film Structures,” in G. Haas and R. E. Thum, Eds., Physics of Thin Films, V4,
Academic Press, N.Y., p. 325 (1967).
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Table 8.1: Mean free path as a function of energy.

Material Energy E − ξf Energy Attenuation Length
(eV) (Å)

Copper 0.6 280
0.9 100

Gold 2.0 160
4.0 70

Palladium 0.85 170
Silver 0.7 450

frequencies. There are two major problems that cause this lack of gain. One is
the length scale over the which the carrier rapidly loses energy (the energy at-
tenuation length). This is shown as a function of hot carrier energy in Table 8.1.
The mean free path for hot (0.85 eV) electrons in gold is 100 Å, so even though
a gold metal film allows for high base conductivity, a substantial loss of energy
occurs due to inelastic scattering during transit through the base region. The
second problem is that even if the carrier mean free path were acceptable, a sub-
stantial quantum-mechanical reflection of the hot carrier occurs because of the
large energy discontinuity at interfaces with metals. The metal base structures
are particularly susceptible to this because it is more difficult to design a graded
interface at a metal junction to reduce the quantum-mechanical reflection. This
can now be achieved for some structures, e.g., CoSi2/Si, by modern epitaxy tech-
niques, but is considerably simpler to achieve at heterostructure–semiconductor
interfaces. Heterostructures thus serve as a useful means for tunneling and hot
carrier injection by other injection mechanisms. Semiconductors, with a larger
mean free path than metals, also serve as an effective medium for the base of
devices, albeit with the loss of advantages of conductivity.

Semiconductor heterostructures allow for both the coupling of barriers and
quantization of momentum in the perpendicular direction when they approach
the de Broglie wavelength in size. Such structures can show unusual features
both in the presence and the absence of scattering-dominated transport. For
very short structures, if the transmissive properties of the two barriers are iden-
tical for an electron that has an energy that allows it to tunnel to the quan-
tized states in the well formed by the coupled barriers, a resonance occurs. So,
even though individually the transmission coefficients are low, the transmission
probability at this matched condition is large. A close analogue of this is the
Fabry–Pérot interference in optics. An electron tunneling by such a coherent
phenomenon may spend a considerable time in the well and exhibit a long de-
cay time because of the constructive effect of interference, even though it has a
large transmission probability. This raises the likelihood of scattering to other
quantized states in the well (quasi-bound states because the electron eventually
will tunnel out) and outside the well via an inelastic process. The electron loses
coherence during this process, but exhibits a faster response determined now
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Figure 8.3: A free electron of energy E0 incident at a barrier of height qφB.
Even if the energy of the carrier is larger than the height of the barrier, it may
undergo reflection, because of the effect of perturbation due to the barrier.

by scattering considerations. Both these phenomena, occur, and can be made
relatively fast by a suitable choice of material parameters. Both these processes
exhibit similar negative resistance current–voltage characteristics and an ability
to supply electrons with a narrow energy spread. This can be made the ba-
sis for injection and intrinsic majority carrier device operation also, with short
temporal scales.

Thus, there exist a number of heterostructure phenomena related to hot
carrier injection and tunneling that are relevant to the majority carrier barrier
mode devices. Our discussion in this chapter will concentrate on the physical
principles underlying these. They are interesting for the unique semiconductor
physics, and particularly for the physics of small dimensions, and this serves
to help understand the limitations of the conventional field effect and bipolar
transistors.

8.2 Quantum-Mechanical Reflections

We first consider this quantum-mechanical reflection problem for a free electron,
incident at a barrier, as shown in Figure 8.3. The electron has an incident energy
E0 and is incident at a barrier of barrier height qφB, which exists between regions
1 and 2 of the system. We treat the problem as a single-body free electron
problem, and ignore space charge effects, in order to estimate and understand
the magnitude of the effect of quantum-mechanical reflection at a barrier. Let
the wave functions that satisfy Schrödinger’s equation be ϕI and ϕ2 in the two
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regions. Our control equation is

− h̄2

2m

d2

dz2
(ϕ1) = E0ϕ1 (8.1)

in region 1, and (
− h̄2

2m

d2

dz2
+ qφB

)
ϕ2 = E0ϕ2 (8.2)

in region 2. Since we are considering free electrons, we may use the normalized
plane wave functions as the basis for these wave functions. The wave functions,
therefore, are of the form

ϕ1 = a1 exp(jk1z) + b1 exp(−jk1z), (8.3)

and

ϕ2 = a2 exp(jk2z) + b2 exp(−jk2z), (8.4)

where

k1 =

√
2mE0

h̄2 (8.5)

and

k2 =

√
2m (E0 − qφB)

h̄2 (8.6)

are the wave vectors in the two regions. The first term in these wave functions
is the incident wave going in the direction of positive z, and the second term
is the reflected wave going in the direction of negative z. The coefficients and
amplitudes of the incident and reflected waves are obtained by the matching of
probability and momentum at the interface, i.e.,

ϕ1|z=z0 = ϕ2|z=z0 , (8.7)

and, because mass is assumed to be the same in both regions, that of the free
electron,

∂ϕ1

∂z

∣∣∣∣
z=z0

=
∂ϕ2

∂z

∣∣∣∣
z=z0

. (8.8)

These coefficients can be characterized by a matrix R, a transmission-reflection
matrix, given by

R
=

[
a1 b1
a2 b2

]
=

1

2k1
×

{
(k1 + k2) exp [j (−k1 + k2) z0] (k1 − k2) exp [j (−k1 − k2) z0]
(k1 − k2) exp [j (k1 + k2) z0] (k1 + k2) exp [j (k1 − k2) z0]

}
.

(8.9)
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We will use such matrices in more complicated problems, such as of multiple
barriers, which will be encountered further in this chapter. This approach al-
lows for a simple means to analyze problems where many such barriers may be
cascaded by determining the new matrix as a multiplication of the matrix of in-
dividual barriers. In this respect, it is the equivalent of the ABCD-parameters
used in the analysis of cascaded sections of networks. The reflection coefficient
%, for this particular problem of a single barrier, is

% =

∣∣∣∣
b1
a1

∣∣∣∣
2

=

∣∣∣∣
k1 − k2

k1 + k2

∣∣∣∣
2

=

[
1 − (1 − qφB/E0)

1/2

1 + (1 − qφB/E0)
1/2

]2

. (8.10)

Let us now see the magnitude of this reflection coefficient in the metal base
transistor with gold as the base and germanium as the collectors.3. For gold,
qφB = 12 eV, and for an electron capable of crossing the barrier, e.g.,E0−qφB =
0.5 eV, the reflection coefficient is still ≈ 0.4. This large reflection occurs
because qφB is large for metals and the discontinuity results in a significant
perturbation. Barriers with graded shape exhibit significantly less reflection.
Consider, e.g., the barrier of shape4 (also see Problem 2)

φB(z) =
φ1 exp(z/`)

1 + exp(z/`)
+

φ2 exp(z/`)

[1 + exp(z/`)]
2 . (8.16)

This is a graded barrier as shown in Figure 8.4. The reflection coefficient for

3The preceding model is correct for free electrons. We are now applying it to a semicon-
ductor where free electron framework is inadequate. This is therefore approximate and only
suggestive of what to expect.

4This is the Eckart barrier, which can be solved exactly, C. Eckart, “The Penetration of a
Potential Barrier by Electrons,” Phys. Rev., 35, p. 1303, 1930. Another example, mentioned
by S. Luryi in F. Capasso and G. Margaritondo, Eds., Heterojunction Band Discontinuities:

Physics and Device Applications, North-Holland, Amsterdam, (1987), is the barrier

φB(z) = φ0

[
1 + exp

(
−
z

`

)]
−1

. (8.11)

This is an exponentially graded barrier, for which the reflection coefficient is

% =
sinh2 [π` (k1 − k2)]

sinh2 [π` (k1 + k2)]
, (8.12)

with

k1 =

(
2mE0

h̄2

)1/2

, (8.13)

and

k2 =

[
2m (E0 − qφ0)

h̄2

]1/2

. (8.14)

The subject of transmission has been treated rigorously in L. D. Landau and E. M. Lifshitz,
Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, Oxford (1977). This text
treats the exponential barrier problem on p. 80. The reflection coefficient in this problem of
exponentially graded barrier vanishes when

E0 − qφ0 �
h̄2

2m`2
. (8.15)
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Figure 8.4: The Eckart barrier for various values of the parameter ratio φ2/φ1

as a function of z/`.

this barrier can be solved exactly as

% =

∣∣∣∣
Γ (0.5 + j(δ − k1 − k2)`) Γ (0.5 + j(−δ − k1 − k2)`)

Γ (0.5 + j(δ + k1 − k2)`) Γ (0.5 + j(−δ + k1 − k2)`)

∣∣∣∣
2

, (8.17)

where

k1 =

(
2mE0

h̄2

)1/2

,

k2 =

[
2m (E0 − qφ1)

h̄2

]1/2
,

and δ =

[
2m
(
qφ2 − h̄2/8m`2

)

h̄2

]1/2

. (8.18)

The reflection coefficient can be simplified to the form

% =
cosh (2π(k1 − k2)`) + cosh (2πδ`)

cosh (2π(k1 + k2)`) + cosh (2πδ`)
. (8.19)

This equation reduces to the previous analysis of an abrupt barrier when the
grading length ` → 0. When the grading length is such that k1`, k2` � 1, i.e.,
the grading is over a distance scale that is larger than the atomic length scale,
than the reflection coefficient tends to unity. Thus, the reflection coefficient is
a function of grading length.
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For the CoSi2/Si semiconductor–metal junction, the quantum reflection prob-
lem disappears if a grading distance of larger than about 5 Å is used. Formation
of silicides naturally leads to occurrence of such grading distances.

This quantum-mechanical reflection problem is negligible or absent in the
structures based on heterostructures formed using semiconductors. As an ex-
ample, consider a Ga.7Al.3As/GaAs structure, qφB is 0.25 eV, and for an elec-
tron with energy E0 exceeding this by 0.2 eV, the reflection coefficient is less
than 0.01, significantly smaller than the metal–semiconductor case. Reflection
coefficients are thus intimately tied with Fermi energies. Metals have a very
high Fermi energy (the conduction band is occupied); semiconductors have a
low Fermi energy. The semiconductors are hence a very natural substitute in
hot carrier structures. The disadvantage is that the large conductivity of metals
is now lost, and if we try to achieve the large conductivity by doping heavily, we
increase the scattering rate, and hence the likelihood of the hot carrier losing
its energy and momentum in a scattering event during its transit in the base.

8.3 Hot Carrier Structures

We now consider hot carrier device structures that involve transport in a semi-
conductor base region.5 Some examples of these structures are described in
Figure 8.5. The first structure in Figure 8.5 was demonstrated initially, with
useful current gains, using silicon for both the base and the collector of the
device. It uses a clever but simple technique to form the barrier that isolates
the collector for cold carriers, and still allows collection of hot carriers from the
semiconductor base.

A limited sheet density of p+ doping, which stays depleted at any bias at
the junction, is employed in an n-type structure. For typical current densities
of mid-104 A.cm−2, this p+ sheet doping is typically less than 0.5× 1012 cm−2.
Since the region is always kept depleted, there is little hole injection, and hence
negligible hole storage in the structure, even though both polarities of doping are
utilized. This technique of forming a barrier of controllable small or large barrier
energy (see Problem 24 of Chapter 4) has been found to be useful when interfaces

5For a historical and analytical perspective, see J. M. Shannon, “Hot Electron Camel
Transistor,” IEE J. Solid State Electron Devices, 3, p. 142, 1979; J. M. Shannon and A. Gill,
“High Current Gain in Monolithic Hot-Electron Transistors,” Electronics Letters, 17, No. 17,
p. 620, 20 Aug. 1981; M. Heiblum, “Tunneling Hot Electron Transfer Amplifiers (THETA):
Amplifiers Operating Up to the Infrared,” Solid-State Electronics, 24, p. 343, 1981; M. A.
Hollis, S. Palmateer, L. F. Eastman, N. V. Dandekar, and P. M. Smith, “Importance of
Electron Scattering with Coupled Plasmon–Optical Phonon Modes in GaAs Planar Doped
Barrier Transistors,” IEEE Electron Device Letters, EDL-4, p. 440, 1983; J. R. Hayes, A. F.
J. Levi, and W. Wiegmann, “Hot Electron Spectroscopy,” Electronics Letters, 20, No. 21, p.
851, 11 Oct. 1984; S. Muto, K. Imamura, N. Yokoyama, S. Hiyamizu, and H. Nishi, “Sub-
Picosecond Base Transit Time Observed in a Hot Electron Transistor (HET),” Electronics

Letters, 21, No. 13, p. 555, 20 June 1985; and M. Heiblum, M. I. Nathan, D. C. Thomas, and
C. M. Knoedler, “Direct Observation of Ballistic Transport in GaAs,” Phys. Rev. Lett., 55,
No. 20, p. 2200, 11 Nov. 1985. The discussion in this section is based on concepts introduced
and analyzed in these publications.
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Figure 8.5: Some examples of hot carrier transistors using a semiconductor base.
Examples of both thermionic and tunneling based injection are included. (a)
employs a p+-doped region for isolating the metal emitter and the semiconductor
collector. (b) is a variation of this structure employing semiconductor as the
emitter. (c) employs a graded heterostructure to obtain the isolation between
the emitter and the collector with the base. (d) uses abrupt heterostructure for
this isolation. The dominance of tunneling in these structures is dependent on
temperature of operation and the characteristics of the barriers.
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with other materials are not desired during formation of a barrier. The technique
has, therefore, found applicability in several other places to create barriers while
still minimizing storage effects related to minority carriers. Examples of this
are similar structures in compound semiconductors for achieving a similar hot
carrier device, and in low barrier rectifying junctions for microwave detection.
Due to the nature of the hump, it has been called a camel barrier, and due
to the nature of doping in achieving it, it has also been called planar doped
barrier. In the hot carrier transistor, the injection of carriers from the emitter
occurs via both thermionic field emission and tunneling, with the latter being
more important at lower temperatures. If the n+ doped silicon region for the
base is thin enough, i.e., less than or of the order of the mean free path, the hot
carriers can be collected over the barrier. The relatively large current gains of
this structure show evidence of limited scattering in this structure, and limited
loss of energy and momentum during transit through the the base region.

An extension of this structure is the use of a semiconductor emitter formed
in a similar way. Its advantage is that field emission and tunneling which inject
carriers at lower energy into the base, are suppressed. The fraction of carriers
that are hot is thus larger, and the device shows a correspondingly larger current
gain. Similar structures have been implemented in compound semiconductors
also, demonstrating both finite current gains and verifying the nature of trans-
port with limited scattering in the base. All these structures, based on controlled
doping of a single semiconductor, require a relatively reproducible technology of
fabrication, since they involve precise control of doping charge. Base dimensions
are critical between the barrier doping spikes; diffusion of these species has to be
controlled, and difficult fabrication procedures have to be utilized in contacting
the the injecting, controlling, and collecting regions.

The structures that have found increasing acceptance, therefore, are based
on heterojunctions that can be processed with better control; examples of these
are (c) and (d) of Figure 8.5. In these, the larger bandgap semi-insulating re-
gion is used to isolate, and to act as the medium for injecting hot carriers.
In such structures, the potential drop at the base–emitter junction largely ap-
pears as the excess energy of the carrier being injected. By a suitable design
of the heterostructure barrier, either of uniform or graded alloy composition,
thermionic field emission or low energy tunneling can be made important (see
Problem 3). By suitable choice of alloy composition in the collector region, an
appropriate barrier can be formed. In all these cases, the barrier energy can
be decoupled from the barrier width. Both barrier energy, which is dependent
on alloy composition, and barrier width can be controlled accurately, giving
greater freedom in device design. Such structures have shown relatively large
current gains commensurate with the relatively large mean free paths at low
dopings in the base region. They have all clearly verified the high velocity in
the base, occurring due to a significant fraction of ballistic transport, and due
to a significant maintenance of forward momentum even with scattering. In
the other regions of the device (e.g., in the base–collector space charge region),
which are relatively wide, collisions continue to be significant factors, and these
structures exhibit significantly higher base resistances compared to both metal
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Figure 8.6: Schematic of common-base output characteristics at 4 K of a hot
carrier transistor employing a uniform alloy mole-fraction emitter and collector
barrier. The insets show the band edges in the saturation and the low output
conductance regions of the device.

base structures and bipolar transistor structures because of the poorer sheet
conductance at low dopings and small base widths.

Figure 8.6 shows representative output characteristics for the common-base
mode of operation, together with the band edges at two bias points on these
characteristics. A higher forward bias at the injecting junction results in a higher
energy of the injected carrier stream. Even though the corresponding scattering
rate is larger, recall that the scattering rate almost always increases with energy;
the likelihood of a carrier crossing the base region with a forward momentum
that takes it into the collector is large. During this transit a number of differ-
ent scattering mechanisms are possible: alloy scattering in mixed crystals such
as Ga1−xInxAs, ionized impurity scattering, carrier–carrier scattering, coupled
carrier–phonon scattering (e.g., plasmon scattering), and phonon scattering are
all quite likely, with phonon and plasmon scattering modes predominating. At
low temperatures the relative intensity of phonon effects can be decreased, be-
cause optical phonon absorption can be suppressed due to freeze-out of optical
phonons. Scattering rates can be maintained smaller by preventing inter-valley
processes, so materials such as Ga1−xInxAs allow for a larger bias range of oper-
ation with the high gain, albeit with increased alloy scattering as an additional
scattering process. Both alloy and optical scattering have characteristics which
mitigate their effects on the forward momentum of the carrier. Alloy scatter-
ing is less efficient at high energy than at low energy. Ion-core perturbation



8.3 Hot Carrier Structures 657

Figure 8.7: Carrier motion in the presence of an orthogonal magnetic field in
the hot carrier transistor structure.

effects are akin to Rutherford scattering in this respect. Optical phonon scat-
tering, dominated at low temperatures by emission processes, emphasizes the
forward mode of scattering. So, even though there is a finite loss of energy,
usually a fraction of the incident energy, the forward momentum is maintained
to a significant extent. Consequently, even in the presence of scattering, at low
temperatures, sufficiently high velocities can be maintained, and only plasmon
scattering causes a major reduction in the current gain of device structures of
less than 200 Å base widths.

We now consider some of the methods by which such velocities can be de-
termined. Application of a magnetic field is an additional variable that can be
introduced to extract the velocity information. One example of this is the use
of Hall measurement, where a low magnetic field is applied perpendicular to the
plane of transport. Use of higher magnetic fields, with the direction of the mag-
netic field perpendicular to that of the ensemble velocity of the carriers, would
cause the carriers to also traverse in a direction orthogonal to their original
direction, causing longer paths and hence higher probability of scattering. We
will refer to this as the transverse direction of magnetic field. A magnetic field
longitudinal with the velocity causes no change in the direction of the velocity,
and hence leaves the current gain of device unchanged. So, a variable trans-
verse magnetic field allows us to obtain the variation in path lengths through
the variation in current gain, which can be used to determine the velocities.

Figure 8.7 shows the effect of the orthogonal magnetic field on the path
of the electron. In the quasi-neutral base, we may treat the electric field as
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Figure 8.8: Modulation of the barrier at the base–collector junction in order
to select the carrier momentum spread that will be collected in a hot carrier
transistor. The bias condition marked as 2 cuts off the low energy part of
the injected distribution which would otherwise be collected in bias condition
marked as 1.

being negligible. For a magnetic field B, the wave vector k (or equivalently the
momentum), the time rate of change of the wave vectors, follows from Lorentz
equation as

dk

dt
= −qk × B

m∗ . (8.20)

The averaged wave vector kz changes in the presence of the orthogonal field,
and with it changes the base time constant τB , which may be defined in a way
similar to that of the bipolar transistor. A large magnetic field can cause in the
carrier a large enough change in the direction of its velocity that it may never
even reach the collector in the absence of scattering. In general, the carrier
follows the path of a cyclotron orbit. Clearly, at very high magnetic fields, the
current gain of the device will be negligible. Thus, the common-base current
gain becomes a parameterized function of the orthogonal magnetic field from
which the average velocity of the carriers can be extracted. The basis for this
extraction is that the rate of increase of the path length is linear in the magnetic
field when scattering lengths are larger compared to the base width. Hence, the
common-base current gain varies inversely with the magnitude of the orthogonal
magnetic field.

This method used a magnetic field to obtain a selection of carriers that reach
the base–collector junction. An alternate method is to use the electrostatic
effect at the base–collector junction to achieve the same objective. Thus, by
modulating the position of the barrier at the base–collector junction, as shown
in Figure 8.8, a spread in energy of the carriers at the collector can also be
obtained. This method makes these devices excellent tools for analysis of carrier
energy. The carrier density and the carrier velocity, at the collector, are reflected
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Figure 8.9: A schematic of output conductance, at 77 K for the hot carrier
transistor example, shown as a function of collector–base bias.

in the carrier current (the collector current IC). Thus, the output conductance
in common-base (∂IC/∂VBC ) reflects the electron distribution function as a
function of energy at the base–collector junction. Knowing the injecting bias
and the mechanism, these can be related to the velocity of carriers in the base
(see Problem 4). Tunneling-dominated transport at the injecting junction, e.g.,
causes injection of a narrow spread in the energy of electrons, which is shifted by
the applied base–emitter bias. A peak occurring in ∂IC/∂VBC at this position
indicates carriers that did not lose any energy and momentum, i.e., those that
travelled without any scattering. Figure 8.9 shows a schematic plot of the output
conductance for our earlier example. The narrowness of the peaks emphasizes
the tunneling character of the injection, and the area under the peaks shows
the relative ratio of carriers. The largest peak is due to carriers that did not
suffer any scattering process; the gradual decays show the effect of low energy
and low momentum loss scatterings from this peak.

