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A discussion of electronics and some of its devices and circuits with 
emphasis on nanoscale effects in the context of applications and systems

Devices and Circuits of the Nanoscale

Background on electronics and CMOS devices
Nanoscale in Silicon

Nanoscale in Other Materials
Nanoscale Devices

Circuits in the Context of Systems
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Electronics

Foundation of a trillion dollar information industry: smaller area, faster & cheaper year after 
year: Moore’s Law
Lemma: An industry that works hard and spends billions at putting itself out of business

Moore's Law - Transistors per Chip
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Electronics
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Elements of an Electronic System

Logic
Logic execution, Logic interfacing (drivers, bus, interface, …)

Memory
Cache, Data, Code, Storage, …(dynamic and non-volatile, … fast and 
slow)

Communication
On and off chip to other chips, boards, …

Interfaces
Display, touch, sound, keyboard, sensors, other input/output

Hierarchical system design
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Bulk Transistor

We want:
High on current Ion

Low off current Ioff

Rapid control between 
the two states 

ideal is 0 mV
practical is 60+ mV for a 
decade change in 
current

Reproducible
Low sensitivity to 
variations
Low energy

Source: Skotnicki et al. (2005)
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Electron Transport in FET
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Transistor
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Nanoscale

Scaling doesn’t quite work below 100+ nm
IBM T. Kuroda
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Power

Source: B. Yu

Passive power increasing at rapid rate due to 
gate and inter-junction leakage

Dielectrics and junctions with increasing tunneling

Source: IBM
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Interconnects: 2D

Technology scaling occurs with increasing average interconnect length 
and routing density and increased interconnect aspect ratio 

Interconnects grow linearly with cells in ordered arrays (memories, e.g.)
Interconnects grow as the square of the elements in random logic

Local (intra-block) wires scale with block size, but global (inter-block) 
wires do not. Global wiring and increasing buffers become an increasingly 
problem
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Throughput & Power Dissipation in Buffers 

Use of repeaters means more power, and absence means increased 
delays with global delays more dominant
In 65 nm high speed designs, the # of buffers is ~850K

More area, power and congestion

Source: Deodhar et al.
180 nm technology

Driver Receiver
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Application Dependent Limits

Source: D. Frank et al. IEDM (1998)
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Power Dissipation in Small Dimensions & 
Temperature

105 W/cm2 => 100 C with package at 50 C at 0.18 m dimension
Area in which this dissipation occurs critical to temperature
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Energy determines density for 
electronic nanosystems
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Consequences of Improving Electrostatics

Higher body doping Lower carrier mobility
Higher junction capacitance
Higher junction leakage

Thinner gate dielectric Higher leakage

Shallower junctions Higher resistance

So, there are always compromises to be made
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Statics and Dynamics

Electrostatics
Gate Control

Gate dielectrics, work-functions, …
Substrates

Sharp halo’s and improved junctions
Thin silicon bodies

Threshold
Work functions, doping, new geometries

Electrodynamics
Transport

Strained materials (Si, SiGe, …), new orientations, new materials 
(Nanotubes, Ge, III-V, …)

Parasitics
New contact materials, raised source-drain structures, etc.
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Non-Classical CMOS (Single Gate)

Transport enhancement Substrate Enhancement:
Thin Body

Source/Drain Enhancement

Strained Si, Ge, 
SiGe, SiCGe, …on 
bulk Si & SOI

Fully depleted SOI 
with sub-10 nm body 
or ultra-thin channel 
and buried oxide 

Low barrier Schottky
source/drain or non-
overlapped
extensions

Source: ITRS
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Non-Classical CMOS (Multi-Gate)

Source: ITRS

Tied Gates

Channels on 
multiple surfaces

Channels on 
side-walls

Channels on 
planar surfaces

Vertical transistor

Independent gatessource drain

gate
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Planar Transistors

Scaling limited

Enhanced by 
Si/SiGe
channels

Scaling limited

But improved 
performance
that can be 
enhanced by 
bulk-like
approaches

Enhanced
scaling limits if 
thin silicon  and 
low parasitics
feasible

Enhanced
scaling limits if 
thin silicon, two 
gates and low 
parasitics
feasible

Bulk Silicon on Insulators: Various Forms
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Strain by Orientation

Yang et al. (2003)
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Transport Improvement by Orientations

Bond (110) onto (100) Si – oxide 
based
Use epitaxy of 100 with oxide isolation 
for (110)

Yang et al. (IBM)
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Strain

Reduced average 
conductivity mass

Reduced inter-
valley scattering

Higher effective 
mobility

Takagi (2003)
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Strained Si

K. Rim (IBM)

Strained Si on SiGe

Oxidized Si

Mobility Enhancements  with 
Silicon(strained) on Insulator
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Strain by Process

Uniaxial Strain

Thompson et al. (2004)
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High k (Permittivity)

Gousev et al. (IBM)

HfO2 has x104 less leakage than equivalent SiO2
But, large interface state issues

HfO2/SiON
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Combinations

Rim (IBM)

To date, mobility degradion with high permittivity materials is substantial
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FinFet
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Thin Si

Majkusiak (1998)
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Transport in Thin Silicon

VBG Increasing

Back Inverted
Front Accumulated 

Charge distributed 
across silicon 

-3.0 V < VBG < 3.0 V 
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A. Kumar, et al. (2005)

Good electron transport still 
maintained in thin silicon
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Power: Switching and Standby and Adaptive 
Control

L = 90 nm with 2 nm front oxide, 5 nm back oxide, 25 nm Si, and using 21 
stage ring oscillator
Devices provide tuning of standby power and switching performance with 
good noise margin
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Thin Si

Uchida et al., IEDM (2004)
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Flash Non-Volatile Memories

NOR Write

NOR Erase

NAND Write

NAND Erase

Programming: Channel
Hot Electron 
Vwl: 8-10 V, Vbl: 4-5 V
Tpulse: 1 us, I: 10-100 uA
0.5 MB/s

Erasing: FN Tunneling
Vwl: -8 V, Vbody: 6-8 V
Tpulse: 100 ms, I:  ~0 uA

Programming: FN tunneling
Vwl: 18-20 V, Vbody: 0 V
Tpulse: 300 us, I: ~0 uA
7-10 MB/s

Erasing: FN Tunneling
Vwl: 0 V, Vbody: 18-20 V
Tpulse: 2 ms, I:  ~0 uA

Source: R. Bez
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Nanoscale in Silicon
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Nanoscale Classical Picture

Achieving quantum confinement
Quantum wells (2D)
Quantum wires (1D)
Quantum dots (0D)
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Confinement & Degeneracy

Degeneracy capacitance is non-
geometrical

does not scale with layer 
thicknesses.
Constant in 2-D (single subband
occupancy)
Large in n-Si because of valley 
degeneracy and large effective

Solomon & Laux, IEDM 2001

C2D = 4 n e2 m/ h
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Limits

Classical (semi-) physics has sufficed to date
Behavior changes when electron-wavelength approaches device 
dimensions

Few-electrons per device questions
quantization perpendicular to transport with confinement-energy 
penalties in threshold voltage control and transport.
wave function penetration in transport direction introduces tunneling 
leakage in off-state

conflicting requirements between low mass for transport vs. tunneling.
Statistics of small numbers of impurities limit reproducibility of 
small devices
Timing fluctuations, even though above the threshold electron 
individuality is lost
Related to timing, energy and power limits

dx2exp
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Nanoscale: Power and Performance

Suppose we could make devices at a 10 nm x 20 nm minimum
dimension with a cell size of 50 nm x 60 nm (3.3 x 1010 cm-2)
And, suppose we limit the power density to 100 W/cm2 and 1 V 
supply

If all elements were continuously switching the average power per 
device is 3.33 nW/device at 6 nA/device, or 1 electron transiting 
every 27 ps (TOO SLOW)
Present digital design handles this by partitioning functions and 
allocating power according to speed desired: clocks high and 
cache low

Needs multiple threshold voltages and a variety of circuits
Temperature of 100 C (50 C package) in an isolated small 
element implies current of <0.5 A
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An Electron in a Semiconductor

Unhindered movement of a single electron is A’s of 
current

However, to observe it, requires constraints (barriers, e.g.) 
and the current drops – typically nA

A 10 nm x 10 nm x 10 nm cube of silicon has ~50 
available states in ~1 eV of energy range

Variance of an ensemble of n that follows Poisson 
distribution is

Mean free path of a hot electron is 5-40 nm

n/1
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Discreteness

Frank et al. (2000)
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Quantum Dots – Single Electron Effects
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Charging Effects