The conductance peak corresponding to no scattering shifts towards the left
with the higher current because injected energy is higher and a larger forward
bias is required at the base–collector junction to screen the injected carriers.
This occurs with relatively little change in the width of the peak, because of
tunneling-dominated injection. The relative area under the peak does decrease
with very high bias, because of increased inter-valley scattering effects.

The base current in these structures comes about from thermal and other
leakage currents, and due to those carriers that lose sufficient energy in the
base transit to be trapped in it and be collected by the base ohmic contact.
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Figure 8.10: A small-signal equivalent circuit of the hot carrier transistor, cast
in a form similar to that of the bipolar transistor.

To minimize this, base scattering effects have to be minimized. This requires
maintaining low carrier density in the base to minimize plasmon scattering ef-
fects. The rationale behind the practical importance of these structures is the
high carrier velocities and reduced storage effects compared to the bipolar tran-
sistor. However, the base resistance of these structures has generally remained
high because larger carrier densities result in larger plasmon scattering. In ad-
dition, larger current densities also require smaller barrier thicknesses, which,
in turn, lead to an increase in transition capacitance. This is the dominant
frequency-limiting mechanism for tunnel diodes. Corresponding to this, for hot
carrier transistors, the effect of transition capacitances in the base–emitter and
base–collector junctions begins to dominate. The emitter capacitance charges
through the base resistance, and the collector capacitance through the collector
current that results from the former. While conventional bipolar transistors
have base Gummel numbers approaching 5 × 1013 cm−2 and HBTs have base
Gummel numbers exceeding 5 × 1014 cm−2, the hot electron transistors have
generally been limited in Gummel number to ≈ 3 × 1013 cm−2. Thus, the base
resistance of the hot carrier transistor can be nearly an order of magnitude
larger than that of the bipolar transistor and the capacitances a few multiples
of it.

The operation of the hot carrier transistor, as a natural evolution of the
barrier-controlled operation of the bipolar transistor, also should be repre-
sentable by similar equivalent circuits. An example of such an equivalent circuit
is shown in Figure 8.10. The major difference between this and the bipolar
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transistor is the elimination of the effects related to the storage of minority
carriers in the base. This is reflected in the elimination of the diffusion capac-
itance associated with the base–emitter and the base–collector junctions. We
should also consider the effect of the differences in transport and storage on the
output characteristics of the device. Hot carrier transistors generally exhibit a
large output conductance, because the collected carriers are modulated by the
collecting barrier. This shows up clearly in Figure 8.6. Voltage drops across
large base resistances also lead to large shifts in the output characteristics in
the saturation region with applied base–emitter bias, or base current, because
of a negative feedback.

8.4 Resonant and Sequential Tunneling

We now extend our discussion of tunneling to multiple barriers, which may or
may not couple with each other for carrier transit. The former, in which phase
coherence of the tunneling carrier is maintained, is referred to as resonant tun-
neling, while the latter, in which phase coherence is lost through the multitude
of scattering processes, is known as sequential tunneling. Resonant tunneling is
the analogue of Fabry–Pérot interference encountered in optics; it requires cer-
tain barrier heights, barrier widths, well widths, and their matching, and lack
of scattering. It requires building up of carrier densities associated with the
resonance phenomenon. It therefore is also associated with larger time scales.
This causes, whenever these time scales exceed a few pico-seconds, sequential
tunneling to become the more important tunneling process, because scattering
rates are usually of the order of 1013 s−1, and because these inelastic tunnel-
ing processes in coupled barriers do not require specific matching conditions.
We first develop a mathematical formalism to treat the general case of elastic
tunneling in multiple barriers, i.e., the coherent case, and subsequently we will
consider the effect of inelastic processes on it. An example of a coupled barrier
structure is shown in Figure 8.11.

In our discussion of elastic tunneling in barriers, we developed a mechanism
for studying the quantum-mechanical solution to the more general problem using
the the transmission–reflection matrix R.6 A more complicated problem of mul-
tiple barriers can be characterized in terms of multiple transmission–reflection
matrices. For example, in the problem of Figure 8.11, the terms of the matrix
R can be used to write

a1 = (R1R2R3R4)11a5. (8.21)

In the barrier region, for particle energy smaller than the barrier energy, the
wave is an evanescent wave, with a momentum k = jα, where α is real, and

6For a detailed and lucid discussion of this approach, see E. O. Kane, “Basic Concepts in
Tunneling,” in E. Burstein and S. Lundqvist, Ed., Tunneling Phenomena in Solids, Plenum,
N.Y. (1969).
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Figure 8.11: Two heterostructure barrier regions, in close proximity, with the
spatial extents comparable to the de Broglie wavelength. The consequence of
the close proximity is localization of states, i.e., the formation of subbands in
the well formed by the adjoining barriers, and transmissions and reflections that
emphasize the wave nature of carriers. The incident and reflected waves in this
multiple-barrier structure are shown to be characterized by incident (· · ·aj · · ·)
and reflected waves (· · · bj · · ·).
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where the k’s are still related as

k =

[
2m∗ (E − qφB)

h̄2

]1/2
, (8.22)

E being the energy of the particle.
We consider the analysis in only one dimension, in the z direction. The

probability current (flux), incident and transmitted, through this structure of
multiple barriers can be written as

jinc. = |a1|2
h̄k1

m∗
1

, (8.23)

and

jtrans. = |a5|2
h̄k5

m∗
5

, (8.24)

and similar expressions in other regions of the structure.
We will consider another simplification of equal mass in all the barrier re-

gions, in order to simplify the mathematics. So, for m∗
1 = · · · = m∗

5 = m∗, using
the above relationships, we can write the ratio of the transmitted probability
current and the incident probability current as

jtrans.
jinc.

=
28k1α

2
2k3

2α2
4k5

M
(
k1

2 + α2
2

)(
α2

2 + k3
2
)(
k3

2 + α2
4

)(
α2

4 + k5
2
) , (8.25)

where

M = exp (α2w2 + α4w4) {exp [j (−φ1 + φ2 + φ3 + φ4 + φ5)]−
exp [j (φ1 + φ2 − φ3 − φ4 + φ5)]} +

exp (α2w2 − α4w4) {− exp [j (−φ1 + φ2 + φ3 − φ4 − φ5)] +

exp [j (φ1 + φ2 − φ3 + φ4 − φ5)]} +

exp (−α2w2 + α4w4) {− exp [j (−φ1 − φ2 − φ3 + φ4 + φ5)]+

exp [j (φ1 − φ2 + φ3 − φ4 + φ5)]} +

exp [−α2w2 − α4w4] {exp [j (φ1 − φ2 − φ3 − φ4 − φ5)]+

exp [j (−φ1 − φ2 + φ3 + φ4 − φ5)]} , (8.26)

φ1 = k3w3,

φ2 = arctan

(
α2

k1

)
,

φ3 = arctan

(
α2

k3

)
,

φ4 = arctan

(
α4

k3

)
,

and φ5 = arctan

(
α4

k5

)
. (8.27)
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We are interested in the condition when maximum current is transmitted.
This is also the condition for resonance and occurs when the factor M is mini-
mized. This requires that the first term in the above expression vanish; this is
the only term with an exponential exponent in the evanescent regions that is
the sum of two positive quantities. This occurs at

exp [j (−φ1 + φ2 + φ3 + φ4 + φ5)] = exp [j (φ1 + φ2 − φ3 − φ4 + φ5)] , (8.28)

which occurs when

−φ1 + φ2 + φ3 + φ4 + φ5 = φ1 + φ2 − φ3 − φ4 + φ5 − n2π, (8.29)

where n is an integer. This condition implies that a maximum in transmission
occurs when

φ1 = φ3 + φ4 + nπ, (8.30)

i.e., when

k3w3 = arctan

(
α2

k3

)
+ arctan

(
α4

k3

)
+ nπ. (8.31)

If, additionally, α2w2 = α4w4, i.e., the penetration coefficients of the two barri-
ers are identical, then M ≈ 1 (slightly smaller for typical barriers), and trans-
mission becomes independent of the widths w2 and w4. This condition, the
resonant condition, allows near unity transmission coefficient, with attenuation
occurring only due to reflections resulting from mismatches. This large trans-
mission occurs even if the barrier widths are large—the only requirements of
the above analysis are that elastic processes dominate, a one-body analysis be
valid, and the above two equalities are satisfied.

Figure 8.12 shows the transmission coefficient for elastic tunneling for an
example of symmetric barriers, using the above relationship. The peak, which
corresponds to the above two conditions, results in a unity transmission coeffi-
cient. Note that this transmission occurs even though the energy of the electron
is such that it sets up evanescent waves in the barrier regions. We will discuss
the significance of this in greater detail later. Here, we point out our earlier
analogy with the Fabry–Pérot interference of optics. The interference caused
by the barriers in the waves is constructive, large barrier widths notwithstand-
ing. There occurs a buildup of the probability of finding the particle in the well
formed by the barrier via elastic tunneling processes. There is also a near unity
probability, once this build-up has occurred (the situation we analyzed), that
the carriers will transmit at the same rate as they appear in the well (a unity
transmission), even though the time associated with the building up and the
leaking out of this charge may be large. The large time may result from large
barrier heights or large barrier widths, both of which decrease the evanescent
carrier momentum.

This efficient transmission occurring in the resonant condition is actually
the basis of the Kronig–Penney model and the nearly free electron model7 for

7Hence, strictly speaking, for the top and bottom of the bands.
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Figure 8.12: The transmission probability for the coupled barrier example as a
function of electron energy; the barriers are assumed to be 25 Å in width, and
0.3 eV in height.

periodic potentials such as in a semiconductor crystal. The series of identical
barriers due to the lattice result in allowed energy bands where perfect transmis-
sion takes place. This is a resonant condition. In this example of double barriers,
the condition of incident energy equal to quasi-bound state energy of the well
characterizes the resonance condition where unity transmission occurs. Real
problems are, of course, more complicated. We considered this as a one-body
problem; real problems are many-body problems where the charge build-up in
the well itself also causes a distortion of the well. In real problems, the ob-
servation of such resonance conditions, unlike the Fabry–Pérot case, requires
biasing of the structure, which destroys the symmetry of the barrier structure.
This symmetry is central to the resonance, and asymmetry causes reduction
of the transmission coefficient. Real problems also involve inelastic scattering
processes. We will include some of these effects later. For now, we consider
simpler extensions of this analysis to understand resonant tunneling structures
within the one-body elastic approximation. We are interested in these for thin
barriers with small heights, structures that can quite easily be implemented in
semiconductors. An example is the use of thin barriers of undoped Ga1−xAlxAs
at a small aluminum arsenide mole-fraction with undoped GaAs well.

The current–voltage characteristics through such coupled barriers exhibit
negative differential resistance. Figure 8.13 shows a schematic energy band di-
agram together with the current–voltage behavior of the structure. The peak
currents through the structure occur when the electrons in the emitter can tun-
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Figure 8.13: The three distinct regions of current–voltage behavior in a coupled
barrier structure. The inset shows the band diagrams in these three regions;
the first has the Fermi level below the bound state energy, the second has the
Fermi level at the same energy as the bound state energy, and the third has the
Fermi level above the bound state energy.
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Figure 8.14: Current due to tunneling through a coupled structure with two
bound states. The current now shows two corresponding peaks.

nel through its quasi-bound state in the well. When the bias is below this, the
absence of states at comparable energy prevents tunneling through the structure.
Above this bias, the current decreases because of the conservation of momen-
tum parallel to the interface. The peak of the current depends on the barrier
characteristics. An increase in the well width decreases the current, but may
show tunneling through more than one quasi-bound state and hence multiple
peaks. Examples of such are shown in Figure 8.14.

The complicated expression of Equation 8.25 was written with individual
discontinuities as the basis. A barrier is formed with two such discontinuities
and the transmission through this is the transmission coefficient of this barrier,
Equation 8.25, e.g., being the transmission coefficient for the barriers of Fig-
ure 8.11. The expression of Equation 8.25 can then be recast in a more simple
form. For the double barrier system, the transmission coefficient of the entire
structure, Ttot, can be expressed in terms of that of the left barrier, Tl, and the
right barrier, Tr, as (see Problem 5)

Ttot =
C0TlTr

C1(TlTr)
2

+C2T
2
l + C3T 2

r +C4

. (8.32)

Here, C0, C1, C2, C3, and C4 are coefficients related to the phase factors of
Equation 8.27. These vary slowly with energy. At resonance, C4 → 0, and
either the C2 or C3 term dominates. The transmission at resonance Tres is then

Tres ≈
C0Tr
C2Tl

, (8.33)
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or

Tres ≈
C0Tl
C3Tr

. (8.34)

The coefficients are usually close to unity, for transmissive barriers, and hence
one may approximate, for barriers with sufficiently different transmissivity, that,
at the resonance condition,

Tres ≈
Tmin
Tmax

, (8.35)

where Tmin and Tmax are the minimum and maximum transmissivities. Off res-
onance, the C4 term dominates and Tl, Tr < 1. The off-resonance transmission
coefficient, Toff−res, then, can be approximated as

Toff−res ≈
C0

C4
TlTr ≈ TlTr. (8.36)

These relations show that in resonance and off resonance, the phase factors
cause a small effect in the transmission coefficient of the double barrier. The
behavior of the well, particularly important in off-resonance behavior, appears
through the factor C0/C4, which is related to the phase delay.

We now consider Figure 8.15, where asymmetry has been introduced to the
symmetric barrier structure, and we wish to understand the resonance behavior
in these asymmetric conditions. Within the elastic approximation, the changes
in the transmission coefficients Tl and Tr through these barriers with an electric
field across them, and whose barrier potential varies as a function of position,
are numerically complicated. We will summarize numerical solutions for the
purposes of discussion.8 Figure 8.15 establishes some of the relevant parameters
of the problem: the electric fields, barrier heights, and barrier widths. We have
the functional dependence of the barrier potentials as

qφ1 = qφ0 − ∆E1 = qφ0 − qEbd,
qφ2 = qφ0 − ∆E1 − ∆E2 = qφ0 − q (Ebd+ Eww) , (8.37)

and

qφ3 = qφ0 − ∆E1 − ∆E2 − ∆E3 = qφ0 − q (2Ebd+ Eww) , (8.38)

where

Eb =
V

2d+wεb/εw
,

Ew =
εbEb
εw

. (8.39)

8WKB approximation should be used with care in such instances. It is not directly appli-
cable in barrier regions with piece-wise discontinuity. Discontinuities give rise to a pre-factor
to the exponential term of the WKB approximation.
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Figure 8.15: Transmission probability for a resonant tunneling under symmetric
and asymmetric barrier conditions. Part (a) shows the structure and transmis-
sion probability for a 30 Å barrier of Ga.7Al.3As with a 35 Å well of GaAs. Part
(b) shows the effect on transmission probability under bias. Part (c) shows the
effect on transmission probability when the width of the second barrier in part
(b) is increased to 50 Å. A schematic of the conduction band structure is shown
on the left.



670 8 Hot Carrier and Tunneling Structures

The simplified relationships of Equation 8.32 remain relevant under the ap-
proximations here, because the phase factors are slowly varying. Examples of
exact calculations to determine the total transmission coefficient at resonance
and off resonance are shown in part (b) of Figure 8.15. Part (a) of this figure
shows the original transmission coefficient curve of the symmetric structure.
Note the decrease in transmission probability with the application of an electric
field and the smearing out of resonance features. The sharp peaks in the absence
of an electric field are transformed into broad transmission maxima. The barrier
widths also cause a stronger effect because the asymmetry can be accentuated
by them. An example of this is shown in part (c) of Figure 8.15. This figure
shows the change as a result of the increase in the width of the right barrier.
This reduces the ideal transmission coefficient of the earlier example, shown in
part (a) and causes additional off resonance effects beyond those of part (b).

We have considered asymmetry arising from the application of bias, within
the one-body approximation. Flow of current, occurrence of resonance, and
nuances of the design of the structure to compensate for technological effects
in the making of such structures (e.g., dopant diffusion from the injecting and
collecting regions), also give rise to asymmetries and limitations of this analysis.
Current injection and resonance cause distortion in the shape of the well and
the barriers, and it is practically quite difficult to maintain symmetry at the
condition of resonance. This, therefore, limits the amount of transmission prob-
ability in such structures. Reduction in this transmission probability appears
as a reduction in the peak current of the tunnel diode–like characteristics in the
practical implementations of these structures.

In writing all these equations, we have continued to ignore scattering. The
equations have been derived in one dimension by using conservation of energy
and momentum parallel to the interface. The wave function and its deriva-
tive perpendicular to the interface were matched. The former follows from the
continuity of finding a particle as a function of position in a finite energy sys-
tem, and the latter matches the momentum perpendicular to the interface, at
the interface, since the masses were assumed the same. In our discussion of
Richardson’s constant at a heterojunction discontinuity, we had not made this
assumption, and as a result shown the proper form of it, independent of the
masses. We can also implement differing masses here. Its consequence is more
complex equations (see Problem 7) but the underlying principles remain the
same. The momentum perpendicular to the interface varies—evanescent in the
barrier region, and quantized in the well. This quantization is associated with
the quasi-bound state referred to earlier. Conservation of energy and parallel
momentum occurs if no scattering processes are assumed. However, increasing
times related to resonance bring in a higher probability of the occurrence of scat-
tering in the well region. We have also referred to scattering occurring as part
of the tunneling process itself, a process that allows indirect transitions, such
as in indirect bandgap materials as well as in direct bandgap materials through
indirect bands. This scattering leads to a change in momentum and, for in-
elastic scattering, a change in energy. This brings up the interesting problem
of how scattering affects the behavior of transmission, resonance, the negative
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Figure 8.16: Tunneling in a coupled barrier system, from three-dimensional
states in the injecting region to two-dimensional states in the well region. The
figure is a schematic representation combining representation in real and recip-
rocal space.

resistance characteristics, and the time constants of the system.9.
Consider the tunneling in a coupled barrier system, together with occupation

considerations of three-dimensional and two-dimensional states in the injector
and the well, as shown in Figure 8.16. We still consider the tunneling to occur
via elastic processes in the barrier regions, the barrier regions being quite thin.
During the tunneling through the first barrier itself, the momentum parallel
to the interface is conserved. In the well, the momentum perpendicular to the
interface is quantized and restricted to a value k0. Considering the occupation
of carriers in the three-dimensional states of the injecting region, the momentum
perpendicular to the interface is restricted to

kz = k0 =

[
2m (E0 − qφ0)

h̄2

]1/2
. (8.40)

Since in the well, the perpendicular momentum is restricted to k0, only those
electrons with kz = k0 and

k2
x + k2

y + k2
z = k2

F (8.41)

9See A. D. Stone and P. A. Lee, “Effect of Inelastic Processes on Resonant Tunneling
in One Dimension,” Phys. Rev. Lett., 54, No. 11, p. 1196, 18 Mar. 1985; T. Weil and
B. Vinter, “Equivalence between Resonant Tunneling and Sequential Tunneling in Double-
Barrier Diodes,” Appl. Phys. Lett., 50, No. 18, p. 1281, 4 May 1987; and M. Jonson and A.
Grincwajg, “Effect of Inelastic Scattering Processes on Resonant and Sequential Tunneling in
Double-Barrier Heterostructures,” Appl. Phys. Lett., 51, No. 21, p. 1729, 23 Nov. 1987.
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on the Fermi surface can tunnel through. This is to say that if momentum
is conserved during tunneling, only those electrons lying on the above circle
on the Fermi surface will tunnel. Consider now the occupation of states as a
function of energy. E0 is the minimum energy in the two-dimensional states
in the well corresponding to the perpendicular momentum of k0. For energy
larger than E0 in the injecting region, no carriers match this energy and the
elastic tunneling current is reduced to zero. This leads to a decrease of current
with bias and hence the tunnel diode–like characteristics. Before this occurs,
the current increases due to a larger number of carriers on the circle available
for the tunneling process. At any finite temperature, thermal effects will oc-
cur, causing a broadening of the transmission characteristics (see Problem 8).
However, in this discussion, which showed negative differential current–voltage
characteristics occurring, nowhere did we invoke the occurrence of resonance.
The carrier can lose its coherence in the well; the decrease in transmission for
energies higher than E0 will still occur. The second barrier only served the
purpose of restricting the perpendicular momentum. So, even in the presence of
scattering, the structures exhibit similar current–voltage characteristics. In fact,
they show identical current–voltage characteristics, as we will show presently.

The requirement for the decrease in current came about due to the restric-
tion of perpendicular momentum. This can also occur through existence of a
bandgap where no states exist and hence no momentum is allowed. An inter-
esting example of this is the AlxGa1−xSb/InAs material system, as shown in
Figure 8.17. Being dependent on the absence of states altogether, this is similar
to the example of the tunnel diode, except that a similar principle is utilized
with an isodoped structure.

The effect of thermal considerations on the behavior of these structures
is through the occupation statistics, and scattering effects for tunneling pro-
cesses. Thermal effects also manifest themselves by increasing the likelihood
of thermionic and thermionic field injection. An increasing voltage beyond the
region of negative differential resistance shows a larger effect due to these in-
jection processes because of the decreasing barrier to injection, and because the
barriers are usually low in energy. Thus the resulting current–voltage charac-
teristics show again an increase in current when a higher bias is applied beyond
the region of the negative differential current–voltage characteristics.

We now consider other aspects of the resonant and the scattering-domina-
ted behavior, their effects on the operation of the structure, in order to relate
these to time constants of interest in high frequency structures. The current flow
across a barrier can be written following equations that we applied in Chapter 4.
The current flow in the direction of positive z, assuming a density of states of
unity for mathematical simplicity, is given by:

Jlr =
q

4π3

∫
T (El)

1

h̄

∂E(kl)

∂kz
fl(E) [1 − fr(E + qV )] d3k, (8.42)

where l and r identify the left and the right sides of the barrier, f is the Fermi–
Dirac distribution function, and V is the applied bias of the structure shown in
Figure 8.15. The particle velocity is explicitly included in the above expression.
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Figure 8.17: Schematic showing current–voltage characteristics and associated
band bending under different bias conditions in a structure where the nega-
tive resistance arises due to existence of a bandgap between the spatially re-
moved conduction and valence bands. The example utilizes a lattice matched
InAs/AlSb/GaSb structure.
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Similarly, the current flowing in the negative z direction is

Jrl =
q

4π3

∫
T (Er)

1

h̄

∂E(kr)

∂kz
fr(E) [1 − fl(E + qV )] d3k. (8.43)

The resulting net current in the structure is given by (see Problem 9)

J =
qm∗

2π2h̄2

∫ {∫
T
(
E⊥, E‖

)
[fl(E) − fr(E + qV )] dE‖

}
dE⊥. (8.44)

We called the state in the well a quasi-bound state since it is not stationary,
there exists a finite time constant associated with it during which the carrier
can leak out. The width in energy of the resonance, ∆E, is associated with
this time constant through the uncertainty principle. When the temperature is
high, kT � ∆E, the transmission coefficient may be written as a delta function
occurring at E0, the resonance energy. The transmission probability under these
conditions is given by

T (E⊥) ≈ T (E0)∆Eδ (E⊥ − E0) , (8.45)

where δ (E⊥ −E0) is the Dirac delta function located at energy E0 and T (E0)
is the parameter that can be determined from the characteristics of the barrier.
At these temperatures the Fermi–Dirac distribution function is integrated in a
straightforward form and the current is given as (see Problem 9)

J =
qm∗

2π2h̄3 T (E0)∆EkT ln

[
1 + exp

(
ξf − E

kT

)]
. (8.46)

At lower temperatures, with kT ≈ ∆E or lower, where the Dirac delta approx-
imation is inaccurate, we may consider a perturbative symmetric expansion in
energy (broadening is symmetric in energy) of the transmission function, which
still shows a sharp peak in energy at E = E0, thus,

1

T
=

1

Tmax

[
1 +

(
E − E0

∆E

)2

+ · · ·
]
, (8.47)

and considering only the first term in energy, we obtain10

T (E) =
Tmax

1 + [(E −E0) /∆E]
2 . (8.48)

This is the Lorentzian form T = TmaxΛ(E−E0), where the Lorentzian function
is

Λ(E − E0) =
1

1 + [(E − E0) /∆E]
2 . (8.49)

10This is a general result valid for |E − E0| � ∆E, not just a derivation from the formal
expansion. See, e.g., D. Bohm, Quantum Theory, Dover, N.Y. (1989), which is a general refer-
ence for this chapter. It contains an incisive and general treatment of resonance phenomena.



8.4 Resonant and Sequential Tunneling 675

Computation of the current now requires a more elaborate numerical inte-
gration, but is still straightforward. We remarked that this is assuming a unity
density of states. The actual density of states can be included in a straightfor-
ward manner. For the case of kT � ∆E, the transmission occurs in a small
band of energy, where the density of states may be considered a constant and
the appropriate value substituted. For the condition where use of the Lorentzian
form is appropriate, we can substitute the density of state distribution function
for two-dimensional distribution with its Lorentzian expansion (see Problem 10),

g(E) =
1

π∆E
Λ(E − E0), (8.50)

and proceed with the calculation numerically. We have not discussed the explicit
form of the broadening ∆E. This follows, in resonant condition, by the explicit
calculation of the barrier transmission–reflection matrix. Also, since this is the
half-width of energy broadening, and the time constant associated with the
decay of this state is τres, it follows from the uncertainty principle,

2∆Eτres = h̄. (8.51)

As an example, consider a quasi-bound state of half-width ∆E = 1 meV, about
1/25th of the thermal energy at 300 K. The resonant lifetime associated with
this is ≈ 0.3 ps, a fairly small number. However, for small broadening, which
will occur with larger barriers in both energy and width, this can become sig-
nificantly larger.

A direct relationship can also be established, consistent with the above,
using wave propagation arguments assuming wave packets sufficiently broad
in energy that the time scales can be quantified accurately. Such broad wave
packets tunnel into the well region, and bounce back and forth between the
discontinuities with a group velocity determined by the band structure as vg =

(1/h̄)∂E/∂k = (2E/m∗)
1/2

for our nearly free electron model. For the structure,
let tl and tr, and rl and rr, be transmission and reflection amplitudes for the left
and the right barriers in the well. The total transmission amplitude is simply
the product of the forward transmission and the negative feedback factor related
to reflection, i.e,

ttot =
tltr

1 − rrrl
= tltr

[
1 + (rrrl) + (rrrl)

2
+ · · ·

]
, (8.52)

where the nth term of the series expansion terms indicates the probability of
transmission through the barrier following n − 1 round trips in the well. If
resonance dominates, phase coherence is maintained, one round trip in the well
changes the phase by 2θ, and resonance implies

θ =
π

2
. (8.53)

The transmission and reflection probabilities of the barriers—Tl , Tr for trans-
mission and Rl and Rr for reflection—are related to the above amplitudes as
the squares, e.g.,

Rl = |rl|2, (8.54)
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and
Tl = |tl|2, (8.55)

assuming the same group velocities in the non-barrier region. Then,

Ttot =
TlTr[

1 − (RrRl)
1/2
]2 ≈ 4TlTr

(Tl + Tr)
2 . (8.56)

Now consider the round trip of the broad wave packet in the well. It takes
2w/vg of time delay, and each time it has a probability of being transmitted
out of the well given by the corresponding term of the series expansion. The
transmission probability after n − 1 such time intervals, at resonance, is given
by the sum over n terms, i.e.,

T (n − 1) = Tmax [1 − (RrRl)
n
] ≈ Tmax

[n
2

(Tl + Tr)
]
. (8.57)

The build-up time for resonance corresponds to achieving maximum transmis-
sion probability, i.e., when the coefficient of Tmax is unity. The amount of time
corresponding to this is the number of round trips n given by the above equation
multiplied by the time per round trip 2w/vg. This resonance build-up time is,
in terms of parameters of the structure,11

τres =
n2w

vg
=

4w

vg (Tl + Tr)
. (8.58)

This resonant lifetime now allows us to also determine the quasi-bound state’s
energy broadening through the uncertainty principle. The lower the transmis-
sion probabilities of the barriers (larger width or larger height) the higher the
resonance time. For example, a 50 Å barrier, of 400 meV energy, and a well
width of 50 Å, has a τres of 70 ps, a time scale during which the scattering
processes will surely destroy the coherence.

In the presence of inelastic scattering, the phase of the wave packet undergoes
random changes during its stay in the well. Such a phase change introduces an
additional phase term in the series expansion terms of the products of reflection
amplitudes. The functional form of the expansion remains the same, and hence
expanding around the resonant energy, one still obtains a Lorentzian expansion
whose amplitude is smaller and width is larger (see Problem 12). Let Tmaxres be
associated with the maximum tunneling transmission probability of the coherent
resonant process; then in the presence of inelastic processes,

Ttot = Tmaxres

(
∆Ee
∆E

)2

Λ(E − E0), (8.59)

where the half width in energy is the sum of elastic and inelastic broadening,
i.e.,

∆E = ∆Ee + ∆Ei. (8.60)

11This result is identical to that derived in Equation 8.51, which was an example of the
Breit–Wigner formula.
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Figure 8.18: Build-up and decay of the wave function in coupled wells showing
the resonant build-up from transmissions and reflections.

The area under this Lorentzian curve is the same as before when inelastic
processes were ignored. We may use this relationship to determine the current
now. Since the area under the curve is a constant, the current is independent of
whether elastic processes or inelastic processes dominate the tunneling in these
coupled barriers. The differences between the two processes show up in the time
responses.

The condition of resonance that we have derived mathematically is physi-
cally quite intuitive. It can be described as one in which the wave function has
built up in the well. It is the condition at which the probability of finding the
particle is highest in the well, together with the probability of the transmission
through the coupled barrier structure (see Figure 8.18). The name resonance
comes from the similarity between this and the Fabry–Pérot type behavior. In
a particle picture, the electron could be considered as being trapped in the well.
In the wave picture, the wave function has built up in the well sufficiently that
the reflection of the incident wave is nearly cancelled out by the leaking out of
the wave function in the well. Starting from an off-resonant state, the resonant
state builds up in time as more and more incoming electrons are trapped. Thus,
in the resonant state, a large population of carriers—or in the wave picture a
large probability—exists in the well. This occurs together with a large current
flowing through the structure. The building up of this charge can, under appro-
priate barrier and well conditions, take a significant amount of time. This time
constant of resonance, which is approximately the lifetime or the decay time of
the quasi-bound state, can be related to the resonance transmission width, as
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we have shown.
We have obtained the expressions appropriate to calculation of the resonant

lifetime, based on arguments of continuous reinforcement (due to the phase
matching) as reflections occur at the well barriers. We could have arrived at this
same result directly, using the above intuitive picture of formation of resonance.
The time it takes to leak out of a well can be estimated from the tunneling
escape probability and the number of times the reflections occur per second.
This argument leads to an estimate of

τres =
2w

vgT (E)
, (8.61)

where T (E) is either Tl or Tr . This is identical to the previous estimate. Con-
sider a 0.3 eV barrier of 30 Å barrier width, together with a 50 Å well. For an
effective mass of GaAs, i.e., m∗ = 0.067m0, the resonant state is at an energy
E0 of 0.089 eV above the bottom of the conduction band. The time constant
is 0.56 ps. However, if the barriers are 50 Å wide, T (E) decreases significantly
and τ is 5.6 ps. Similarly, if the barrier height is 400 meV, the τ increases to
70 ps, both of which are clearly too large for a useful high speed device. So bar-
rier and well designs are very crucial to the performance of the coupled barrier
structures.

The resonant time is also sometimes called the dwell time because it char-
acterizes the time spent by each carrier in the well. Consider the inelastic
scattering time constants for semiconductors, e.g., the inelastic scattering time
is 0.4 ps at 300 K and 4 ps at 77 K in the highest purity GaAs. These time
constants will dominate if resonant lifetimes exceed them.

The time constants, for the coherent or incoherent case, do not include the
time for traversal of the barriers themselves. When the frequency of the signal
is small enough, the traversal time for tunneling, in the barrier region, is given
by

τt =

∫ z2

z1

√
m∗

2(qφ−E)
dz, (8.62)

which is an expression that follows from the classical interpretation of momen-
tum. It is the time that a broadly spread packet in energy (or equivalently
momentum) would take to traverse a barrier region. By considering motion of
such wave packets, using the time-dependent Schrödinger equation from single
and multiple barriers, the traversal times and the resonant times associated with
charge storage can be distinguished. Traversal times depend on the energy of
carriers; higher energy carriers may take longer to travel.

Inelastic scattering processes allow a change of momentum, hence barriers
formed by band edges at different momenta in the Brillouin zone can all be
involved in the tunneling process, just as they are in indirect bandgap tunnel
diodes. This tunneling occurs via barriers in other valleys. For the GaAs sys-
tem, with barriers formed by Ga1−xAlxAs, Γ, L, and X can all be important.
Additionally, some of these other barriers can be lower than the barrier in en-
ergy at the same point in the Brillouin zone. Recall our discussion of the GaAs
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Figure 8.19: Real and reciprocal space schematic showing the structure and
possible valleys through which inelastic tunneling may occur under certain con-
ditions such as high AlAs mole-fraction and wide barriers of Ga1−xAlxAs. The
constant energy surfaces are identified in the three regions. The four-fold de-
generate set of X valleys is most likely to take part in the inelastic tunneling
process through Ga1−xAlxAs at high AlAs mole-fractions.

gate SISFET—the X valley was the lower energy barrier at the mole-fraction of
x ≈ 0.4 and hence the gate current occurred largely due to it in structures with
thick barriers. While the current was both thermionic and tunneling, the larger
effective mass of the X valley was not sufficient to reduce it below the Γ band
current. The same behavior is observed in coupled barrier tunneling devices
also. For relatively thick barriers, the X barrier determines conduction with
the Γ-to-X transfer requiring phonon emission. Like thermionic processes, this
also occurs using the lower mass transverse X valleys of Ga1−xAlxAs which are
four-fold degenerate. The process therefore involves transfer of Γ electrons to
X valleys and tunneling, a process that requires involvement of optical phonons
and hence inelastic scattering. Figure 8.19 shows the X valleys that are most
likely to contribute to this tunneling current.

Since the X point can be lower in Ga1−xAlxAs than in GaAs for large alu-
minum mole-fractions, the X state in the well may then become the ground
state in a well formed using Ga1−xAlxAs, even though the emitter is made of
GaAs with Γ states being lower in energy. This may then give rise to tunneling
current via X states instead of Γ states as considered in Chapter 4.

We have now discussed the origin of current–voltage behavior and the time
constants associated with tunneling. Off-resonance, the time scales are very fast,
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because they are largely limited by traversal times in the barrier. These time
constants are a couple of magnitudes lower than a pico-second. At resonance,
the decay time can be large, and the filling time limited by the characteristics
of the injecting barrier. If these times exceed about a ps, scattering begins to
dominate, limiting the build-up and decay time-scales. However, once charge
build-up corresponding to a resonance has occurred, the response can be fast,
since any injected carrier pushes another one out, and the injection can be an
efficient process. Thus, the speed of the structure, following the build-up, such
as in small-signal applications, need not be slow. For thin and shallow barriers,
the time constant for resonance—the resonance lifetime and the traversal time—
can both be quite small. Hence, ignoring at least the transition capacitance
component, the resonant tunneling phenomenon can be potentially fast. For
thicker barriers, the time response is limited by scattering rates—processes that
lead to loss of phase coherence. In either of these cases, the time scales involved
are short.

8.5 Transistors with Coupled Barrier Tunneling

From the perspective of application in devices, the feature of coupled barrier
tunneling that is considerably appealing is a fast transport mechanism. Coupled
barrier structures also exhibit a negative resistance, a characteristic that may
be of utility in generation of power in high frequency ranges utilizing relaxation
oscillations. The negative resistance can possibly be a source for fabrication of
device structures where current is low both in a low voltage state and a high
voltage state as it traverses through a large current region during the transition.
This could be of some appeal in fabricating low power circuits if the effects of
instability due to negative resistance can be controlled. The current drive capa-
bility of structures is important for a circuit; the limited density of states of the
quasi-bound states due to the limited dimensions of the devices restricts the cur-
rent density that can be delivered through coupled barrier structures. However,
this current is delivered at energies determined primarily by the quasi-bound
states. Such characteristics can be of interest in three-terminal structures, e.g.,
an electron beam at a specified energy, with a narrow energy spread, could
be of interest in hot carrier transistors. The most important limitations of
these structures have continued to be instabilities of negative resistance for dig-
ital and microwave applications, the irreproducibility of device characteristics,
which are sensitive to grown dimensions, grown compositions, and grown im-
purity distribution effects. However, features of coupled barriers are appealing,
and of interest for small-signal and large-signal high frequency usage. Attempts
have, therefore, continued to create structures based on conventional transistor
structures, as well as on the intrinsic use of the coupling with a control of the
characteristics of the well.

The simplest of the former include incorporation of the coupled barrier in the
semiconductor contact regions of FETs, the base region of the bipolar transistor,
etc. The incorporation in the quasi-neutral region of such structures results in a
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Figure 8.20: An example of resonant tunneling to control the injection character-
istics at the base–emitter junction of a bipolar transistor, and the corresponding
current–voltage characteristics.

narrow range, the region in bias where the transmission is efficient, over which
they are well-behaved FETs or bipolar transistors, enclosed between ranges
where the current decreases. If the device performance does not suffer in these
other regions, then these devices may utilize the lower power capability for
digital applications. Usually, though, this is difficult to achieve, because of
increased resistance effects due to inefficient transport in the coupled barrier
structure.

In the latter category are devices where the coupled barrier structure actually
plays a more central role. A doped well region whose electrostatic potential can
be directly modulated is one example of this. Another example is the use of
a coupled barrier structure in the base–emitter junction region such that it
controls the injection of carriers and allows efficient injection only in a specific
bias range. An example of such is given in Figure 8.20. The decrease of current
in these structures, following the initial rise, is due to tunneling through the
quasi-bound state in the base–emitter junction region. However, outside this
region of bias, the resonant tunneling structure leads to inefficiency in transport
and excess series resistance. This means of getting a selective energy beam
of carriers is of particular interest in the tunneling emission transistor, where
instead of the single tunneling Ga1−xAlxAs barrier, a double barrier with a
larger current capability has been applied. These devices have shown a larger
current capability than the simpler transistor, and have shown larger current
gains, too. An example of such a device in the various bias regions is shown in
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Figure 8.21: Idealization of bipolar transistor with a very thin base, in which
the transport in the base and the injection at the base–emitter junction depend
on the quasi-bound states in the base well.

the inset of Figure 8.20. Arguably, all these structures have utilized the coupled
barrier tunneling phenomenon as a series element, and only in part of the bias
region as an intrinsic part of the device operation.

One good example of the intrinsic use of these coupled barrier structures over
a wide bias range is the use of a quantum well as the base region of a bipolar
transistor, as shown in the idealization of Figure 8.21. The base potential and
the quasi-bound state energies are modulated with respect to the emitter; the
doping in the base allows for ease in accomplishing this electrostatic modulation.
By utilizing the p-doping in the abrupt and thin base, quasi-bound states are
created in both valence band and the conduction band of the base. The injection
of carriers from the emitter occurs through the quasi-bound states in the base to
the collector. The base quasi-bound state potential can be directly modulated.
This device therefore exemplifies the central use of resonance in device physics.
Figure 8.21 is an idealization; the actual structure may be more complicated
in order to properly design the position of the quasi-bound states and barrier
energies.

This use of control of the electrostatic potential and quasi-bound state energy
of the base and the quantum well can also be applied to a unipolar device. To
accomplish this, one may use doping in the base of the same polarity as in
the emitter and the collector regions. One may view this as a limit form of
the hot carrier transistors. The problem with such a structure, of course, is
technological, since dopant diffusion effects become important and one has to
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make contacts to the base regions while still maintaining isolation in the parasitic
regions of the device.

Use of smaller bandgap materials within the base and differing from the
emitter and collector materials may allow a quasi-bound state that is occupied
in thermal equilibrium. The base potential may then be modulated directly,
and there will be less inelastic scattering in the structure due to the absence
of dopants. However, these structures are more difficult to reverse isolate, e.g.,
at the base–collector junction, because of the symmetry of barrier. Another
pseudomorphic heterostructure material with different barrier and transport
characteristics could possibly be used to suppress leakage under the forward
bias conditions of the base–collector junction. Such examples, by necessity,
are technologically more difficult to achieve, they are also likely to reduce the
transmission probabilities, and thus result in smaller current densities.

8.6 Summary

This chapter considered the behavior of structures based on hot carrier injection
and quantum-mechanical tunneling, structures that utilize abrupt heterointer-
faces to obtain unusual operating behavior. We developed, using Schrödinger’s
equation, the transmission and reflection behavior of carriers incident at abrupt
discontinuities. This allowed us to understand how in certain structures one
may reduce reflections by an appropriate shaping of the barrier region. This was
particularly important in the operation of hot carrier structures at the base–
collector junction. We showed how the behavior of these hot carrier devices
depended on reduction of the total scattering events during transport in the
base region, and how the high velocities could be inferred from measurements
on the structure. We then considered the behavior of resonant and sequential
tunneling in structures that are based on barriers that are closely coupled. Se-
quential tunneling-dominates in structures where phase coherence is destroyed
by scattering in the well region. We analyzed the important time constants of
these structures, and concluded that they could be both long and short; the
nature of these time constants is very critically dependent on the structures
themselves.
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Problems

1. We will relate the time that carriers spend on average in the quasi-neutral
region of a bipolar transistor in order to compare this with the behavior of
a hot carrier structure. Consider an HBT with a GaAs base, and let the
acceptor doping in the base be either a constant 5 × 1018 cm−3 or given
by 8 × 1018 exp(−z/3 × 10−6), where z is referenced to the base–emitter
junction and is in centimeters. Estimate the time spent, on average, by
the minority carrier in a device with

(a) a 300 Å wide base region, and

(b) a 1000 Å wide base region.

2. Consider a barrier of the shape

φB(z) = φ0

[
1 + exp

(
−z
`

)]−1

, (8.63)

which is an exponentially graded barrier. Show that the reflection coeffi-
cient of this structure is

% =
sinh2 [π` (k1 − k2)]

sinh2 [π` (k1 + k2)]
, (8.64)

with

k1 =

(
2mE0

h̄2

)1/2

, (8.65)

and

k2 =

[
2m (E0 − qφ0)

h̄2

]1/2
. (8.66)
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3. Consider the following n+-GaAs/Ga1−xAlxAs/n-GaAs structures in which
the n+ region is doped to 5 × 1018 cm−3, the Ga1−xAlxAs region is un-
doped, and the n-region is doped to 1 × 1017 cm−3. Estimate, with suit-
able approximations and using the discussion of Chapter 4, the thermionic
field emission currents and tunneling currents at 77 K for the following
Ga1−xAlxAs structures as a function of forward bias in the 0 to 0.6 V
range:

(a) a uniform composition region of 150 Å width and AlAs mole-fraction
of 0.3, and

(b) a region of Ga1−xAlxAs with the AlAs mole-fraction increasing from
0 to 0.3 from the n+-GaAs to the n-GaAs over 150 Å.

Also, estimate the currents for the same structure where the heterojunc-
tion barrier region is replaced by a homojunction barrier region using a
sheet doping of 2.5× 1011 cm−2 of acceptor doping.