Charging of a small particle with 
an extra electron requires an 
energy: EC = e2/2C
A small particle (~10 nm) in a 
dielectric (SiO2, e.g.) has C =2
aF, EC = 40 meV ~150 C
Observations by Neugebauer and 
Webb (1962), Zeller and Giaver
(1969) and Lambe and Jaklevic
(1969)

Fulton and Dolan (1987)

S D
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Coulomb Blockade and Staircase

Blockade: no current flow until an electron can charge the particle

Staircase: When particle charged by > 1 electron
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Impedance, Currents and Size Effects

For a clear observation of Coulomb blockade
System energy change much larger than eigenstate width (which is 
related to lifetime of state/tunnel escape rate)
requires RT>> h/2 e2 or 4.1 k
In real structures, R is typically G
Poor Gains (Power and Voltage) and Impedance mismatch
Time constants (RC) of ns and currents of nA

Size has significant effect through charging energy
Ec ~1/C and Ec/Ec ~ L/L

Size has significant effect through subband energy
Sub-band Energies: E0~1/L2 and E0 ~2 L/L
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Single Electron Transistor
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Single Electron Latching Switch
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Nanoscale: Classical Charge Effect

If C = 1 aF, e2/2C = 160 meV
C = 1 aF is a 18 nm metal particle in free space or ~4 nm in oxide
Single electron charging occurs with blockade regions (Coulomb Blockade) 

Control Oxide
Nano-Crystal
Quantum Dot

Tunnel Oxide

Channel Surface

Tiwari et al. APL (1996) Muralidhar et al., IEDM (2003)

Makes low power memories possible
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Nanoscale in Other Materials
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Nanotubes

High carrier mobility
Ballistic transport (<1-10μm)
>10,000 cm2/V.s (>10μm )

High current carrying capabilities
J=109 A/cm2 (Most metal fails at <106 A/cm2)

Nearly-ideal surface (!)
Wider choice of dielectrics

All atoms on surface
Potential for sensors

Can be direct bandgap
Potential for optical devices

Diameter determines semiconducting (2/3) vs metallic tubes (1/3), 
and placement
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Carbon Nanotubes

Good transport
But, poor control of

Placement
Thickness
Chirality
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Molecules

Small, and digitized size, shape and functionality 
forgiving tolerance, and can perform specific electrical and 
mechanical functions, and can be self-assembled

But,
Based on stochastic processes
Fragility of organic structures

Charge states depend on current flow
• Stability dependent on charge/oxidation state and 

temperature
Molecules are difficult to access

Interfacing difficult
Proximity of contacts broaden levels and induces gap states 
Line shapes do not have a sharp cut-off
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Molecular Rectifier

Aviram and Ratner, Chem. Phys. Lett. 29 277 (1974)

Chemical potential 
close to LUMO

Chemical potential 
close to HOMO

Analogy with semiconductor diode:
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Molecular Resonant Tunneling Diode

M. A. Reed, Proc. IEEE 87 652 (1999)

• CH2 groups act as 
tunnel barriers

• Negative differential 
resistance (NDR)

• Like a resonant 
tunnelling diode (RTD)

XX SHHS

Conjugated
wire

Conjugated
wire

Quantum
well

SpacerSpacer AnchorAnchor

X = CH2
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Molecular Transistors
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Single Electron Molecular Transistors

J. Park et al. (2002)
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Magnetic RAM

Stores information using the 
magnetic polarity of a thin, 
ferromagnetic layer.

Information read by measuring 
current or resistance across the 
MRAM stack.

Current determined by the rate of 
electron quantum tunneling, which is 
affected by magnetic polarity of the 
cell.

The “Free Layer” polarization is allowed to change, 
depending on if the cell is High or Low

The resistance across the stack is measured to 
determine the cell state



Sandip Tiwari; Cornell University 61Short Course, SouthKorea, 2006 

What is MRAM?  How it works

Source: Slaughter (2004)

Metal 5 BL
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Conductance in Magnetic Layers

(a) Parallel
Low Resistance

(b) Anti-parallel
High Resistance
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Variance in Magnetic Structures

W.J Gallagher et al. IBM J. R&D (2006) M .Hosomi et al. IEDM (2005)
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Nanoscale Devices
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NanoCrystal Floating-Gate Memory

Gate

nano-
crystals

Silicon
Source Drain

Tiwari et al. IEDM (1995)

Control Oxide

Nano-Crystal
Floating Gate

Injection Oxide

Channel Surface
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Charging and Erasure