4. Consider the hot carrier transistor using a uniform aluminum mole-fraction
for emitter and collector. In such structures, knowing the dopings, the
Fermi level is known under thermal equilibrium conditions. Assuming an
absence of collisions, and thus only observing the first peak in the depen-
dence of (∂IC/∂VBC ), the mean energy of the stream of carriers incident
at the base–collector junction is known. In the first-order calculation, we
may assume the absence of tunneling effects, etc., at the base–collector
junction. Thus, a changing position of the energy of the barrier at the
base–collector junction, obtained using a changing base–collector bias, can
be employed to obtain the shape of the distribution with energy, as well
as the energy. The energy can be related to the velocity. Determine the
expression for this velocity.

5. For coupled square-well barriers, the transmission can be expressed in
the form of Equation 8.27. Show that this can be simplified to the form
of Equation 8.32. Show that this is actually a more general result for
arbitrary barrier shapes.

6. Show, using a trapezoidal barrier, such as in the square barrier with elec-
tric field, that the transmission coefficient occurs with a pre-factor. If
qφ0 and qφ1 are the two barriers with an electric field E , show that the
transmission coefficient may be written as

T = A exp

[
−4

3

1

h̄

√
2m∗

(qφ0)
3/2 − (qφ1)

3/2

qE

]
. (8.67)

Find A.

7. Consider tunneling in a single barrier structure with the tunneling cur-
rent resulting from a barrier involving a different effective mass. Find an
expression for the current in this trapezoidal barrier.
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8. Show that the consequence of temperature on the transmission of carriers,
from a three-dimensional distribution to a two-dimensional distribution in
a quantized well, is a broadening of transmission characteristics. What is
the characteristic energy of this broadening or decay of the transmission
coefficient from its peak? What is the characteristic energy if the quantized
well was a triangular well instead of a square well?

9. Consider the problem of transmission across a barrier; the current through
such barriers was written quite generally as the following:

J =
qm∗

2π2h̄2

∫ {∫
T
(
E⊥, E‖

)
[fl(E) − fr(E + qV )] dE‖

}
dE⊥. (8.68)

Here, the density of states is assumed to be unity for convenience. Show
that for materials with isotropic spherical constant energy surfaces, the
current can be expressed as

J =
qm∗

2π2h̄3T (E0)∆EkT ln

[
1 + exp

(
ξf − E

kT

)]
. (8.69)

10. Consider tunneling through a barrier region into a square quantum well.
Expanding the density of state distribution function, at an energy E, show
that the density of state appropriate to calculation of current, such as a
multiplication factor in Problem 9, is given by

g(E) =
1

π∆E
Λ(E − E0), (8.70)

11. Consider an electron of energy E incident on a potential barrier or po-
tential well of height qφ and width w. Let the energy of the electron be
greater than the barrier energy, i.e., E > qφ. Show that transmission for
the barrier case is given by

T =
4E(E − qφ)

4E(E − qφ) + q2φ2 sin2(kw)
, (8.71)

where k =
[
2m(E − qφ)/h̄2

]1/2
. The maximum in this occurs at kw = nπ,

where n is an integer, and it results in unity transmission. The minimum
occurs at kw = nπ/2. What is the result for the well problem?

12. Consider transmission in the coupled-barrier problem in the presence of
both elastic and inelastic scattering. Show that the transmission can be
written to be related as

Ttot = Tmaxres

(
∆Ee
∆E

)2

Λ(E −E0), (8.72)
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where Tmaxres is the maximum tunneling transmission probability of the
coherent resonant process. Show that the consequence of inelastic scat-
tering is to increase the width of characteristic energy compared to the
problem with only elastic scattering (see Problem 8). Show, however, that
the area under the curve is the same for elastic and mixed elastic-inelastic
transmission.

13. Consider the problem of injection from a three-dimensional distribution
to one-dimensional distribution instead of two-dimensional distribution
considered in the text. Map the regions of allowed momentum states,
considering conservation of energy and momentum.

14. Consider a 200 Å Ga.7Al.3As barrier hot electron unipolar transistor with
a 300 Å GaAs base. The emitter is doped to 4 × 1018 cm−3 and the
base to 5× 1017 cm−3. The base–collector junction is sufficiently lower in
barrier height to allow most carriers to transit to the collector, and the
transistor is operated at 77 K. For the carriers elastically injected at the
Fermi energy from the emitter, estimate the base transit time at a forward
bias of 0.4 V assuming

(a) no collisions, and

(b) a mean free path of 500 Å with randomizing collisions.

Compare this base transit time with that of a bipolar transistor of similar
base doping of the opposite type.

15. In calculating the tunneling probability, results of the time-independent
Schrödinger equation have been invoked. Since finite times are involved,
shouldn’t the time-dependent Schrödinger equation have been used?

16. Dielectric relaxation time is usually indicated as a limiting time constant
for unipolar devices such as FETs. Is this a limiting time constant for the
unipolar resonant tunneling and hot electron devices? If yes, why? If no,
why not?

17. Show how one may obtain the conduction band edge profile of of Fig-
ure 8.22 in the GaAs/Ga1−xAlxAs base–collector region of a hot carrier
structure.

18. Consider the coupled barrier structures shown in Figure 8.23 and operation
at 300 K.

(a) Which of these cases can exhibit sequential tunneling?

(b) Which of these cases can exhibit resonant tunneling?

Assume that all other characteristics are conducive to the desired opera-
tion.

19. Consider the square quantum well shown in Figure 8.24. What does the
Fermi surface for electrons look like in different regions? Draw.
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Figure 8.22: Conduction band edge profile for the hot carrier structure of Prob-
lem 17.

Figure 8.23: Conduction band edge profiles for the coupled barrier structures
of Problem 18.

Figure 8.24: Square quantum well of Problem 19.



Chapter 9

Scaling and Operational
Limitations

9.1 Introduction

Scaling is the conventional term used to describe the coordinated changing of
device parameters with a reduction in their dimensions in order to obtain a com-
mensurate improvement in performance. In this chapter we will take a general
and subjective view of the operation and scaling of various devices. The treat-
ment is designed to obtain a general understanding of the facets of operation of
devices, and how they may be expected to change with reductions in dimensions,
what particular problems such reductions would encounter, and what changes
in operational characteristics may make them technically interesting. We will
also look at general properties of materials and how they relate to and affect the
scaling of device structures. Such a general framework, lacking rigor, does not
necessarily allow us to make accurate predictions, because as device dimensions
shrink, a more thorough application of physical principles must be incorporated.
Our discussion, therefore, is directed to an understanding of the various techno-
logical limits of current implementations that need to be circumvented or solved
by finding fundamentally new implementations and ways of operation.

Compound semiconductors have dominated high frequency applications by
virtue of their superior transport for comparable-dimension devices implemented
in silicon. This superior transport usually results in higher average velocity of
carriers in the device, and translates into a higher frequency of operation. Con-
sider this transport characteristic within the limitations of saturated velocity
(the highest velocity under conditions where drift-diffusion is a valid approxi-
mation). For an applied field of 5 × 103 V.cm−1, a velocity of 1 × 107 cm.s−1

implies an energy transfer rate of 8 × 10−9 W. The time required to acquire
a kT of energy at 300 K is 0.5 ps, a small time, but nonetheless a limita-
tion because carriers must lose and gain energies even higher than this to be
of practical import for both small-signal and digital usage. Such limitations
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narrow the gap between many of the compound semiconductor and silicon de-
vices because of implications of high doping. Consider this argument further,
in terms of length scales. Some of the operational length scales of interest
include the mean free path, which is the average distance of travel between
collisions, the de Broglie wavelength, the screening length, and the average
distance between dopant atoms. All of these have implications on the opera-
tion of the device: the mean free path determines the suitability of applying
drift-diffusion or other physical basis, the de Broglie wavelength stresses the im-
portance of breakdown of conventional description and the importance of incor-
porating additional quantum-mechanical effects, the screening length—Debye
in non-degenerate conditions and Thomas–Fermi in degenerate conditions—has
strong consequences wherever quasi-neutrality is violated and charge packets
exist, and the average distance between dopants affects band structure and
transport-related material parameters. Larger mean free paths of compound
semiconductors also maintained at larger dopings result in higher velocities be-
yond the saturation velocity considered in the argument above. The longer de
Broglie wavelength of an electron, due to its smaller mass, implies a stronger
role of quantum-mechanical effects. The effects of the rest are quite similar.

Mean free paths are of the order of a fraction of 1000 Å. Another charac-
teristic length characterizing importance of similar scattering phenomena may
be defined as the ratio of the maximum group velocity and the scattering rate.
For the maximum group velocity of 8 × 107 cm.s−1, and scattering rate of
1 × 1013 s−1, this is 800 Å. Electron-based devices in sizes of the order of
2500 Å in compound semiconductors need to include this limited scattering,
and hence our emphasis on off-equilibrium effects in this text. The de Broglie
wavelength at the velocity of 1 × 107 cm.s−1 is of the order of 650 Å in GaAs,
incorporation of tunneling and other quantum-transport effects are necessary to
obtain accurate descriptions at this dimension. Screening lengths are also of a
similar order of magnitude and become important in space charge regions. The
average distance between atoms at a doping of 1019 cm−3 is of the order of 50 Å,
causing a large wave function overlap effect that is reflected in heavy doping ef-
fects on transport, and in state distribution and occupation of bands. Clearly,
some of these have a favorable effect in obtaining improvements in transport,
and some are detrimental.

These arguments serve as an appropriate platform for discussing scaling and
hence the technological limits that have to be challenged. The chapter first
discusses some of the general features of the operation of devices, and follows
it by a general discussion of scaling and limitations posed by the above due
to the operational basis of the devices and due to technological and material
restrictions.

9.2 Operational Generalities

We have been particularly interested in two basic types of devices, the bipolar
transistor, where the diffusion of minority carrier plays a major part in current
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transport and operation, and the FET, where the drift of a majority carrier plays
a major part in the transport and operation. In practice, there are variations
from this. In bipolar transistors, drift is a significant factor in transport for
graded doping or graded alloy composition structures; in field effect transistors
diffusion can be significant in the pinched-off region of the device over a variety
of bias conditions. Diffusion dominates in the sub-threshold region of operation
of FETs.

The control in the bipolar transistor occurs through the injected base cur-
rent, which allows us to modulate the injecting barrier at the base–emitter
junction. The built-in voltages at the junctions play the role of isolating the
controlled regions. In a bipolar transistor, the transport takes place through the
barrier; the barrier, by virtue of its isolating property, allows resistive coupling
to the emitter and base regions. The control in a FET occurs via the gate elec-
tric field, which controls the number of carriers affected. The region of this high
electric field, the insulator–oxide or large-barrier semiconductor or the depleted
metal–semiconductor junction region, allows no or little carrier transport across
it, and hence allows a capacitive coupling of the channel transport region.

In a bipolar transistor, the control of the threshold is usually relatively
straightforward because it depends on bandgap primarily, and doping, current
density, etc., secondarily. The control of the threshold in a FET is more difficult
because of charge density and thickness variations, in either the bulk, the inter-
face, or the insulating regions of the device. In a bipolar transistor, the ease of
maintaining charge neutrality, because of the high doping, allows a large car-
rier concentration to flow through the device, allowing larger current densities.
Because of the built-in barrier of bandgap, the voltage levels of operation are
also restricted to approximately a volt. The power dissipation of fast bipolar
transistor structures is therefore generally larger than that of FETs where the
currents are lower due to lower charge density, and voltage levels are similar. In
digital circuits, the high current capability of a bipolar transistor, is suited to
usages involving large loadings which tend to be dominated by capacitances and
where the higher power dissipation can be acceptable. The lower power as well
as simpler and easily integrable structure of field effect transistor is suited to
usage involving higher integration levels than can be obtained with the complex
bipolar technology.

While operationally, as seen in the above, the two device types can be distin-
guished in how the control is achieved, functionally, the effect of carrier transport
from the injection electrode to the collection electrode takes a very similar form.
Consider two short-dimension device structures, the bipolar transistor and field
effect transistor shown in Figure 9.1. This figure shows, for a GaAs bipolar and
an HFET structure with comparable short length scales, the behavior of the
band edges and the velocities of transport. When a rapid change in the input
signal occurs, at the base, or at the gate, the device response involves both par-
ticle current effects and displacement current effects. Both these devices have
a low field region, in the quasi-neutral base of the bipolar transistor, and at
the source edge of the channel underneath the gate. The displacement current
in these regions is small; the particles moving with a smaller velocity support
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Figure 9.1: Operational similarity in carrier transport from injection to col-
lection in a GaAs bipolar transistor (solid lines) and a field effect transistor
(dashed lines). (a) shows the band structure under biased conditions and (b)
shows the velocity along the path. The quasi-neutral base region of the bipolar
transistor has similar transport effects as the source end of the channel. The
base–collector region of the bipolar transistor has similar effects as the drain
high field region of the channel in a field effect transistor.
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the injection into the collector and the charging of the gate displacement cur-
rent. The pinched-off region of the HFET, and hence the drain current, can
not change until carriers reach this region moving with the lower velocity and
satisfying the displacement current requirements of the gate. This delay has an
equivalent in the delay due to transport in the quasi-neutral base region of the
bipolar transistor. Both carriers move with lower velocities than they do in the
pinched-off region or the base–collector space charge region. The band edges in
the pinched-off region and the base–collector space charge region are also quite
similar, being representative of the bias drop of comparable voltage bias. The
overshoot in these regions, given their comparable low and high energy transport
characteristics, is also comparable. So, even though one is a minority carrier
device and the other a majority carrier device, they have strong similarities in
how the carriers that are injected get collected.

There are a number of devices that we have not referred to yet that may be
said to fall in between. Some examples of these are the static induction tran-
sistor, the hot carrier transistor, the resonant tunneling transistor, etc. These
devices have modes of operation where they either exhibit a bipolar-like or a
FET-like mode in different biasing regimes or actually mix the two. Figure 9.2
shows examples of the devices and their broad classification. In this general clas-
sification, we refer to bipolar behavior as characterizing injection over a barrier
and resistive coupling of control signal, and field effect behavior as character-
izing injection that is coupled via ohmic means and controlled via capacitive
means. Examples of such mixed-mode behavior include certain designs of the
permeable base transistor. In principle, all of these devices can be fabricated in
all of the semiconductors of present-day interest—single or compound.

9.3 General Scaling Considerations

Scaling is the changing of device dimensions by appropriate proportions so that
delay components reduce proportionally. This allows scaled devices to have a
total delay that is proportionally smaller, with a proportionality factor given
by the scaling factor. The advantage of resorting to the technique of scaling
is that it allows us to shrink devices and circuits without having to perform
a complete re-analysis of the device, and allows us to do that by following a
standard set of rules. It remains valid so long as the governing rules chosen
remain valid in prediction of the operation of the device. So, to scale a de-
vice for its static and dynamic behavior, we consider scaling of the dimensions,
and consider the effect of this scaling on the governing equations. Consider
dimensions larger than 0.25 µm for compound semiconductor devices. At these
dimensions, the drift-diffusion approximation is applicable for most device con-
ditions. The governing equations are Poisson’s, the current, and the current
conservation equations. Poisson’s equation is a restatement of one of Maxwell’s
equations. The complete set of Maxwell’s equations describes the behavior of
signal transmission, both in circuit interconnection and within devices. We
therefore consider Maxwell’s equations first; they are of general import both for
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Figure 9.2: Examples of various classification of devices and their mixes, with
band diagrams in the control regions.
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devices and circuit interconnections. Signal transmission along a transmission
line is governed by the set of equations

∇ × E = −∂B
∂t
,

∇.D = ρ,

∇ × H = J +
∂D

∂t
,

and ∇.B = 0. (9.1)

Consider a scaling factor λ where λ < 1 represents shrinking of the corre-
sponding device dimension or any other parameter. So, if a length parameter z
is scaled to z

′

by a scaling factor λ, then the new scaled dimension z
′

= λz. If we
consider scaling without changing the combinations of the materials involved, so
that the constants of the relationships are invariant, and if we consider scaling
without changes in the signal swings, i.e., the electrostatic potentials remain
constant too, then scaling of device dimensions by λ implies the scaling of all
the fields (E ,D , H, and B) in Maxwell’s equations by the scaling factor 1/λ.
The field strengths increase as a result of the shrinking of device dimensions
because of the increase in the gradient. All change by 1/λ, i.e., they increase
during shrinking of geometry because the derivative ∇ increases by this factor.
We wish the time scale to also shrink by the same scaling factor, i.e., t

′

= λt, so
the scaled Maxwell equations, using prime to denote the scaled parameters, are

∇
′ × E

′

= −∂B
′

∂t′
,

∇
′

.D
′

= ρ
′

,

∇
′ × H

′

= J
′

+
∂D

′

∂t′
,

and ∇
′

.B
′

= 0. (9.2)

The scaled set of equations (Equation 9.2) are invariant from the unscaled
Equation 9.1, with a new charge density ρ

′

and a particle current density J
′

varying as 1/λ2. Note also that the displacement current term ∂D
′

/∂t
′

also
varies as 1/λ2. Thus, scaling of the interconnect lines results in a higher current
density and charge along the lines. There are technological constraints to this,
but so long as this scaling of all dimensions, including the insulator thicknesses,
charge density, and current density parameters, is allowed to take place, then
the interconnections will transmit the signals at a proportionally faster time
scale. The reason for the more rapid increase of charge and current density
is the requirement that the potential remain constant. If we allow the signal
amplitude to scale, then the constraints on current and charge are more relaxed
(see Problem 1).

Maxwell’s second equation is our Poisson’s equation, hence we have also
scaled one of our important device equations. In terms of the fixed and immobile
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charge, we have Poisson’s equation as

−∇2ψ =
q

ε
(p − n+ND −NA) . (9.3)

For the scaling of the charge density as 1/λ2, the individual charge densities
ND , NA, n, and p must all scale as 1/λ2. In a field effect transistor, this implies
that the channel charge density (mobile and immobile) should vary as 1/λ2.
This can be a considerably difficult proposition for HFETs since we wish to also
avoid the parasitic effects of either excessive gate current in an undoped-barrier
device, or of parasitic source-to-drain conduction in a doped-barrier device.
In an insulator-based device, the breakdown fields and changes in transport
properties of the carrier place constraints. In a bipolar transistor, the largest
of these needs to be increased in this proportion. The doping can be increased
maintaining the scaling requirements in the space charge regions, together with
constraints placed by transport effects such as injection efficiency (a reason
for using HBTs) as well as parasitic conductions due to tunneling in various
highly doped junction regions. In the quasi-neutral region, the constraints from
the space charge regions can be extended maintaining the scaling since the
rate of change of electrostatic potential is small. Traditionally, the current
densities of bipolar transistors are high, since the injected carrier concentration
is maintained high with small junction areas; an increase in the carrier density
as 1/λ2 would place a very strong technological burden, and is not necessary
since this charge density becomes important to the scaling of Poisson’s equation
mostly in the base–collector space charge region under high injection conditions.
Thus, the increase in current density of 1/λ2 suffices, and the carrier densities
may be maintained nearly constant.

In the transport of carriers in these device structures at the dimensions above
0.25 µm, the potentials of interest here are the quasi-Fermi potentials (φ

′

n and
φ

′

p). These do change slightly because

φ
′

n = φn −
kT

q
ln

(
n

′

n

)

and φ
′

p = φp +
kT

q
ln

(
p

′

p

)
, (9.4)

both of which have a perturbative term 2kT (1/q) ln(1/λ). This dependence is
logarithmic, smaller than the proportional changes, and stronger for FETs than
for bipolar transistors. Consider now the current density equation for devices
applicable at these dimensions,

Jn = −qµnn∇φn

and Jp = qµpp∇φp. (9.5)

Consider the case of FETs first; the scaling factor for current from this is
(µ

′

/µ)1/λ3. For most useful carrier density and doping levels, the mobility
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and diffusivity follow a weaker than the inverse concentration behavior, i.e., a
weaker than λ2 behavior. Hence, the particle current usually follows a relation-
ship closer to the weaker side of 1/λ2 dependence. Carrier concentration itself
may not be scaled significantly, but the gradient does lead to a stronger than
µ

′

/µ dependence, a dependence that is stronger than 1/λ. For transport in
high fields and thermionic injection across semiconductor heterojunctions, the
carriers move with a limited velocity vl, which does not scale; again, because of
the concentration dependence, the particle current varies as 1/λ2.

Now consider another important controlling device equation, the current
continuity equation,

∂n

∂t
= Gn −Rn +

1

q
∇.Jn

and
∂p

∂t
= Gp −Rp −

1

q
∇.Jp. (9.6)

The rate of change of particle concentration in a given volume with time now
varies as 1/λ3, as does the current transport contribution. The generation
and recombination terms are of importance in bipolar transistors, although the
devices are designed so that these are not the prominent terms of the current
continuity equation. In the single time constant approximation, usually valid
throughout most of the device regions of interest, it varies as (np − np0)/τn in
p-type material. The carrier concentration varies as 1/λ2 and the lifetime τ as λ
to λ2; the latter occurs at very high doping levels due to Auger recombination.
As a result, the generation and recombination term also varies with close to
1/λ3 dependence. The current continuity equation, therefore, also scales with
dimensions. So, we have seen that at least at dimensions exceeding 0.25 µm in
compound semiconductors, the scaling of the control equations can be achieved
consistently, albeit with technological constraints.

To observe that this scaling procedure does result in a scaling of the time
scale in the operation of the devices, consider some of the time constants of
device operation—that related to diffusion of carriers in the bipolar transistor,
and that related to the charging of space charge capacitance in both bipolar
and field effect transistors.

In the quasi-static approximation, the time constant due to diffusion of car-
riers in the base, the base time constant, is related as

τB =
Q
I

∝ n∆X∆Y∆Z

J∆X∆Y
∝ λ, (9.7)

where,Q is the stored charge, and ∆X, ∆Y , and ∆Z are the dimensions of
the structure, i.e., the base time constant scales with the scaling factor. If
the current does not scale exactly as λ2 because of the doping dependence of
the mobility and diffusivity (considered previously) then it varies as (µ/µ

′

)λ2,
usually a slightly slower variation. So, storage effects do scale quite closely, as
we should expect based on the scaling of the operating equations.