Inversion layer
1-2 nm thick

Quantum dot
5-10 nm length scale

e

e
e
e
e
e
e
e
e

Electrostatic energy change upon addition 
of an electron

Hamiltonian for the system:

where

with n identifying the indices of the ladder in the inversion layer

and

with m identifying the indices of the ladder in the quantum dot

Equation of motion for the density matrix:
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RTS: Nano-Crystal Memory
Single-Electron Events

Fast and slow processes – surface states; and correlated 
processes
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Nanocrystal Memories

4Mb Array in a 6V 90 nm process
Muralidhar et al., 2003 IEDM
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SONOS Memories
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Memory Using Defects on Back

Silva et al. (2005)
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S = 70 mV/decade

ONO stack = 2 / 6 / 13 nm; L = 50 nm, W = 100 nm

Defects on the Back

tSi = 20 nm

VD = 1 V

Ultra-thin Si on ONO layer
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Silva et al., IEEE SOI Conf. (2003)
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CB: conduction band
VB: valence band

Vgs < 0

h+

source drain
EF VB

CB

Vds < 0

Vgs > 0

VB

CB EFe-
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101

Id
 [
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]

-2 -1 0 1 2
Vgs[V]

Vds =
 -0.9 V
 -0.7 V
 -0.5 V
 -0.3 V source

drain

Vds < 0

ox t~ t d

Gate oxide: 10-nm SiO2
Contact metal: Ti

PRL 87, 256805 (2001)
PRL 89, 106801 (2002)
APL 83, 2435 (2003) 

Nanotube FETs

1D (ultra-thin body) channel
Ballistic transport (at low Vds) 
Switching can be dominated by the contact Schottky barriers

Screening length
Barrier width ~ oxide thickness tox (on-state)
Ambipolar behavior 
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Band to Band Tunneling in Nanotubes

The semiconductor is one-dimensional
The body of the semiconductor is ultra-thin
Transport in the semiconductor is ballistic
The effective masses of electrons and holes are small
The effective masses of electrons and holes are similar
The semiconductor has a direct band gap
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Molecule as Filter

Molecular state spectrum shifts with gate 
potential
Symmetric molecule with unity peak 
resonant transmission
State spectrum fixed relative to central 
molecular potential.
Electrochemical potentials represented 
by source & drain (n or p) Fermi levels
State occupancy is 0 above VP, 1 below 
VN and ½ between VN and VP
Charge in filled state = # of electrons in 
orbital represented by that state
Central Potential given by electrostatic 
coupling to S, D and G potentials and 
increased by Qsc/C
Polarization by fixed diel. permittivity.

VA = 0

VB

VB

VB

VB

VG=0
BGG VVV

2
)1(

VG=0.3V

VG=1.0 V

Lang, Solomon, Kagan, FME & APS Mar. Mtg. (2005)
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Molecules and Self-Assembly

If molecule mimics MOSFET
For gate field to penetrate molecular channel

Dielectric thickness to be comparable to the molecular length
Intimacy between molecule gate dielectric
Molecule sufficiently long and chemically functionalized and the
gate dielectric is sufficiently thick to limit tunneling between source 
and drain electrodes and to ensure an “OFF” state of the device 
and between source-gate

If self-assembly used as a technique for fabrication
Low energy scales of assembly process (~ eV)
Higher defect rate with consequences for larger scale

Is current sufficient

Short Course, SouthKorea, 2006 

Circuits and Systems
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Stability and Signal Recovery

Analog: open & closed loop/feedback
Regenerative effects and signal stability 
issues

Digital
Signal restoration using gain

Feedback between input and output (Z2, e.g.) leads to a 
larger input load because the 180o phase shift during 
amplification
At the input C appears as (K+1)C (Miller effect )

1
2

K
ZZin

Vin

VoutK

Vin

VoutK
= KVin 1

1

2

1

2 111
Z
Z

KZ
Z

V
V

in
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Vin

VoutK

Z2

Z1
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Devices and Circuits

Digital CMOS design:

Only two circuit forms matter
(maybe three)

Static CMOS, and Dynamic CMOS

These forms employed because:

They are not highly demanding of devices 
because of power gain

So they work with transistors

Robust, especially static circuits
CLK
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Sensing
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Sensing

tRAC tAA
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MRAM Designs

5001Density Index

16 +1 capacitor11+1capacitor11No. of Transistors 
[]