Now consider the time constants related to charging and discharging of space
charge regions, and characterizing the displacement current effects, instead of
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the particle current effect in the above. This time constant τ is related with the
capacitance (C), the voltage change across the junction (∆V ), and the current
through the junction via

τ =
C∆V

I
=
ε∆X∆Y

∆Z

∆V

J∆X∆Y
∝ λ, (9.8)

the expected time scaling. Like the diffusion behavior, if the current density
does not have the exact proportionality to 1/λ2 due to mobility and diffusivity
effects, then this time scale shows a weaker dependence of (µ/µ

′

)λ.

9.4 Limits from Operational Considerations

We now consider, again within the general framework, limits on devices placed
by their operational basis. The operational basis in turn leads to technological
limitations as devices are scaled. We may consider these together to appreciate
the difficulties and the advantages of scaling in the pursuit of higher perfor-
mance.

The first of these is power dissipation in devices and how efficiently heat
can be removed from the substrate to limit the rise in temperature to accept-
able numbers. There is a fundamental limit to the minimum energy dissipated
in processing of information, determined by thermodynamics and quantum me-
chanics, and of the order of the thermal energy. The amount of energy dissipated
in devices of practical interest is higher than this since we wish to distinguish
a state with very high probability. Circuits are designed to minimize the en-
ergy dissipated but with additional constraints requiring fast switching or high
frequency of operation.

The need to drive loads—another device or a capacitive, inductive, or resis-
tive element in acceptable time scales—requires the device to have a minimum
current handling ability to make the switching between two distinctly identifi-
able states possible. The energy required in this process is significantly higher
than the fundamental limit above. These states to be distinguished are usually
levels in voltage, but they could as well be states in current, in which case a
potential drive ability will be required. The potential changes required have to
be sufficiently larger than the thermal voltage kT/q to prevent errors arising
from thermal noise. Potential changes, in practice, are limited by bigger factors
related to switching phenomena: one example is the effect of inductances when
large changes in currents occur, normally called the LdI/dt effect, or changes in
resistive drops in power and signal lines due to changes in current carried, and
device variations such as in the turn-on and turn-off behavior.

A large scale circuit usually has inductances associated with lines that have
low impedance terminations; power lines are example of this. A change in
current of 1 mA in 25 ps with an inductance of 0.065 nH—an optimistic estimate
for a power line—causes an inductive voltage change of ≈ 0.026 mV, i.e., of the
order of thermal voltage. Such effects get particularly strong with fast switching,
as well as for signal lines with low impedance loads or sources.
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Resistive drop in power lines can be very strong since large densities are
associated with large currents, even if the power dissipation per gate is small.
Consider logic with 300 µW dissipation per gate, and employing a 1 V power
supply voltage. For a 25,000 gate circuit, the total power dissipated is 7.5 W in
an area likely to be of the size of a cm2 and the current requirement is 7.5 A. The
distribution of this power and current requires complex designs, so that resistive
drops can be maintained low. There are additional line limitations; as the line
dimensions decrease, fringing effects begin to dominate, line capacitances, e.g.,
are limited to nearly 5 fF.µm−1 due to the fringing effects of three-dimensional
distribution of fields in a small line.

Heat dissipation in small geometries is limited by spreading effects (see Prob-
lem 2), and the average temperature rise at the surface for GaAs for this example
is between 30 K and 70 K depending on the sparsity of the design. The upper
limit on power dissipation is defined by electro-migration in metal lines and in
semiconductors, which limits the current capability and reliability; the voltages
that can be applied are limited by the operational basis of the device, parasitic
effects such as injection effects in the gate, etc., and also the power that can be
efficiently extracted from the chip so that temperature changes can be limited.

Threshold variations cause changes in voltage levels because of their effect on
noise margins. Threshold voltage of the order of thermal voltage are common for
FETs in compound semiconductors. With a decrease in device dimensions, the
total number of impurity atoms within the current-limiting regions also generally
increases. Since the impurity distributions are random and follow Poisson’s
probability distribution, fluctuations in charge contributions also increase with
scaling of device dimensions. All these lead to a minimum threshold voltage
variation because of fundamental constraints, and place additional operational
constraints on the design of scaled devices and digital circuits.

9.5 Scaling and Operational Considerations of

FETs

We now return to the question of limitations of devices and relate them to
material properties and transport phenomena. In this discussion we will also
include considerations of scaling below the dimensions defining the applicability
of the drift-diffusion formalism.

We have considered, during the discussion of FETs, some of the effects of
increases in output conductance, changes in threshold voltage, etc., that result
from reduction of channel lengths. These effects can be broadly classified under
the category of short channel effects. The short channel phenomenon, due to
the two-dimensional distribution of fields, places a principal constraint on the
scaling of FETs. The short channel phenomenon leads to weakly controlled
current flow through longer paths from source to drain due to lowering of the
source barrier (see Figure 9.3). This flow of carriers extending away from the
surface or interface leads to a higher output conductance and poorer speed
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Figure 9.3: Current flow and potential contours showing the basis for short
channel effects by comparing behavior in a long channel device (a) and a short
channel device (b). The dashed lines show constant potential surfaces and the
arrows indicate the flow of carriers.

because of the longer path lengths, and a barrier mode of operation that is
modulated by the drain voltage. These are all consequences of the breakdown
of the nearly one-dimensional conditions that existed in the long channel device.

One of the limits to the shorter channel lengths is due to this punch-through
phenomenon.1 A rough analysis of the extent of depletion regions at the source
and the drain is

wd =

[
2ε (ψj0 + VD)

qNA

]1/2
,

and ws =

(
2εψj0
qNA

)1/2

, (9.9)

assuming a one-dimensional analysis at the heavily doped regions themselves.
An overlap in these widths leads to an increase in the two-dimensional ef-

fects and barrier-limited injection of carriers into the substrate. The junction
built-in voltage ψj0 is nearly invariant, hence only wd can be controlled. Hence,
simultaneous reduction of wd with channel length is achieved by reducing VD.
A consequence of this is poorer noise margin, and an increase of the acceptor
doping to maintain good sub-threshold behavior and carrier confinement. In-
creasing NA requires larger voltages or more doping in the large barrier region of
a doped-barrier HFET to cause inversion. In a MESFET, an increase in the ac-
ceptor doping in the substrate has to be compensated by an additional increase
in channel doping to maintain threshold voltages. Lowering VD also requires
lowering of the gate-to-source voltage (VGS) in the logic gates, since one gate
drives another, and hence barrier thicknesses have to be reduced to maintain

1See, e.g., J. A. Cooper, Jr., “Limitations on the Performance of Field-Effect for Logic
Applications,” Proc. of IEEE, 69, No. 2, p. 226, Feb. 1981 for a discussion related to
MOSFETs.
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Figure 9.4: Channel length limits related to various breakdown phenomena for
GaAs MESFETs. (a) shows limits due to gate leakage and breakdown with
constant doping. (b) shows the increase in this by using lightly doped drain.

channel charge. Barrier thicknesses for heterostructure field effect transistors
are limited by gate leakage current, which is dependent on thermionic field emis-
sion and tunneling current. In insulator-based structures, the barrier thickness
is limited by the insulator breakdown field. Like for HFETs, for MESFETs, the
gate leakage characteristics are due to thermionic field emission at the heavily
doped contact edges and in the central gate region. Limits related to these
fields and currents are shown in Figure 9.4. This curve of breakdown-limited
channel length is, however, an underestimate because it assumes a constant ac-
ceptor doping underneath the source and drain ohmic contacts. Lightly doped
drain structures can be fabricated for HFETs, MISFETs, and MESFETs that
prevent an increased doping in the gate–drain region, allowing this limitation
to be lowered and thus allowing shorter channel lengths. An example of this is
shown in Figure 9.5.

The typical short channel effects in FETs are summarized in Figure 9.6 and
Figure 9.7 for scaled 1.0 µm, 0.5 µm, 0.25 µm, and 0.1 µm devices. The short
channel effects are virtually absent in the 1.0 µm devices, and gradually begin to
appear in the shorter gate-length devices even with the use of scaling. The short
channel effects occur in both HFETs and MESFETs, and are very pronounced
in the one example of direct reduction of device channel length without any
change in other device parameters.

The poor output conductance in these is increased by the lower barrier at
the undoped or semi-insulating substrate. This mechanism is somewhat similar
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Figure 9.5: A GaAs MESFET structure with lightly doped drain region to
obtain improvements in short channel phenomena. This should be compared
with the earlier figure discussing short-channel effects.

to the drain-induced barrier lowering mechanism due to poor control of channel
by the gate (see Figure 9.8). The characteristics of the back interface, therefore,
are quite important to limiting short channel effects during scaling. An abrupt
barrier, e.g., utilizing heterostructures, reduces the short channel effect by lim-
iting substrate injection. A consequence of this reduction of substrate injection,
however, is a decrease in device current since the carrier densities are lowered
by a stronger pinch-off behavior. Thus, additional charge has to be provided
when limiting short channel behavior using a back barrier; this can possibly
cause additional voltage variations.

Note that in an HFET, the inversion layer has a very small thickness and
is separated by a semi-insulating or insulating barrier, while in a MESFET,
the average separation of a gate from the conducting channel is bias-dependent.
When the doped layer is thick (i.e., a is large), the gate has weaker control of
the conducting channel because of increased two-dimensional effects, and the
long channel models are increasingly invalid. If the conducting channel width
is simultaneously modulated by both the gate and the drain, then the output
conductance increases and other short channel effects also become important.
Thus, just as in the HFET (i.e., similar to an increasing background doping
NA), MESFETs require an increasing doping in the channel (ND) as gate lengths
shrink. Usually, an additional constraint is placed on the channel thickness, a <
L/3, to ensure that the electric field perpendicular to the interface is stronger
than the electric field parallel to the interface, i.e., Ey > Ez. This allows for
strong gate control, and hence good short channel behavior. Together with
Figure 9.4, this limits the amount of channel charge that can be modulated
(the maximum of this sheet charge is qNDa) by the gate voltage. This limits
the current. An example of poor output conductance due to large thickness is
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Figure 9.6: n-channel HFET output and sub-threshold characteristics for scaled
1.0, 0.5, 0.25, and 0.1 µm devices are shown in (a), (b), (c), and (d).
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Figure 9.7: n-channel MESFET output and sub-threshold characteristics for
scaled 1.0, 0.5, 0.25, and 0.1 µm devices are shown in (a), (b), (c), and (d).
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Figure 9.8: Mechanism of substrate conduction because of lowering of the barrier
to the substrate in MESFETs. Electrons may travel through the substrate
substantially away from the gate region because of the lowering of the back
barrier due to proximity of the ohmic electrodes.

shown in Figure 9.9.

Conductance degradation due to similar thickness constraints occurs in HFETs
also. While insulator thicknesses can be reduced to somewhere between 20–
50 Å, the large gap semiconductor doped or undoped regions in HFETs (semi-
insulating in character) can not be reduced due to tunneling currents resulting
from lower barrier heights.

Operation at two logically distinct node voltages requires a consistent anal-
ysis that obtains the desired noise margin, speed, etc., while still minimizing
power dissipation. Large switching speeds require that operating voltages dif-
fer amply enough to allow a significant current drive commensurate with fast
switching. The lower voltage level, which is close to the threshold voltage (ac-
tually lower in the sub-threshold region), has to be sufficiently low to nearly
cut off the current, and the threshold voltage should not be too large because
proportionally larger power supplies will be required, together with larger power
dissipation. Thus, for HFETs, MISFETs, and MESFETs, the sub-threshold cut-
off should be rapid, i.e., as near to the ideal dictated by the device physics, and
the threshold voltage should be the smallest value consistent with the above
requirements. The power supply then is determined to allow necessary noise
margin and circuit speed.

Some additional remarks regarding threshold voltage control are in order.
The MOSFET in silicon with a poly-silicon gate of the opposite doping polarity
as the substrate, or the SISFET with the same doping polarity gate as the
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Figure 9.9: Output characteristics of a thick channel 0.5 µm gate-length device
(a) and its sub-threshold characteristics (b) showing the poorer output conduc-
tance and sub-threshold control resulting from large channel thickness.
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Figure 9.10: A comparison of band diagrams at threshold for HFETs and MES-
FETs.

inversion layer, have a naturally near-zero threshold voltage.

VT = VFB + 2ψB +
√

2
kT

q

CFB
Cins

(
2
qψB
kT

)1/2

(9.10)

for a MISFET, and a similar variation of the equation occurs for SISFET as
discussed in Chapter 6. Here, the flat-band voltage is the difference in the gate
semiconductor work function, which is a negative quantity that compensates
for twice the difference of the intrinsic and Fermi level in the bulk (the 2ψB
term). Since Cins is large, the last term is small, and hence the VT is close to
zero. Recall that in MOSFETs the usual technique of obtaining the appropriate
threshold voltage is to do low dose implants to control ψB . In HFETs, the
desire to obtain large mobilities usually leads to less emphasis on using substrate
doping, and more emphasis on using doping in barriers, or use of differences in
the composition of the gate material of a SISFET and the channel material to
obtain the desired threshold voltage.

A MESFET, however, does not have compensating work functions, and the
threshold voltage is a consequence of the delicate balancing of the built-in volt-
age, i.e., the Schottky barrier height, and potential drop across the doped chan-
nel region. A comparison of the band bending at threshold in the two situations
is shown in Figure 9.10. For the MESFET, the threshold voltage can be ap-
proximately defined as

VT ≈ φB + (φC − φF ) − qNDa
2

2ε
. (9.11)

MESFETs are relatively sensitive to channel parameter variations due to
this delicate balancing, while MISFETs and SISFETs are relatively immune.
Doped-barrier HFETs, however, are sensitive, due to similar reasons as the
MESFETs. The sensitivities follow directly from the threshold equations above
(see Problem 3). A change in charge in the MESFET channel directly influences
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the device threshold, while in the MISFET and SISFET it is reduced by the
effect of drops across the insulating or semi-insulating barrier region, and hence
is significantly smaller, although still tunable.

9.5.1 Limitations from Transport

We have discussed several material and device physics–related constraints so
far, but one of the most significant properties of the material that we have not
discussed is the velocity with which the carriers traverse. Specifically, we are
interested in the velocities, or averages thereof, that are important to the device
speed.

Consider the small-signal transconductance gm of an FET in quasi-static
approximation.

gm =

∣∣∣∣
∆Id
∆Vgs

∣∣∣∣
VDS

=
∆Q× v

∆Vgs
(9.12)

in either the drift- or diffusion-dominated region, with negligible displacement
current. This allows us to express velocity,

v =
gm
Cg

, (9.13)

where gm is the small-signal quasi-static transconductance per unit width and
Cg is the capacitance per unit area of the gate. This is an approximate rela-
tion, as our discussion of small-signal characteristics of field effect transistors
showed, but it is of sufficient validity to make general arguments. Since current
is constant, the source-end velocity may be expressed as

vs =
gm

C
′

gs

, (9.14)

where C
′

gs is the capacitance per unit width at the source end.
This relation is based on control of the charge by the gate voltage, and hence

drain bias dependence, i.e., two-dimensional effects, should remain small, other-
wise, the resultant field will also influence the velocity. Now consider the steady-
state velocity–field characteristics of various materials considered in Chapter 2.
Examples of these various materials with their approximate source-end velocities
are shown in Figure 9.11.

The source-end velocity regions on these curves correspond to gm/C
′

gs at
the saturation current condition of the logical low state for an enhancement-
depletion mode logic gate. At this condition, drift current dominates and the
transistor is close to the resistive regime of operation, hence we may employ the
average electric field (the ratio of the voltage and gate length) for comparison.
The advantage of higher low-field mobility is clear at these gate lengths. It
leads to a larger velocity of carriers as they enter at the source end of the
channel. These higher velocities should translate to a natural speed advantage
in materials with higher low-field mobility, provided the high-field velocities are
either similar or better. Note that at high fields, most of the materials so far of
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Figure 9.11: Velocity–field characteristics of various materials together with
their source-end velocities in FETs marked as the shaded region.

interest have comparable steady-state velocities (approximately the saturated
velocity). In the logical high state, much of the voltage drop occurs in a narrow
region near the drain end for the micron sized devices. The fields are quite high.
For 1.5 V supply voltages at 1 µm gate lengths, these will exceed the average
field of 15 kV/cm in parts of the device. As gate lengths are shrunk further
these fields would limit the velocity in parts of the device.

These general arguments are based on quasi-static and drift-diffusion con-
siderations. Off-equilibrium and rapid changes can also be considered in an
extension of these arguments. When rapid changes occur in time, in a FET, the
current at the source end serves to charge or discharge the gate electrode during
the initial part of the transient. The fields in this region are low; the low-field
characteristics are important in determining the behavior of the response of the
device at these time scales. Once the carrier density changes in the channel
reach the drain end of the gate, the carrier densities there may change, and the
drain current variations will occur. The velocities in this region can be large
because of off-equilibrium effects, and this change can be rapid. Consequently,
both low-field behavior and high-field behavior continue to be important in the
switching transient as well as in the small-signal response of the transistor. Re-
call our initial arguments in this chapter regarding bipolar transistor and FET
similarities. Such a dependence on the low-field and high-field properties of
carrier transport continues to be important in a bipolar transistor also.

Our simple FET picture to this point has been derived based on a mono-
tonically increasing velocity–field curve. It has to be modified in the context of
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the negative differential mobility that may exist in HFETs where channels are
relatively undoped, or lightly doped (< 5×1017 cm−3) GaAs or other compound
semiconductor FETs. In these devices, the stationary space charge layer forms
that we referred to as the dipole layer. It forms because any increase in fields
beyond that for peak velocity decreases the velocity of the carriers. This local
change in charge supports the large dipole field as well as the current continuity.

In the lower doped devices, one actually sees a negative resistance in output
characteristics because of the decrease in velocity in the high field region with
bias. At the usual dopings (> 1017 cm−3), this becomes smaller. However, one
does observe a decrease in output and feedback capacitance because of increase
in the width of the depletion region of the gate, and in the output conductance
because of the effect of negative differential velocity is counter to the normal
increase of output conductance due to short channel behavior. Both of these
improve the behavior of compound semiconductor FETs. In particular, the
effect in output and feedback capacitance is rather dramatic.

The implication from a device point of view, because Cgs represents the dom-
inant input admittance element (there is very little conductance) and because
Cdg represents the dominant feedback capacitance element (again there is very
little feedback conductance), is that the ratio Cgs/Cdg might be considered as
a figure of merit for high frequency devices. It characterizes the ratio of control
to feedback in field effect devices. Comparative values of Cdg in between the
silicon and compound semiconductor devices vary between two and eight. This
discussion actually suggests that a very useful figure of merit for the purposes
of gain may be (gm/Cgs) × (Cgs/Cdg) = gm/Cdg .

9.6 Scaling and Operational Considerations of

HBTs

Having studied the behavior and effects of grading, doping, current drive, re-
combination, forward base time constants, etc., we can now analyze and de-
rive the design strategy for an HBT in the compound semiconductor system.
Parabolic grading has been shown to give better current drive capability than
linear grading, and hence is the preferred technique. Although space charge re-
gion recombination is lower for linear grading, it is dominated by quasi-neutral
recombination at high current densities for all grading types, and hence is of
secondary concern. Absence of doping in the grading regions gives lower space
charge region recombination, but for the same reason as linear grading this is
also not a preferable design technique. For collector alloy grading in heterojunc-
tion collector devices, linear grading is attractive because it reduces the alloy
field near the junction compared to parabolic grading, and the larger space
charge width allows for a design wherein the barrier at the end of the linear
grading can be suppressed by a sufficiently large electrostatic field. The impor-
tant design strategy is therefore to use dopings that are sufficiently high that
both the conventional bipolar effects and the HBT alloy barrier are avoided.
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We emphasize the digital aspects of the design—the high frequency aspects
follow in a similar way. Digital operation requires the device to be capable both
of high current drive with low capacitances and time constants and of sufficiently
large current gains. The scaling of the device therefore differs in two important
respects from that of the homojunction silicon transistor. First, the device has
to be designed to compensate for the barrier effects, and second, the gain of the
device has to be maintained by suppressing the surface recombination effect,
and maintaining a sufficient base transport factor. The first constraint requires
the emitter and the collector dopings to be increased as a function of current
density. In silicon bipolar transistors, only the collector doping has to be in-
creased; the emitter is already doped high to maintain good injection efficiency.
The second constraint requires suppression of surface recombination and space
charge region recombination. Surface recombination can be minimized by the
use of the various techniques that place a barrier to minority carrier at the sur-
face. Space charge region recombination is sufficiently small at current densities
of interest, as we have seen, and remains so even with increasing emitter and
base dopings.

In such a design, at high current densities the recombination current density
in the quasi-neutral base becomes important, and this requires the inclusion
of the base transport factor and thus the dependence of lifetime on doping.
While injection efficiency is a constraint in silicon bipolar transistors, the base
transport factor is the constraint in GaAs. The base doping can be significantly
higher than in the homojunction bipolar. At base dopings of interest (NA >
1018 cm−3), the lifetime varies inversely with the doping (τ ∝ NA

−1). Ignoring
two-dimensional effects, the gain varies as 2Ln2/wB

2. Thus, current gain β ∝
(NAwB

2)
−1

. The base time constant τB varies approximately as wB
2/2Dn. Dn

varies inversely with the doping NA because of ionized impurity scattering.2

A self-consistent method for obtaining scaling of the base time constant and
maintaining gain requires the base width to be varied as the scaling factor λ,
while varying the base doping between 1/λ1.33 and 1/λ. This allows the base
transport factor to vary between λ1.33 and λ (slightly faster than the scaling
factor), while maintaining the current gain in the device structure. This increase
in base doping is not as rapid as in silicon bipolar transistors where the doping
levels are lower. For constant voltage swing (usually chosen to be the minimal
acceptable from noise and power constraints), and constant power supply volt-
ages (determined by the bandgap of the base material and the logic swing), the
currents remain constant and the current density increases as λ−2. The collec-
tor and the emitter dopings also increase at this same rate. This results in the
total delay due to intrinsic component scaling as λ. These scaling factors of the
important epitaxial parameters are summarized in Table 9.1.