44.62176.67179.37Power [uW]

70.026.166.96Read time [ns]

Self-referencingAveragingTwin

Differential Amplifier Design
Twin Cell

Averaging

Self-Referencing

Source: Sudheeran and Chang (2006)
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High freq. roll off caused by setup,
not device (except near turnoff)

Time constant of rolloff versus Vg

Device

Setup

setup = RC

NT FET mixer operates up to 50 GHz
Rosenblatt et al. , APL (2005)

NT Mixer/Transistor up to 50 GHz
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Classical vs. Quantum Computing

Classical bit: 1 (On) and 0 (Off)
Stable pointer states of the computer hardware

Quantum bit: Qubit (superposition of two states)

Every two level system can serve as qubit
For any digital computer, its set of computational states is some 
set of mutually distinguishable abstract states

The specific computational state that is in use at a given time 
represents the specific digital data currently being processed within 
the machine
In quantum computing the computational state is not always a pointer 
state
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Classical versus Quantum Bit
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The Square Root of NOT

If input is either basis state (0 or 1) you get a state that appears 
random when measured…

But if you feed the output back into another N1/2 without measuring 
it, you get the inverse of the original value!

“How is that
possible?”

N1/20 0 (50%)
1 (50%)

N1/21 0 (50%)
1 (50%)

N1/20 0 (50%)
1 (50%)

N1/2 1

N1/20 0 (50%)
1 (50%)

N1/2 0



Sandip Tiwari; Cornell University 91Short Course, SouthKorea, 2006 

NOT1/2: Unitary Implementation
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Optical Implementation of N1/2

Beam splitters (semi-silvered mirrors) form superpositions of 
reflected and transmitted photon states

“0”

“1”

“1”

“1”

“0”

“0”

“1”
“1”

laser
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SET Probing Qbit

Box: 700x50x15 nm; 108 electrons
e2/2C = 117 V,  T = 30 mK, kT = 3 V

Initialize by preparing pure state |0> away from resonance
Apply fast voltage pulse t to gate (non-adiabatic) to create degenerate 
charge state at resonant condition (|0> and |1> are now superposed
Sample measurement of |1> by tunneling probe
Repeat by sweeping t in pico-seconds Nakamura
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Quantum Computing Requirements

DiVicenzo’s check list:
Identifiable qubits and their scalability
Initialization procedure

Preparation of ground state of the whole system
Low decoherence

Long decoherence time versus gate time
Quantum gating – ability to realize a universal gate through control of 
system Hamiltonian
Controlled evolution
Reliable readout

Qubit Coupling: nearest neighbor versus common mode
Engineering Correction Code (ECC): to address decoherence –
redundant qubit register and majority voting
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Systems, Hierarchy, Complexity and 
Architecture

A critical look

Sandip Tiwari; Cornell University 96Short Course, SouthKorea, 2006 

Molecular Memories?

Memory by using switching behavior in a crosspoint configuration
Logic by diode logic with open and diode cross-points and 
resistors (!)
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Molecular: 2 terminals or 3 terminals?

Customized combinatorial logic scales polynomially
with function size (~N2).
Array logic scales exponentially with function size
(~22N)
Array peripherals scale in proportion to function size

UCLA, CalTech, HP
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CMOL

CMOL combines: - (relatively sparse, but highly functional) CMOS subsystem
- very dense nanowire crossbar, and
- a molecular-scale device at each nanowire crosspoint

CMOS
stack
(only
a few 
metal
layers

shown)

interface pins

metallic
nanowiring

levels

MOSFET

self-assembled
molecular devices

interface
pin

Si wafer

Likharev (2003)
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CMOL

selected
nanodevice

selected 
word

nanowire

selected bit
nanowire interface 

pin 1
interface 

pin 2
CMOS
cell 2

CMOS
cell 1

2 FCMOS

2Fnano

pin 1

pin 2’

pin 2

2rFnano

Nanodevice addressed 
via two CMOS cells

Each and every nanodevice 
may be addressed!