The minimum thicknesses of the emitter and collector regions depend on
the doping, the junction voltage swing, and the minimization of the parasitic
resistance. For the collector, the breakdown voltage must also be considered,

2The data on this are scarce, but in the regime dominated by ionized impurity scattering,
this varies for majority carriers as NA

−0.5 to NA
−1.0.
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Table 9.1: Scaling of compound semiconductor HBTs.

Vertical scaling for horizontal scaling of λ
Current Density 1/λ2

Emitter Doping J ≈ 1/λ2

Emitter Thickness λ
Base Thickness λ
Base Doping 1/λ
Collector Doping J ≈ 1/λ2

Collector Thickness λ

and for the emitter, tunneling currents at low bias due to degenerate doping in
the emitter and the base must be taken into account. While DX centers play
a negligible role in the operation of HBTs, with regard to transient effects in
current transport, their inefficient ionization leads to larger emitter resistance,
which may become important at current densities of 105 A.cm−2. Thus, al-
though the Ga1−xAlxAs/GaAs HBT has generally employed mole-fractions of
AlAs close to 0.3, scaled submicron devices operating at high current densities
may require lower AlAs mole-fractions.

9.7 Summary

This chapter discussed, in general, the limitations placed on miniaturization of
devices by either the scaling framework followed or by operational constraints.
First, we considered the general scaling behavior of the underlying electromag-
netic and transport equations. This allowed us to understand how the device
fields and current densities may be expected to change in practice. We then
considered operational constraints. An example of an operational constraint is
breakdown voltage at short gate lengths in FETs due to an increase of substrate
doping. Another operational constraint in FETs is the poor sub-threshold be-
havior at short dimensions. We then deduced possible scaling behavior for field
effect and bipolar transistors assuming a certain set of ground rules for the
scaling.
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Problems

1. Derive the scaled Maxwell equations by allowing the potential to also
change. How do the current and charge scale under these conditions?

2. Consider the transport of heat on a chip. Consider circuits employing
FETs of 1 µm gate length. The FETs are 10 µm wide and carry a current
density of 0.1 A.mm−1, with an average drain-to-source voltage of 0.75 V.
These devices are made on GaAs substrates that are 250 µm thick. Con-
sider an isolated device, with heat coming from a cylindrical source of an
average 1 µm diameter (a typical gate, and gate-to-drain spacing). Find
the temperature distribution assuming that the back side of the substrate
is at 300 K. What would be the effect on the temperature if such heat
sources were 10 µm apart? The general reference by Carslaw and Jaeger
considers boundary conditions that are similar to those of this problem.

3. Let us compare the threshold voltage sensitivity to device parameters at
long gate lengths. Consider the GaAs gate n-channel SISFET and the
GaAs MESFET at threshold conditions. The GaAs gate n-channel SIS-
FET utilizes a Ga1−xAlxAs whose thickness is 300 Å and which exhibits
an electron band edge discontinuity of 0.3 eV with GaAs. The substrate
is doped to 5 × 1015 cm−3, and the doping of gate material aligns the
electron quasi-Fermi level with the conduction band edge away from the
interface. The GaAs MESFET has a channel doping of 5 × 1017 cm−3, a
threshold voltage of 0.2 V, and a metal–semiconductor barrier height of
0.8 eV.

(a) Find the percent change in the threshold voltage for a 10% change
in the doping of the substrate and the channel for the SISFET and
the MESFET.

(b) Find the percent change in the threshold voltage for a 10% change
in the thickness of the barrier semiconductor and the channel layer
for the SISFET and the MESFET.
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Appendix A

Network Parameters and
Relationships

The network parameters can be represented in several forms associated with
the input and output variables being represented. Admittance parameters (y-
parameters), e.g., are associated with the currents being represented as a func-
tion of potentials; impedance parameters (z-parameters) are associated with the
voltages being represented as a function of currents; ABCD-parameters are a
combination of these, which are particularly suitable for prediction of the net-
work parameters of a cascade of networks; hybrid parameters (h-parameters)
are also a combination of current and voltage; and finally scattering parameters
(S-parameters) relate power waves. For the n-port network represented in Fig-

ure A.1, consider the incident and reflected waves [â] and [b̂], and the currents
[Î] and voltages [V̂ ] as n× 1 vectors.

In terms of the current vectors [Î], the voltage vectors [V̂ ], and the charac-
teristic impedence Z0, the power waves are defined as

[â] =
1

2
√
Z0

[V̂ ] +

√
Z0

2
[Î]

and [b̂] =
1

2
√
Z0

[V̂ ] −
√
Z0

2
[Î] (A.1)

The network parameters, then, follow from the definitions:
y-parameters:

[Î] = [y][V̂ ], (A.2)

z-parameters:
[V̂ ] = [z][Î], (A.3)

and S-parameters:
[b̂] = [S][â]. (A.4)

h-parameters and ABCD-parameters are defined with combinations of cur-
rents and voltages as the independent and dependent variables. For a two-port
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Figure A.1: An n-port network showing the incident and reflected power waves,
currents, and voltages to relate the network parameters.

network, these are
h-parameters: [

V̂1

Î2

]
=

[
h11 h12

h21 h22

] [
Î1
V̂2

]
, (A.5)

and ABCD-parameters:

[
V̂1

Î1

]
=

[
A B
C D

] [
V̂2

−Î2

]
. (A.6)

The h-parameters get their name from the hybrid nature of the parameters.
h11 is the input impedance under conditions of short circuit at the output port
V̂2 = 0, h12 is the reverse voltage gain with open-circuit conditions at the input
port, h21 is the forward current gain for short-circuit conditions at the output
port, and h22 is the output admittance with the input port open-circuited.

These network parameters are definite parameters with a common reference
terminal. This common reference terminal could have been used as an ad-
ditional port, with corresponding network parameters not being independent.
This extended set of parameters are called indefinite parameters. As an exam-
ple, consider the two-port y-parameters. If we use the common terminal as an
additional port 3,




Î1
Î2
Î2



 =




y11 y12 y13

y21 y22 y23

y31 y32 y33








V̂1

V̂2

V̂3



 . (A.7)
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Kirchoff’s law and the generality of the above for all applied [V ] results in the
sum of all columns or rows being zero. For example, since the sum of the cur-
rents is zero, assuming a short circuit at port 2 and port 3 implies that the
sum of the y-parameters in the first column is zero and likewise in the rest of
the columns. The rows can be shown to follow this same behavior by assum-
ing identical voltages at all the ports. Since this should result in zero current
at all the ports, it implies that the sum of all parameters in a row is zero.
Crossing out the row and column corresponding to one of the ports results in
definite network parameters with that port common. Thus common-gate/base,
common-source/emitter, and common-drain/collector parameters can be easily
related to their other references. Transforming the common port is most conve-
niently achieved by determining the indefinite matrix within a particular type
of parameter set.

Relationships between the parameters are determined by transformations
using matrix manipulation and Kirchoff’s laws. We summarize these here.
For y-parameters,
[
y11 y12

y21 y12

]
=

[
1/h11 −h12/h11

h21/h11 ∆h/h11

]
=

[
z22/∆z −z12/∆z

−z21/∆z z11/∆z

]
, (A.8)

for h-parameters,
[

1/y11 −y12/y11

y21/y11 ∆y/y11

]
=

[
h11 h12

h21 h22

]
=

[
∆z/z22 z12/z22

−z21/z22 1/z22

]
, (A.9)

and for z-parameters,
[
y22/∆y −y12/∆y

−y21/∆y y11/∆y

]
=

[
∆h/h22 h12/h22

−h21/h22 1/h22

]
=

[
z11 z12

z21 z22

]
, (A.10)

where

∆y = y11y22 − y12y21,

∆h = h11h22 − h12h21,

and ∆z = z11z22 − z12z21. (A.11)

Transformation of reference ports and parameters is most easily accom-
plished by the use of an indefinite matrix. As an example, by obtaining the
indefinite matrix in y-parameters, the y-parameter with any common reference
is obtained. Any other parameter with this reference can be obtained by the
matrix manipulation above. A summary of some of the more commonly en-
countered conversions from common-gate/base to common-source/emitter con-
figurations is described below.

y
s/e
11 = y

g/b
11 + y

g/b
12 + y

g/b
21 + y

g/b
22 ,

=

(
1 + h

g/b
21

)
(1 + ε)

h
g/b
11

,
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y
s/e
12 = −

(
y
g/b
22 + y

g/b
12

)
,

= −
ε
(
1 + h

g/b
21

)

h
g/b
11

,

y
s/e
21 = −

(
y
g/b
22 + y

g/b
21

)
,

= −h
g/b
21 (1 + ε) + h

g/b
12 + ε

h
g/b
11

,

and y
s/e
22 = y

g/b
22 ,

=
h
g/b
12 + ε

(
1 + h

g/b
21

)

h
g/b
11

, (A.12)

and

h
s/e
11 =

h
g/b
11(

1 + h
g/b
21

)
(1 + ε)

,

h
s/e
12 =

ε

1 + ε
,

h
s/e
21 = −h

g/b
21 (1 + ε) + h

g/b
12 + ε

(1 + ε)
,

and h
s/e
22 =

h
g/b
22(

1 + h
g/b
21

)
(1 + ε)

, (A.13)

where

ε =
h
g/b
11 h

g/b
22

1 + h
g/b
21

− h
g/b
12 . (A.14)

Experimental measurements usually provide S-parameter data, while device
analysis is best carried out using parameters based on currents and voltages.
The relationships between the S-parameters and other parameters are as follows:

s11 =
(1 − y11) (1 + y22) + y12y21

(1 + y11) (1 + y22) − y12y21
s12 =

−2y12

(1 + y11) (1 + y22) − y12y21

s21 =
−2y21

(1 + y11) (1 + y22) − y12y21
s22 =

(1 + y11) (1 − y22) + y12y21

(1 + y11) (1 + y22) − y12y21

s11 =
(h11 − 1) (h22 + 1) − h12h21

(h11 + 1) (h22 + 1) − h12h21
s12 =

2h12

(h11 + 1) (h22 + 1) − h12h21

s21 =
−2h21

(h11 + 1) (h22 + 1) − h12h21
s22 =

(1 + h11) (1 − h22) + h12h21

(h11 + 1) (h22 + 1) − h12h21

s11 =
(z11 − 1) (z22 + 1) − z12z21

(z11 + 1) (z22 + 1) − z12z21
s12 =

2z12

(z11 + 1) (z22 + 1) − z12z21
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s21 =
2z21

(z11 + 1) (z22 + 1) − z12z21
s22 =

(z11 + 1) (z22 − 1) − z12z21

(z11 + 1) (z22 + 1) − z12z21

y11 =
(1 − s11) (1 + s22) + s12s21

(1 + s11) (1 + s22) − s12s21
y12 =

−2s12

(1 + s11) (1 + s22) − s12s21

y21 =
−2s21

(1 + s11) (1 + s22) − s12s21
y22 =

(1 + s11) (1 − s22) + s12s21

(1 + s11) (1 + s22) − s12s21

h11 =
(1 + s11) (1 + s22) − s12s21

(1 − s11) (1 + s22) + s12s21
h12 =

2s12

(1 − s11) (1 + s22) + s12s21

h21 =
−2s21

(1 − s11) (1 + s22) + s12s21
h22 =

(1 − s11) (1 − s22) − s12s21

(1 − s11) (1 + s22) + s12s21

z11 =
(1 + s11) (1 − s22) + s12s21

(1 − s11) (1 − s22) − s12s21
z12 =

2s12

(1 − s11) (1 − s22) − s12s21

z21 =
2s21

(1 − s11) (1 − s22) − s12s21
z22 =

(1 − s11) (1 − s22) + s12s21

(1 + s11) (1 + s22) − s12s21
.

(A.15)

The relationships of the gains and stability factors are as follows: the max-
imum power gain when a two-port device has been made unilateral using only
loss-less reciprocal elements—the unilateral power gain—is given by

U =
|y21 − y12|2

4 {Re [y11] Re [y22] − Re [y21] Re [y12]}

=
|h21 + h12|2

4 {Re [h11] Re [h22] + Re [h21] Re [h12]}

=
|s11s12s21s22|∣∣∣

(
1 − |s11|2

)(
1 − |s22|2

)∣∣∣
. (A.16)

The Linvill stability factor is given by

C = − |y12y21|
Re [y12y21] − 2Re [y11] Re [y22]

. (A.17)

A network is unconditionally stable if 0 < C < 1. The network is potentially
unstable, i.e., oscillations may occur for passive terminations, if C is outside
this range.

The transducer power gain, for arbitrary load and source, is

GT =
4|y21|2Re [yl] Re [ys]

|(y11 + ys) (y22yl) − y12y21|2
, (A.18)

and the maximum transducer power gain is

GT,max =
1

2Re [y22]

(
{2Re [y11] Re [y22] − Re [y12y21]}2 − |y12y21|

)1/2

. (A.19)
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This is also referred to as the maximum available power gain and maximum
operating power gain; it is meaningful only when the network is unconditionally
stable, i.e., 0 < C < 1. For conditionally unstable networks, quite often, one
uses the power gain parameter called maximum stable gain,

Gs,max =
|y21|
|y12|

. (A.20)

Finally, the definitions of frequency figures of merit are as follows. The
maximum frequency of oscillation (fmax) is the frequency at which the unilateral
gain is unity, and the transition frequency (fT , also called short-circuit unity
current gain frequency) is the frequency at which the current gain is unity
under short-circuit conditions at the output. The physical meaning of these
parameters is intuitive. A network would oscillate only until the frequency
fmax, if a reciprocal passive matching network was employed, in order to obtain
the oscillations. Likewise, the current gain can be obtained only up to fT under
short-circuit output conditions for the network.
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Properties of Compound
Semiconductors

The data are based on information from the following references:

1. Landolt-Börnstein; O. Madelung, M. Schulz, and H. Weiss, Eds., Semi-

conductors, V 17, Springer-Verlag, Berlin (1982).

2. Landolt-Börnstein; O. Madelung, M. Schulz, and H. Weiss, Eds., Semi-

conductors, V 22, Springer-Verlag, Berlin (1987).

3. J. S. Blakemore, “Semiconducting and Other Major Properties of Gallium
Arsenide,” J. of Appl. Phys., 53, No. 10, p. R123, Oct. 1982.

4. S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: Material Parameters for Use
in Research and Device Applications,” J. of Appl. Phys., 58, p. R1, 1985.
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Table B.1: Material Properties of Compound Semiconductors

Material Lattice Space Lattice Density

Group Constant(Å) (g.cm−3)
300 K 77 K 300 K

BN Hex P 6 a-axis: 6.661 6.660 2.18
c-axis: 2.504 2.503 —

BN ZB F 43m 3.6155 — 3.487
BP ZB F 43m 4.5383 4.5374 2.0
BAs ZB F 43m 4.777 — 5.22
AlN WZ P 63mc a-axis: 3.112 — 3.23

c-axis: 4.980 — —
AlP ZB F 43m 5.467 5.466 2.40
AlAs ZB F 43m 5.661 5.660 —
AlSb ZB F 43m 6.136 — 4.26
GaN WZ P 63mc 3.160 — 6.095
GaP ZB F 43m 5.4506 — 4.138
GaAs ZB F 43m 5.6533 5.6419 5.3176
GaSb ZB 43m 6.096 6.095 5.6137
InN WZ P 63mc a-axis: 3.544 3.543 —

c-axis: 5.7034 5.7027 —
InP ZB F 43m 5.8687 5.8680 4.81
InAs ZB F 43m 6.0583 — 5.70
InSb ZB F 43m 4.4794 — 5.7747
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Table B.2: Material Properties of Compound Semiconductors

Material Melting Debye Linear Expansion
/Decomposition Temperature Coefficient

Temperature at 300 K
(K) (K)

BNhex 2600 598 α|| = 2.7× 10−6

α⊥ = 3.7× 10−6

BNZB ≈ 3000 1700 —
BP 1400 985 —
BAs — 800 —
AlN 3273 — α⊥ = 5.27× 10−6

α‖ = 4.15× 10−6

AlP 2823 588 —
AlAs 2013 690 —
AlSb 1338 292 —
GaN > 2000 600 α|| = 5.59× 10−6

α⊥ = 3.17× 10−6

GaP 1740 445 —
GaAs 1513 344 6.86× 10−6

GaSb 985 266 7.75× 10−6

InP 1335 321 4.75× 10−6

InAs 1215 262 4.52× 10−6

InSb 800 208 5.37× 10−6
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Table B.3: Material Properties of Compound Semiconductors

Material Thermal Specific Poisson Radiative
Conductivity Heat Ratio Constant, B

(W.K−1.cm−1) (J.g−1.K−1) (cm3.s−1)
300 K 77 K 300 K

BNZB ≈ 1 — 0.601 — —
BP ≈ 8 — 0.64 — —
BAs — — 0.367 — —
AlN ≈ 3 — 0.490 — —
AlP — — 0.816 0.32 —
AlAs — — 0.49 0.30 —
AlSb ≈ 0.7 ≈ 1.8 0.437 0.33 —
GaN 1.3 ≈ 0.8 0.440 — —
GaP .77 0.8 0.519 0.307 3.0× 10−15

GaAs .455 ≈ 1–3 0.35 0.31 —
GaSb — — 0.404 0.31 1.3× 10−11

InP .68 5.3 0.41 0.36 —
InAs .48 3.2 0.394 0.35 2.1× 10−11

InSb .27 1.1 0.37 0.35 4.0× 10−11

Table B.4: Electronic Properties of Some Compound Semiconductors

Material Direct/ Energy Zone Center
Indirect Gap (eV) LO Phonon TO Phonon

300 K 77 K Energy (meV) Energy (meV)

BNhex Indirect 4.5 — 199.6 169.9
BNZB Indirect ≈ 6.0 — 161.7 130.9
BP Indirect 2.0 102.8 101.7 —
BAs Indirect — — — —
AlN Direct 6.2 — 112.8 82.7
AlP Indirect 2.45 — 62.1 54.5
AlAs Indirect 2.14 2.223 50.1 44.8
AlSb Indirect 1.63 1.666 42.1 39.5
GaN Direct 3.44 — 92.4 69.4
GaP Indirect 2.268 2.338 50.0 45.5
GaAs Direct 1.423 1.512 35.4 33.2
GaSb Direct 0.70 — — —
InN Direct 2.09 2.21 86.1 59.3
InP Direct 1.3511 1.4135 42.8 37.7
InAs Direct .356 .414 29.6 26.9
InSb Direct .18 .228 23.7 22.3
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Table B.5: Electronic Properties of Some Compound Semiconductors

Material Electron Conduction Hole Conduction Average Binding
Effective Mass m0 Effective Mass m0 Energy

in Units of m0 in Units of m0 (meV)
300 K 77 K 300 K 77 K Donor Acceptor

BNhex — — — — — —
BNZB — — — — — —
BP — — — — — —
BAs — — — — — —
AlN — — — — — —
AlP — — — — — —
AlAs — — — — ≈ 60 ≈ 55
AlSb — — 0.4 — 70-160 ≈ 40
GaN — — — — — —
GaP — — — — — —
GaAs .067 .067 .5 .45 5.7–5.9 2.5–3.0

.068 .068 — —
GaSb — — — — 20–80 10–40
InN — — — — — —
InP .073 .077 — — — ≈ 40–50
InAs .027 .027 — — 20 10–15
InSb .013 .0145 .044 .045 50–100 ≈ 10
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Table B.6: Electronic Properties of Some Compound Semiconductors

Material Electron Density of States Hole Density of States
Effective Mass Effective Mass
in Units of m0 in Units of m0

300 K 77 K 300 K 77 K
BNhex — — — —
BNZB — — — —
BP — — — —
BAs — — — —
AlN — — — —
AlP — — — —
AlAs — — — —
AlSb — 0.7 0.98 0.98
GaN 0.19 0.19 0.60 0.60
GaP — — — —
GaAs .067 .067 .5 .45

.068 .068
GaSb 0.7 0.729 0.4 0.4
InN — — — —
InP 0.077 0.077 0.64 0.64
InAs 0.023 0.023 0.4 0.4
InSb 0.015 0.015 0.4 0.4
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Table B.7: Electronic Properties of Some Compound Semiconductors

Material Approximate Electron Mobility
at Low Doping at Medium Doping at Heavy Doping
of < 1015 cm−3 of ≈ 1017 cm−3 of ≈ 1019 cm−3

(cm2.V−1.s−1) (cm2.V−1.s−1) (cm2.V−1.s−1)
300 K 77 K 300 K 77 K 300 K 77 K

BNhex — — — — — —
BNZB — — 70 — 30
BP — — — — — —
BAs — — — — — —
AlN — — — — — —
AlP — — — — — —
AlAs — — 400 — 40 —
AlSb 200 — — — — —
GaN — — 600 — 180 —
GaP 200 2800 160 1200 95 450
GaAs 8000 150000 4800 5200 2200 3000
GaSb 5000 — — — — —
InN — — — — — —
InP 5000 60000 3200 — 1800 —
InAs 30000 300000 20000 35000 13000 20000
InSb 400000 80000 150000 10000 80000
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Table B.8: Electronic Properties of Some Compound Semiconductors

Material Approximate Hole Mobility
at Low Doping at Medium Doping at Heavy Doping
of < 1015 cm−3 of ≈ 1017 cm−3 of ≈ 1019 cm−3

(cm2.V−1.s−1) (cm2.V−1.s−1) (cm2.V−1.s−1)
300 K 77 K 300 K 77 K 300 K 77 K

BNhex — — — — — —
BNZB — — — — — —
BP — — — — 30 20
BAs — — — — — —
AlN — — — — — —
AlP — — — — — —
AlAs — — — — — —
AlSb 450 — 375 — 175 —
GaN — — — — — —
GaP 150 — 120 — 30 —
GaAs 400 9000 320 — 50 —
GaSb 1500 — 880 2400 300 1000
InN — — — — — —
InP 180 1000 150 600 28 18
InAs 480 — — — — —
InSb 1500 9000 — 3000 — 700
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Table B.9: Electronic Properties of Some Compound Semiconductors

Material Dielectric Refractive Hall Factor
Constant Index in at ≈ 1017 cm−3

εr(0) εr(∞) Visible Range 300 K 77 K
BNhex c-axis: 5.066 c-axis: 4.10

⊥c-axis: 6.85 ⊥c-axis: 4.95
BNZB 7.1 4.5 2.117 — —
BP 11 — 3.10 —
BAs — — — — —
AlN 9.1 4.8 — — —
AlP 9.8 7.54 ≈ 2.85 — —
AlAs 10.06 8.16 — — —
AlSb 12.04 10.24 3.45 — —
GaN c-axis: 10.4 c-axis: 5.8 2.33 — —

⊥c-axis: 9.5 ⊥c-axis: 5.35 — — —
GaP 11.1 9.075 3.17 — —
GaAs 12.91 10.1 3.347 1.1 1.27
GaSb 15.69 14.44 3.82 1.03 —
InN — 9.3 2.56 — —
InP 12.61 9.61 3.327 ≈ 1 ≈ 1.1
InAs 15.15 12.25 3.516 ≈ 1.3 ≈ 1.5
InSb 16.8 15.68 5.13 — —
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Table B.10: Electronic Properties of Some Compound Semiconductors

Material Valence Band Spin Intrinsic Ionic
Deformation Orbit Carrier Charge

Potential Splitting Concentration ÷q
(eV) (eV) (cm−3) —

BNhex — — — —
BNZB — — — —
BP — — — —
BAs — — — —
AlN — 0.012 — —
AlP — 0.060 — —
AlAs — 0.29 — —
AlSb −4.4 0.68 5.0× 106 .19
GaN — 0.011 — —
GaP −13 0.08 3.0× 106 .24
GaAs −12 0.34 1.8× 106 .20
GaSb −8.3 0.74 4.3× 1012 .13
InN — 0.08 —
InP −6.6 0.11 1.2× 108 .26
InAs −5.8 0.38 1.25 × 1015 .22
InSb — 0.82 2.0× 1016 .16



Appendix C

Physical Constants, Units,
and Acronyms

731



732 Appendix C

Table C.1: Physical Constants

Physical Constant Symbol Value

Avogadro’s number NA 6.022× 1023 mole−1

Gas constant R 1.98719 cal.mole−1.K−1

8.31441 J.mol−1.K−1

Boltzmann’s constant k = R/NA 1.381× 10−23 J.K−1

Absolute electron charge q 1.602× 10−19 C
Electron mass at rest m0 9.11× 10−31 kg
Permeability of free space µ0 1.257× 10−8 H.cm−1

Permittivity of free space ε0 8.854× 10−14 F.cm−1

Planck’s constant h 6.626× 10−34 J.s
Reduced Planck’s constant h̄ 1.055× 10−34 J.s
Speed of light in free space c 2.998× 1010 cm.s−1

Thermal voltage kT/q 0.02586 V at 300 K
6.635× 10−3 V at 77 K

Bohr radius a0 0.529× 10−8 cm
Gravitational constant G 6.6720× 10−11 N.m2.kg−2

Magnetic flux quantum φ0 = h/q 4.1357× 10−15 J.s.C−1

Stefan–Boltzmann constant σ = π2k4/60h̄3c2 5.67032× 10−8 W.m−2.K−4

Table C.2: Conversion of Units
Symbol Unit

Å 10−8 cm
eV 1.602× 10−19 J
cal 4.184 J
inch 2.54 cm
Torr 133 Pa

1000 µm Hg
bar 750 mm Hg
T 1 Wb.m−2



Physical Constants, Units, and Acronyms 733

Table C.3: Abbreviations of Units
Symbol Unit
C couloumb
F farad
H henry
Hz hertz
J joule
K kelvin
Kg kilogram
g gram
m meter
cm centimeter
mol mole
N newton
Pa pascal
s second
T tesla
W watt
Wb weber

Table C.4: Acronyms Used in the Text

Acronym Full form
BTE Boltzmann Transport Equation
FET Field Effect Transistor
HBT Heterostructure Bipolar Transistor
HFET Heterostructure Field Effect Transistor
HSR Hall–Shockley–Read
JFET Junction Field Effect Transistor
MESFET Metal–semiconductor Field Effect Transistor
MIS Metal–insulator–semiconductor
MISFET Metal–insulator–semiconductor Field Effect

Transistor
MOSFET Metal–oxide–semiconductor Field Effect Transistor
PHS Pucel–Haus–Statz
SISFET Semiconductor–insulator–semiconductor Field Effect

Transistor
WKB Wentzel–Kramers—Brillouin
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A symbol generated by using a tilde sign on a symbol, e.g., ã from a, is used
to signify, explicitly, the complex time-varying quantity. The real part of this
has a sinusoidal time variation. The phasor, or the amplitude of this time-
varying component, is denoted by using the hat sign on the symbol, e.g., â for
a. This notation is used in the context of small-signal variation. An exception
to this nomenclature is the use of the hat symbol to denote a unit normal vector,
e.g., n̂ to denote the unit normal vector perpendicular to a surface. A lowercase
subscript to an uppercase letter denotes a quantity which may have both a static
and a time-varying component. In quasi-static approximation, these quantities
are denoted by an uppercase subscript or an overline. Any other exceptions
have been pointed out in context. This list defines the most frequently used
symbols. The units are in representative form. The appropriate system of units
should be employed for equations in the text.

Symbol Symbol Definition Unit

α0 Static common-base current gain —
αF Forward common-base current gain —
αn Ionization coefficient of electrons cm−1.s−1

αp Ionization coefficient of holes cm−1.s−1

αR Reverse common-base current gain —
αT Base transport factor —
αT0 Static base transport factor —
αFT Forward common-base base transport factor —
αRT Reverse common-base base transport factor —
βF Forward common-emitter current gain —
Γn Gummel number for electrons cm−4.s−1

Γp Gummel number for holes cm−4.s−1

ε0 Permittivity of free space F.cm−1

εAl Permittivity of Ga1−xAlxAs F.cm−1

εins Permittivity of the insulator F.cm−1

εs Permittivity of the semiconductor F.cm−1

εxx xx component of strain —
εyy yy component of strain —
ς Inverse of small-signal complex length cm−1
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ηf Ratio of Fermi energy and thermal energy —
λD Extrinsic Debye length cm
µ0 Drift mobility at zero field cm2.V−1.s−1

µn Drift mobility of electrons cm2.V−1.s−1

µp Drift mobility of holes cm2.V−1.s−1

ξb Ratio of base width and small-signal
complex diffusion length —

ξd Normalized potential at the drain —
ξe Ratio of emitter width and small-signal

complex diffusion length —
ξf Fermi energy at thermal equilibrium eV
ξn Electron quasi-Fermi energy eV
ξp Hole quasi-Fermi energy; eV

also, normalized potential at pinch-off point
ξs Normalized potential at the source —
σn Capture cross-section for electrons cm2

σp Capture cross-section for holes cm2

τB Base time constant s
ταB Time constant for single pole

approximation of common-base current gain s
ταT

B Time constant for single pole
approximation of base transport factor s

τFB Time constant associated with stored
integrated minority carrier density in the
base due to forward transport component s

τRB Time constant associated with stored
integrated minority carrier density in the
base due to reverse transport component s

τBF Time constant associated with stored
integrated minority carrier density in the
base associated with forward base current s

τBR Time constant associated with stored
integrated minority carrier density in the
base associated with reverse base current s

τd Drain current phase delay time constant s
τF Time constant associated with stored

integrated minority charge density in the
base due to forward current s

τR Time constant associated with stored
integrated minority charge density in the
base due to reverse current s

τc Transit time in the base–collector
depletion region s

τ
′

c Signal delay in the base–collector
depletion region s
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τn Lifetime of electrons s
τp Lifetime of holes s
φC Potential of the conduction band edge C
φF Fermi level potential V
φM Metal–semiconductor barrier height V
φV Potential of the valence band edge C
χ1 Electron affinity of material 1 V
χ2 Electron affinity of material 2 V
ψB Electrostatic potential in the bulk V
ψi Intrinsic level potential with arbitrary

reference V
ψj0 Built-in voltage of a junction V
ψH Electrostatic potential at the surface

referenced to the bulk intrinsic level when
the sheet charge in the inversion layer is
equal to the sheet depletion charge V

ψS Electrostatic potential at the surface
referenced to the bulk intrinsic level V

ψsat Electrostatic potential at the surface
referenced to bulk intrinsic level at
sheet charge density saturation V

ω Radial frequency rad.s−1

ω0 Radial frequency constant for pole
approximation of the small-signal base
transport factor rad.s−1

ωαT
Radial frequency constant for alternate
approximation of the small-signal base
transport factor rad.s−1

ωmax Radial frequency at unity unilateral gain rad.s−1

ωT Radial frequency at unity short-circuit
current gain rad.s−1

ωq Phonon frequency rad.s−1

A Effective area for current transport cm−3

B Probability of radiative recombination; cm3.s−1

also, magnetic induction Wb.m2

Cπ Input capacitance in the hybrid-pi model F
CAl Capacitance per unit area with Ga1−xAlxAs

as the insulator F.cm−2

CDC Drain-to-channel capacitance F
CD Emitter–base diffusion capacitance in the

common-emitter configuration F
CDe Emitter–base diffusion capacitance in the

common-base configuration F
Cdepsat Capacitance per unit area associated with

the depletion region at channel charge
saturation F.cm−2
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Cdip Dipole capacitance F
Cdg Drain-to-gate capacitance F
Cdom Capacitance associated with the domain F
CFB Capacitance per unit area of the structure

at flat-bands F.cm−2

Cg Gate capacitance F
Cgs Gate-to-source capacitance F
Cins Capacitance per unit area of insulator F.cm−2

CMIS Capacitance per unit area of the
metal–insulator–semiconductor structure F.cm−2

Csem Capacitance per unit area of semiconductor F.cm−2

CtC Capacitance associated with the
base–collector transition region F

CtE Capacitance associated with the
base-emitter transition region F

D Displacement field C.cm−2

Dins Displacement vector in the insulator C.cm−2

Dn Diffusion coefficient of electrons cm2.s−1

DnB Diffusion coefficient of electrons in the base cm2.s−1

Dn Effective diffusion coefficient of electrons cm2.s−1

DnB Effective diffusion coefficient of electrons
in the base cm2.s−1

Dp Diffusion coefficient of holes cm2.s−1

DpE Diffusion coefficient of holes in the emitter cm2.s−1

Dp Effective diffusion coefficient of holes cm2.s−1

DpE Effective diffusion coefficient of holes
in the emitter cm2.s−1

Dsem Displacement vector in the semiconductor C.cm−2

E Electric field V.cm−1

E0 Band edge energy of the zero’th subband eV
E1 Band edge energy of the first subband eV
E10 Energy difference between the first and zero’th

quantized levels eV
Ec Critical electric field V.cm−1

Ec Conduction band edge energy eV
Ee Quasi-electric field for electrons V.cm−1

ξf0 Fermi energy parameter for sheet carrier
density modelling eV

Eg Bandgap energy eV
Eg0 Bandgap energy at low doping level eV
Ei Energy of the intrinsic level eV
Eins Electric field in the insulator V.cm−1

Em Maximum electric field V.cm−1

En Band edge energy of the nth subband
ET Threshold energy for ionization process;
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also, trap energy level eV
Ev Valence band edge energy eV
F Force N
fmax Unity unilateral gain frequency Hz
fT Unity short-circuit current gain frequency Hz
G Generation rate cm−3.s−1

gd Drain conductance S
gds Drain-to-source conductance S
gc Low frequency limit of conductance of

small-signal common-base output admittance S
ge Low frequency limit of conductance of

small-signal common-base input admittance S
gi Intrinsic conductance S
gm Transconductance S
gne Low frequency conductance limit of

small-signal input admittance due to
electron current in common-base operation S

gnc Low frequency conductance limit of
small-signal output admittance due to
electron current in common-base operation S

GNB Integrated density Gummel number for
transport in the base cm−2

GN ′

B Effective integrated density Gummel number
for transport in the base cm−2

GNC Integrated density Gummel number for
transport in the collector cm−2

GN ′

C Effective integrated density Gummel number
for transport in the collector cm−2

GNE Integrated density Gummel number for
transport in the emitter cm−2

GN ′

E Effective integrated density Gummel number
for transport in the emitter cm−2

GNn Integrated density Gummel number for
electrons cm−2

GN ′
n Effective integrated density Gummel

number for electrons cm−2

GNp Integrated density Gummel number for holes cm−2

GN ′
p Effective integrated density Gummel

number for holes cm−2

go Output conductance S
gsd Source to drain conductance S
gpe Low frequency conductance limit of

small-signal input admittance due to
hole current in common-base operation S

gpc Low frequency conductance limit of
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small-signal output admittance due to
hole current in common-base operation S

h Planck’s constant J.s
h̄ Reduced Planck’s constant (h/2π) J.s
IB Base current A

Îb Phasor of sinusoidal current at base contact A
IFB Forward component of the base current A
IRB Reverse component of the base current A

Îc Phasor of sinusoidal current at collector
contact A

IC Collector current A

Îcc Phasor of sinusoidal current at the collector
edge of the base–collector depletion region A

IFC Forward component of the collector current A
IRC Reverse component of the collector current A
ICS Saturation current of the forward coupling

base–collector diode in Ebers–Moll model A
ID Drain current A
Inorm Normalization current A
IDS Drain-to-source current A
IDSS Drain-to-source current at saturation of

current A
IDsubthr Drain current in sub-threshold region A

Îe Phasor of sinusoidal current at emitter
contact A

IE Emitter current A

Înc′ Phasor of sinusoidal electron current at base
edge of base–collector depletion region A

IFE Forward component of the emitter current A
IRE Reverse component of the emitter current A
IES Saturation current of the forward coupling

base-emitter diode in Ebers–Moll model A
IG Gate current A

În Phasor of sinusoidal electron current A

Înc Phasor of sinusoidal electron current at the
collector edge of base–collector depletion region A

IOE Saturation current of the reverse coupling
base-emitter diode in Ebers–Moll model A

IOC Saturation current of the reverse coupling
base–collector diode in Ebers–Moll model A

Îp Phasor of sinusoidal hole current A
Isubstr Substrate current A

Ĵ Phasor of sinusoidal current density A.cm−2

JB Base current density A.cm−2

JC Collector current density A.cm−2
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JE Emitter current density A.cm−2

Jn Electron current density A.cm−2

Ĵn Phasor of sinusoidal electron current density A.cm−2

Jnd Displacement current density associated
with electron flow in a depletion region A.cm−2

Jp Hole current density A.cm−2

Ĵp Phasor of sinusoidal hole current density A.cm−2

Jr Recombination current density A.cm−2

Jscr Generation-recombination current density
in a space charge region A.cm−2

k Boltzmann’s constant J.K−1

k, k Wave vector cm−1

kF Fermi wave vector cm−1

kx Wave vector in the x-direction cm−1

ky Wave vector in the y-direction cm−1

kz Wave vector in the z-direction cm−1

Lm Metallurgical gate length cm
Ln Diffusion length of electrons cm
Lp Diffusion length of holes cm
m0 Rest mass of a free electron kg
m∗
e Effective mass of electrons kg

m∗
h Effective mass of holes kg

m∗
i Effective mass of carriers in ith band kg

m∗ Effective mass in the semiconductor kg
m∗
lh Effective mass of holes in the light hole

band kg
m∗
hh Effective mass of holes in the heavy hole

band kg
m∗
l Longitudinal conduction effective mass kg

m∗
t Transverse conduction effective mass kg

m∗
d Density of states effective mass kg

n Electron carrier concentration cm−3

n̂ Unit vector normal to the surface —
n′ Excess electron density above its

magnitude at thermal equilibrium cm−3

ni Intrinsic carrier concentration cm−3

NA Shallow acceptor density cm−3

N−
A Ionized acceptor density cm−3

NC Effective density of states in the
conduction band cm−3

ND Shallow donor density cm−3

N+
D Ionized donor density cm−3

NI Sheet carrier density in the inversion layer cm−2

NI0 Sheet carrier density in the inversion layer
at z = 0 cm−2
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NIL Sheet carrier density in the inversion layer
at z = L cm−2

nn Static electron density in n-region cm−3

np Electron density in p-type material cm−3

np Static electron density in p-region cm−3

np0 Electron density in p-type material at
thermal equilibrium cm−3

Ns Sheet carrier density in the semiconductor cm−2

NV Effective density of states in the valence
band cm−3

nq Occupation probability of the state of energy
h̄ωq —

p Hole carrier concentration cm−3

p, p Momentum of carriers kg.cm.s−1

P Polarization field C.cm−2

p
′

Excess hole density above its
magnitude at thermal equilibrium cm−3

pe Electron momentum kg.cm.s−1

ph Hole momentum kg.cm.s−1

pn Hole density in n-type material cm−3

pn Static hole density in n-region cm−3

pn0 Hole density in n-type material at
thermal equilibrium cm−3

pp Static hole density in p-region cm−3

q Magnitude of elementary charge C
q, q Phonon wave vector cm−1

Q Integrated total charge density C.cm−2

QB Integrated base charge density C.cm−2

Qdom Total charge in the depletion or
accumulation region of a domain C

QE Integrated emitter charge density C.cm−2

QC Integrated collector charge density C.cm−2

Qdep. Sheet charge density in the depletion layer C.cm−2

QE Integrated emitter charge density C.cm−2

QF Integrated charge density associated with
forward transport C.cm−2

QF0 Saturation integrated charge density
associated with forward transport C.cm−2

Qg Sheet charge density on the gate electrode C.cm−2

QI Sheet charge density in the inversion layer C.cm−2

Qn Integrated electron charge density C.cm−2

QnB Integrated electron charge density in base C.cm−2

QF
nB Integrated electron charge density in base

associated with forward transport C.cm−2

QR
nB Integrated electron charge density in base
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associated with reverse transport C.cm−2

Qp Integrated hole charge density C.cm−2

QpC Integrated hole charge density in the
collector C.cm−2

QF
pC Integrated hole charge density in collector

associated with forward transport C.cm−2

QR
pC Integrated hole charge density in collector

associated with reverse transport C.cm−2

QpE Integrated hole charge density in the
emitter C.cm−2

QF
pE Integrated hole charge density in emitter

associated with forward transport C.cm−2

QR
pE Integrated hole charge density in emitter

associated with reverse transport C.cm−2

Qpol Surface charge density associated with the
polarization vector C.cm−2

QR Integrated charge density associated with
reverse transport C.cm−2

QR0 Saturation integrated charge density
associated with reverse transport C.cm−2

QS Sheet charge density in the semiconductor C.cm−2

QsC Integrated charge density associated with
base–collector depletion region C.cm−2

QsE Integrated charge density associated with
base-emitter depletion region C.cm−2

Qsem Sheet charge density in the semiconductor C.cm−2

R Recombination rate cm−3.s−1

rµ Feedback resistance between the base and
and collector in the hybrid-pi model Ω

rπ Input resistance in the hybrid-pi model Ω
rb Base resistance Ω
rd Drain resistance Ω
rg Gate resistance Ω
ri Intrinsic resistance Ω
ro Output resistance Ω
rs Source resistance Ω
S Surface recombination velocity cm.s−1

S Sub-threshold swing mV/decade
tAl Thickness of Ga1−xAlxAs cm
tins Thickness of insulator cm
tsp Thickness of undoped spacer layer cm
Uscr Net recombination–generation rate in a

space charge region cm−3.s−1

V Normalized voltage in the channel —
vθ Thermal velocity cm.s−1



744 Glossary

V00 Normalizing voltage V
VA Early voltage V
VBC Applied voltage between base and collector V
Vbd Break down voltage V
VBE Applied voltage between base and emitter V
VBS Source-to-bulk potential V
VCB Applied voltage between collector and base V
VCE Applied voltage between collector and emitter V
VD Drain potential V
Vd Normalized voltage at the drain —
Vdom Voltage across the domain region V
Vdg Potential difference between the drain and

the gate V
VDS Potential difference between the drain and

the source V
Vds Potential difference between the drain and

the source V
VDsat Drain voltage at drain current saturation V
VDSS Voltage between drain and source at

current saturation V
VEB Applied voltage between emitter and base V
VEC Applied voltage between emitter and collector V
vF Fermi velocity cm.s−1

VFB Flat-band voltage V
vg Group velocity cm.s−1

VG Gate potential V
VGS Potential difference between the gate and

the source V
Vgs Potential difference between the gate and

the source V
vi Mean velocity of carriers in ith band cm.s−1

Vj Applied voltage across a junction V
vl Scattering-limited velocity cm.s−1

Vn Partitioned voltage across n-type region of
a junction; V
also, separation between conduction band edge
and the electron quasi-Fermi level V

Vp Partitioned voltage across p-type region of
a junction; V
also, separation between valence band edge
and the hole quasi-Fermi level V