Tilt = sin-1(Fnano/ FCMOS)

Likharev (2003)
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CMOL FPGA
CMOS inverters + nanodevice latches for (re)configuration

(a)2 FCMOS 2 FCMOS 2(r - 1)
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Likharev (2005)
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NanoFabrics

deHon (2004)
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Speed Gaps in Processor Hierarchy

Source: T.C. Mowry

dRAM

sRAM

CPU
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3-D Microprocessors

Goal of improving logic-memory interactions and to compensate 
logic and memory performance divergence

Current designs exceedingly complex (-> power^ ) focused on
Superscalar (> 1 inst/cycle), out-of-order execution, instruction-
level parallelism, hiding memory latency, …

3-D in P:
High density, low latency, large bandwidth

m separationVertical connections 
throughout the design area
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Latency and Bandwidth

2-D: Connections on the periphery
Long global connections
CPU to off-chip main memory with latency 
and misses

3-D: Connections across the area
Connections short + vertical
Suitable for high-bandwidth and vector 
operations
No pin cost, large block access of data

CPU

Memory

CPU

Memory

The following example uses a baseline 2-D processor core representative of 
current technology
3 GHz CPU, 750 MHz memory, 64 KB L1I, 64 KB L1D, 1 MB L2 

Latency: Important for random access (servers, e.g.), single core
Bandwidth: Multiple cores, multi-threads, graphics
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Expanding L2 Cache

Performance peaks at 8 MB for integer programs with standard DRAM 
Example of trade-off between fitting the working data (4-16 MB for integer programs) into 
the cache (better performance) and increased access latency for larger caches (worse 
performance)

Larger working data of floating-point programs continue to improve with cache size 
despite cache hit latency with large cache size

Floating-point programs

2 MB 4 MB 8 MB 16 MB 32 MB 64 MB
0

20

40

60

80

100

120

140

On-chip DRAM
w/ 1 MB L2

A
ve

ra
ge

 s
pe

ed
up

 o
ve

r
ba

se
lin

e 
2-

D
 p

ro
ce

ss
or

 (%
)

L2 cache size

 Standard DRAM
 Standard DRAM + stream prefetch
 On-chip DRAM + stream prefetch

Perfect L2

C. C. Liu .. Tiwari., IEEE D&T Mag. (2005)

SPEC2000 Integer programs
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L2/L3 Cache Sizing with Stream Prefetching

Performance within 8-10% of perfect L2
Large speedups achievable with small L2/L3 cache because of significant reduction in main 
memory latency
Hierarchy critical to performance

Floating-point programs
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Complexity

Rent’s Rule: 
Terminal count is related to number of gates (at all hierarchical levels)

T = t Np

(0<p<1; t is number of terminals per logic block) 
p=1 is un-optimized placement

Number of interconnections among a group of sub-components at any level 
is proportional to the total terminal count of all the sub-components
With placement optimization (p<1), only a fraction of logic blocks accessible

This accessibility defines how much of the circuitry do iterative testing 
procedures access and test for usefulness
If logic blocks defective: Naccessible ~ ((1-dLOGIC)N)p

If wiring defective, the number of testable logic blocks: 
Naccessible ~ (1-dLOGIC) Np

a considerably more serious problem
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Configurability: Defects and Testing

Suppose, we work with 105 logic blocks, each employing 1000 device 
elements
What does it mean that one can work with chips that are 90% functional 
(or that 10% of logic blocks are faulty)

If the probability of failure is p for each element, probability of a logic block 
being functional is (1-p)1000

Rate of connectivity is non-linearly related to defects, and affects 
congestion, power, ….
Probability of 90% yield in logic blocks implies 1 in 104 device level faults

We still need extremely high reproducibility and yield
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Observability in Presence of Defects

Testing of N modules in a 
defect-free system

Percentage of modules 
tested/testable in presence 

of interconnect defects

Usable logic blocks of a chip reduces rapidly with interconnect defects 
since their correctness can not be tested.
Testability is cumbersome. Kumar, DFT (2004)
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Interconnect Defect Penalty

Kumar, DFT (2004)
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Conclusion

Nanoelectronics will certainly be evolutionary, and may be 
revolutionary

Complex applications (beyond sensing, …) require a systematic, 
robust and reproducible framework that requires a number of 
properties across scales

Logic applications will require 3-D structures and non-Manhattan 
layouts

These usually do not work with “bottoms-up” approaches
Multiplexing schemes to manage the interconnect pitch 
transformation from nano- to microscale require real estate
Charge-based devices at nanoscale have inherent power 
dissipation problems
Other approaches, spin-based or photon-based or others, need to 
demonstrate size scale, gain and ability to transform signal to 
charge and vice versa for connection to the external world