Vp Normalized voltage at the point of channel
vs Saturated velocity cm.s−1

VS Source potential V
Vs Normalized voltage at the source —
Vsat Potential at the onset of saturation of
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carrier velocity V
VT Threshold voltage, source reference V
VT0 Threshold voltage parameter V
VTFL Trap-filled limit voltage V
wB Width of quasi-neutral base region cm
wC Position of base edge of base–collector

depletion region cm
wC′ Position of collector edge of base–collector

depletion region cm
wE Position of base edge of base-emitter

depletion region cm
wE′ Position of emitter edge of base-emitter

depletion region cm
wi Mean energy of carriers in the ith band J

Wi Mean total energy of carriers in ith band J
wn Edge position of n depletion region cm
wp Edge position of p depletion region cm
ycc Output admittance parameter in

common-base operation S
yce Forward admittance parameter in

common-base operation S
yec Reverse admittance parameter in

common-base operation S
yee Input admittance parameter in

common-base operation S
ync Collector admittance parameter associated

with electron current S
ynce Forward admittance parameter due to electron

current in common-base operation S
yne Emitter admittance parameter associated

with electron current S
ynec Reverse admittance parameter due to

electron current in common-base operation S
ypce Forward admittance parameter due to hole

current in common-base operation S
ypec Reverse admittance parameter due to hole

current in common-base operation S
zn Spatial position of contact to n-region cm
zp Spatial position of contact to p-region cm
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A
ABCD-parameters, 711, 783, 784
Abrupt heterojunction, 226, 280–284,

410, 413
Abrupt junction

breakdown voltage, 87–91
current transport, 164, 252–292
generation–recombination current,

271–279, 616–629
Absorption of phonons, 52, 58, 129
Acceptor degeneracy, 32
Accumulation

capacitance, 436, 448
layer, 436

Acoustic
phonon, 24
phonon scattering, 52–54

Activation energy
thermal, 530
GaAs, 530
Ga1−xAlxAs, 530–533

Admittance parameters
forward transfer, 367, 371, 377, 378,

512, 634, 635, 645–658, 783–
789

input, 367, 371, 377, 378, 512, 634,
635, 647, 652–655, 783–789

output, 367, 371, 377, 378, 512,
634, 635, 651, 664, 783–789

reverse transfer, 367, 371, 377, 378,
512, 634, 635, 646, 647, 783–
789

Airy functions, 235, 236, 417
Alpha cut-off frequency, 659
Aluminum arsenide

band structure, 41
properties, 792–801

Ambipolar diffusion coefficient, 298
Anderson’s rule, 410
Anisotropy, 62, 77, 414
Anisotype heterojunction, 283
Aspect ratio, 321
Asymmetric junction, 252
Auger lifetime, 182
Auger recombination, 180–182
Avalanche

breakdown, 78–89
multiplication factor, 85–88
process, 82, 85–89

B
Backgating, 300, 340
Ballistic transport, 139, 717
Bandgap, 16, 98
Bandgap narrowing, 95, 551
Band discontinuities

conduction band, 223, 405, 410,
411

valence band, 223, 405, 410, 411
Band structure

AlAs, 41
GaAs, 40
Ga.47In.53As, 42
Ge, 39
InAs, 41
InP, 40
Si, 29

Barrier height, 202, 449, 723, 730
Barrier lowering, 206
Base current, 562, 577, 721
Base resistance, 663, 668, 722
Base transit time, 565
Base transport factor, 635, 658–660
Bessel functions, 371, 513

746
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Bohr radius, 93
Boltzmann factor, 28
Boltzmann transport equation, 106, 107,

116, 122–124, 146–149
Breakdown condition, 87
Breakdown voltage, 88
Brillouin zone, 12, 36, 37
Built-in field, 146, 147,
Built-in potential, 165, 250, 304

C
Capacitance–voltage relationship

HFET, 502–506
HBT, 567, 572, 574, 598–602, 612–

615, 636
MESFET, 327–329, 338, 339, 384
MIS structure, 447, 448,

Capture cross-section, 177
Carrier

energy, 56–58
intrinsic density, 35
lifetime, 175, 179, 182, 780
recombination, 173–190, 275–288,

616–629
storage time, 564–566, 568–570, 586,

595, 654–656, 705, 706
transfer, 63, 70, 425–432, 528, 529

Carrier–carrier scattering, 51, 130
Channel charge, 502–505
Channel conductance, 372
Channel confinement, 70, 71, 413, 430
Channel depth, 310, 404
Channel length, 317–321, 482
Channel opening, 321
Charge storage, 258–260, 565–575, 605–

608, 705, 706
Charge transfer, 70, 426–432, 528, 529
Collapse of current, 529
Collector

capacitance, 567, 651
current, 561–563, 569–571, 576–

578, 608, 610
depletion layer transit time, 650,

693
transport factor, 635, 647, 650, 692,

693

signal delay, 650, 692
Common-base current gain, 635, 658–

661
Common-emitter current gain, 568, 615–

615, 626–629, 666, 667
Compound semiconductors, 1–4, 38–

44, 356, 755
Conductance

HFET, 506, 767
MESFET, 307, 326, 372, 767
MISFET, 479, 480

Conduction band
discontinuity, 223, 405, 410, 411
effective mass, 14, 19, 20, 62–66,

416
minimum, 20, 21, 36–43

Conduction process, 54–78
Conservation equations, 122–128
Conservation of energy, 200, 230–232
Contact

ohmic, 241–246
tunneling, 244

Continuity equation, 160
Coulomb scattering, 70, 403
Coupled phonon-plasmon scattering, 71
Critical thickness , 407
Crystal momentum, 19, 62
Crystal plane , 12
Crystal structure, 12, 13
Current collapse, 529
Current continuity equation, 160
Current-density equation, 150
Current gain, 568, 615–615, 626–631,

635, 661, 666, 667
Current-voltage characteristics

HBT, 560–571, 575–580
heterojunction, 231
HFET, 496–501
MESFET, 305–310, 316, 317
metal–semiconductor junction, 208–

222
MISFET, 459, 465–468, 476, 480–

482
p–n junction, 258–284

D
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de Broglie wavelength, 99, 706, 756
Debye length, 251, 310, 756
Decay time, 528
Defect scattering, 49, 50
Degeneracy

acceptor, 32
carrier, 34, 95, 96
donor, 32

Degenerate semiconductor, 94, 95
Delay time, 650, , 693
Density matrix approach, 107
Density of states

conduction band, 34
valence band, 35

Depletion approximation, 248–252
Depletion layer, 208, 248–252, 304, 318,

592, 648, 767, 768
Dielectric relaxation time, 110, 382
Diffusion coefficients, 76, 77
Diffusion current, 256, 269, 331
Diffusion length, 254, 272
Dipole formation, 332–339
Dipole layer, 332–339
Dipole voltage, 337–339
Dirichlet boundary conditions, 170–172
Dispersion, 43, 44
Distribution function, 106, 114–121
Donor, 29–32, 429
Donor ionization energy, 429
Dopants

acceptors, 32
donors, 29

Double barrier structure, 723–746
Double heterostructure bipolar transistor,

601
Drain conductance, 307, 326, 479, 506
Drain current, 305–310, 316, 317, 459,

465–468, 478, 480–482, 495–
500

Drain-to-gate capacitance, 327, 339, 505
Drain-to-source capacitance, 329, 339
Drain voltage limitations, 767
Drift velocity, 50, 56, 59–61, 492, 540,

776, 777
Drift-diffusion current, 149–152
DX centers, 404, 528–535

E
Early effect, 572
Early voltage, 572, 641
Ebers–Moll model, 575–580
Effective density of states, 34, 35, 92–

95
Effective mass, 14, 20, 62–66, 416

Effective Richardson constant, 213, 226,
284

Einstein relationship, 76
Elastic scattering, 49
Electron affinity, 151, 202, 410
Electron–hole scattering, 73–75, 130
Electron lifetime, 175, 179, 182, 616,

780
Electron mobility, 59–61, 66–68, 70–

74, 109
Electron temperature, 144

Electron velocity, 59–61, 332, 492, 776
Electrostatic potential, 153, 201, 202,

577
Emission of phonons, 53, 58, 130
Emitter injection efficiency, 562, 653
Emitter–base capacitance, 567, 572, 598–

602
Energy band

coupled-barrier structures, 723, 728

heterojunctions, 223–226, 247
HBTs, 552, 555–557
HFETs, 431, 484, 485
MESFETs, 302, 303, 308, 309, 352–

353
metal–semiconductor junctions, 202,

203, 207
MIS diodes, 433, 434, 450
MISFETs, 451, 452, 462, 463

p–n junctions, 249, 255, 281, 290
Energy bandgap, 16, 17
Energy conservation , 200, 230–232
Energy–momentum relationship, 19, 62
Energy relaxation time, 57, 125–127

Equivalent circuit
coupled-barrier structures, 723
HBTs, 570, 575, 579, 665, 668, 672
HFETs, 506–509
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MESFETs, 338, 339, 378, 379, 386–
388

Equi-energy surfaces
ellipsoidal, 63–65
spherical, 62, 63
warped, 62, 63, 420

F
fmax, 388, 509, 670, 788, 789
fT , 387, 667, 668, 788, 789
Fabry–Pérot, 723
Feedback capacitance, 334
Fermi–Dirac distribution, 28
Fermi integral, 34
Fermi level pinning, 2, 186–188, 242,

620–626
Fermi potential, 150
Fermi wave vector, 96
Flat-band condition, 449–451
Flat-band voltage, 449–451
Fletcher boundary conditions, 166–168
Fowler–Nordheim tunneling, 239, 240,

244
Frequency response, 365–389, 506–522,

629–683, 706
Fringing capacitance, 769, 766
Full channel current, 310, 317

G
Gallium aluminum arsenide, 49, 50, 404,

405, 429, 524–535, 684–690
Gallium antimonide, 242, 735
Gallium arsenide

band structure, 40
constant energy surface, 414, 742
diffusion coefficient, 77
drift velocity, 50, 56, 68, 69492,

540, 541, 776, 777
ionization energy, 429
ionization rate, 83
mobility, 59–61, 540, 541
phonon dispersion, 46
velocity–field behavior, 50, 56, 540,

777
Gallium indium arsenide, 42, 49, 55,

83, 87, 89, 394, 536–538, 689–
698

Gamma function, 34
Gate current, 403, 522–528
Gate-to-source capacitance, 327, 505
Gate-to-drain capacitance, 327, 339, 505
Gauss’s law, 172, 282, 417, 441, 495
Generation rate, 124, 173–190
Generation–recombination process, 173–

190
Graded-base bipolar transistor, 583–586,

672–680
Graded heterojunction, 280–292, 586
Grading length, 224, 289, 580, 581, 608,

610
Gradual channel approximation, 302,

313, 372
Gummel number, 265–269, 278–280, 560
Gummel plot, 595
Gummel–Poon model, 257–280, 558–

575

H
Hall constant, 66, 68, 113
Hall effect, 66-68, 112
Hall factor, 67, 113
Hall mobility, 66-68, 113
Hall voltage, 66
Heavy hole, 38, 410
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Heterojunction
anisotype, 283
isotype, 226, 245
type I, 223
type II, 223
type III, 223

Heterostructure, 222–246, 395–425
High current effects, 252–257, 602–615
High field properties, 68, 69, 78–91,

392–394, 522–528, 535–539, 684–
698

High frequency operation, 365–389, 509–
520, 629–683

High injection condition, 252–257
High mobility, 70–72
Hybrid parameters, 385, 666–668, 784–

787
Hole

light, 38, 180, 244, 408
heavy, 38, 180, 244, 408

Hole velocity, 540, 541
Hot electron injection, 522–538, 706–

709, 714–725
Hot electron transistor, 706–709, 714–

723
Hot electrons

HBT, 684–698
HFET, 522–538
MESFET, 392–394

HSR recombination, 175–180
Hybrid-pi circuit, 575, 671

I
Ideal contact, 202, 223, 224
Ideality factor, 618
Ideal MIS structure, 433–451
Image force, 204–206
Impact ionization

coefficient, 79–89
orientation-dependence, 79

Impedence parameters, 783, 787
Impurity

acceptor, 32
donor, 32
freeze-out, 94, 95
ionization energy, 429

scattering, 49, 50, 70
Indirect transition, 90, 91
Indirect tunneling, 90, 91, 231, 232,

741, 742
Indium arsenide, 41, 46, 84, 87, 89,

690–698, 735
Indium phosphide

band structure, 40
ionization rate, 84

Inelastic scattering, 90, 91, 741, 742
Interface states, 50, 223, 437, 544
Inter-valley scattering, 55, 56, 129
Intra-valley scattering, 55, 56
Intrinsic carrier concentration, 35
Intrinsic energy level, 150
Intrinsic transconductance, 308, 324–

326, 479, 506, 571
Inverse current gain, 576
Inversion, 433–449
Inversion condition, 437, 438
Inversion layer, 433–443
Ionization coefficient, 83–85
Ionization integral, 87
Ionization rate, 83–85
Ionization threshold energy, 81, 90
Isotype heterojunction, 226, 245

J
Junction breakdown, 87–91

K
Kinetic approach, 107–113
Kirk effect, 605, 691
Kronig–Penney model, 14–20

L
Lifetime

Auger, 182
HSR, 179
radiative, 175

Light-hole band, 38, 408, 410
Liouville’s equation, 107
Long channel, 302–308
Longitudinal effective mass, 62–66
Longitudinal modes, 44–46
Longitudinal optical phonon, 44–46
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Lorentz force, 66, 719
Low-level injection, 166

M
Majority carrier transport, 55–70
Maximum available gain, 788
Maximum current, 310, 317
Maximum stable gain, 788
Maximum frequency of oscillation, 388,

509, 670, 788, 789
Maxwell–Boltzmann distribution func-

tion, 28
Maxwell’s equations, 761
Mean free path, 89, 90, 708
MESFET, 299–401, 768–775
Metal base transistor, 706–709
Metal–semiconductor junction, 200–222
Metal–semiconductor ohmic contact, 241–

246
Miller feedback, 387
Minority carrier

density, 166–170
lifetime, 175–182
storage, 565, 705
transport, 72–78

MIS diode, 432–451
Misawa boundary conditions, 168–170
MISFET, 299–483
Mobility

behavior, 59–75
drift, 59–66
electron, 59–75
Hall, 66–68
hole, 540, 541
temperature effect, 69
two-dimensional electron gas, 70–

72
two-dimensional hole gas, 540, 541

Moments of Boltzmann transport equa-
tion, 122–128

Monte Carlo approach, 135–144
Mott transition, 94
Multiplication factor, 85–88

N
n-channel

HFET, 426–432, 483–541
MISFET, 432–483

Negative differential mobility, 332, 486
Neumann boundary condition, 172
Non-degenerate semiconductor, 28, 95,

421
Non-equilibrium condition, 3
Non-uniform doping, 153
Non-radiative recombination, 174

O
Off-equilibrium effects

HBT, 684–698
HFET, 535–539
MESFET, 392–394

Ohmic contact, 241–246
One-sided abrupt junction, 252
Optical

phonon, 24
phonon scattering, 52–54, 131

Output characteristics, 322, 432, 479,
717, 718

Output conductance
HFET, 506, 767
MESFET, 307, 326, 767
MISFET, 479, 480

Overshoot, 3, 134, 393, 535, 536, 690,
691, 696

P
p-channel HFET, 540, 541
Parabolic bands, 16, 79, 142
Parasitic conduction, 483
Parasitics, 388, 389, 507, 681
Pauli’s exclusion principle, 26
Peak electron velocity, 97
Permittivity, 109, 416
Phase delay, 365, 380, 507
Phonon-assisted tunneling, 91, 231, 232,

742
Phonon scattering

acoustic, 52–54
optical, 52–54

PHS model, 312–329
Physical constants, 803
Piezoelectric charge, 356–360
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Piezoelectric scattering, 53
p–i–n diode, 298
Pinch-off condition, 315, 480
Pinning of Fermi level, 2, 186–188, 242,

620–626
Planar doping, 155, 310, 716
Plasma frequency, 110
Plasmon scattering, 51, 131
p-n product, 35, 165, 170, 621
Polar optical phonon scattering, 53
Poole–Frenkel effect, 296

Q
Quantum-mechanical reflection, 709–714
Quasi-electric field, 156, 291, 585, 600,

610–613, 676
Quasi-Fermi levels

n-type, 150
p-type, 150

Quasi-static analysis, 153
Quasi-neutrality, 153–157

R
Radiative lifetime, 175
Radiative process, 174, 175
Radiative recombination, 174, 175
Random distribution, 136–139
Reciprocal lattice, 12, 13
Recombination

current, 271–279, 615–629
lifetime, 176–182
process, 173–190
rate, 124, 173–190
velocity, 172, 185, 188

Recombination–generation current, 271–
279, 615–629

Recombination–generation process, 173–
190

Reflection coefficient, 711–713
Relaxation time, 116–122
Relaxation time approximation, 116-

122
Resonance frequency, 389, 682
Resonant Fowler–Nordheim tunneling,

239–241
Resonant tunneling, 723–743

Reverse current, 276
Richardson’s constant, 213, 226, 284

S
Saturated velocity, 68, 69
Saturated velocity model, 308–311
Saturation mode, 559
Scaling, 755–780
Scattering

acoustic phonon, 52–54
carrier–carrier, 51, 130
defect, 49, 50
f-, 131
g-, 131
inter-valley, 55, 56, 129
intra-valley, 55, 56
ionized-impurity, 47, 130
lattice, 52, 53
optical phonon, 52–54, 131
piezoelectric, 53
plasmon, 51, 131

Scattering parameters, 784, 787
Schrödinger’s equation, 9, 234, 416, 710
Self-scattering, 139
Semiconductor crystal structure, 13
Semiconductor–insulator–semiconductor

FET, 5, 524–527
Semi-insulating substrate, 340–343
Sensitivity of threshold voltage, 773–

775
Sequential tunneling, 723–743
Sheet carrier concentration, 420–424,

442, 443, 446, 451–454
Sheet carrier density, 420–424, 442, 443,

446, 451–454
Sheet charge model, 432–424
Shockley boundary conditions, 163–166
Short channel effects, 480–482, 767–772
Sidegating, 340–356
Silicon

band structure, 39
constant energy surface, 62
drift velocity, 50
ionization rate, 84
phonon dispersion, 45

Silicon dioxide (SiO2), 358, 360, 422



Index 753

Silicon–germanium, 410, 552
Small-signal

α̃, 635, 661
α̃T , 635, 658, 678
γ̃, 653, 658
ζ̃ , 634, 650

Small-signal analysis, 157–162, 365–384,
509–520, 629–683

Small-signal equivalent circuit, 378, 379,
506–509, 665, 668, 672

Source resistance, 387, 507
Space charge recombination, 271, 616–

620
S-parameters, 784, 787
Specific contact resistance, 242, 243
Spin-orbit splitting, 38
Split-off band, 38
Statistics

of bands, 26–35
of discrete levels, 27–32

Stokes’ equation, 511
Stability factor, 788
Storage time, 564–571, 585, 705
Strained layer, 405–410
Strong inversion, 438
Subband, 412–425
Substrate bias, 456
Subthreshold current, 476, 501, 502
Subthreshold region, 474–478, 502
Subthreshold swing, 476, 477, 502
Surface potential, 438
Surface conversion, 354–356
Surface recombination velocity, 172, 185,

188
Surface space charge region, 354
Surface state density, 2, 186, 187, 620
Surface states, 2, 186, 187, 620
Switching delay, 390, 520–522, 684

T
Temperature rise, 766
Thermal conductivity, 126
Thermal equilibrium condition, 3, 76,

144, 165, 173, 433
Thermal velocity, 95, 111

Thermionic emission, 211–214, 226–231,
283, 284

Thermionic emission-diffusion, 219–222
Thermionic field emission, 214–219
Threshold voltage, 457, 458, 497
Threshold voltage sensitivity, 773–775
Time constant

base, 564–566
forward, 568
for base current, 568
reverse, 569

Total depletion width, 251
Transconductance

HBT, 571
HFET, 506, 507
MESFET, 307, 324–326

Transfer characteristics, 470
Transient behavior, 148, 390, 520–522,

683, 684, 692
Transit time

HBT, 650, 681, 692
MESFET, 390

Transit time delay, 650, 681, 692
Transmission

coefficient, 729, 730
probability, 226, 236–238, 715, 736,

737
Transmission-line equation, 158, 367,

372
Transport, 54–78
Transverse effective mass, 62–66
Transverse modes, 44–47
Transverse momentum, 230

Transverse optical phonons, 44–47
Trap density, 175, 346
Trap energy level, 175, 342, 346
Trapping, 175–180, 528–535
Triangular barrier, 234–238, 245
Tunnel emission, 706–709, 744
Tunnel junction, 322
Tunneling current, 237, 238
Tunneling process, 90, 91, 99, 215, 216,

231–241, 706–709, 723–746
Tunneling time, 741
Tunneling transistor, 714–723, 743–746



754 Index

Two-dimensional electron gas, 70–72,
403–506

Two-dimensional hole gas, 540, 541

U
Umklapp process, 26
Unilateral power gain, 388, 389, 681,

788

V
Valence

band structure, 20, 38, 42, 62
effective mass, 20, 65, 66
band discontinuity, 223, 405, 410

Velocity
surface recombination, 172, 185,

188
thermal, 95, 111

Velocity–field characteristics, 51, 56, 492,
540,

Velocity overshoot, 3, 134, 393, 535,
536, 690, 691, 696

Velocity saturation, 68, 69

W
Wave equation, 109
Wave vector, 9–21
Weber’s equation, 371
Webster effect, 604
Wide bandgap collector, 605, 606
Wide bandgap emitter, 551, 552
WKB approximation, 215, 216, 238,

730
Work function, 202, 449

Y
y-parameters, 367, 371, 377, 378, 512,

519, 634, 635, 656, 657, 664,
783–789

Z
z-parameters, 783
Zener breakdown, 90, 91
Zener tunneling, 90, 91
Zinc blende lattice, 13




