Nanostructure Fabrication:
Challenges of Top-Down and Bottom-Up Approaches

A view of the application landscape

And a selective and personal view of the underlying fabrication technologies

NNIN
www.nnin.org
Serving Nanoscale Science, Engineering & Technology

Cornell University
Sandip Tiwari
st222@cornell.edu

Nanoscale Devices
Electronics
Large Area
Energy Conversion

Physical
Optics
Mechanical
Chem. & Bio.
Integration

Physical & Chemical Structural Control
Material – bulk & surface
Size, registration, alignment,
Cost Effective & Defect Tolerant

nm
m

Zero Mode
100 nm thick shaft
1 μm thick mass loading
Flexible
Complexity of Fabrication: Three-Dimensional Electronics

Assembly of Materials
Patterns: Lithography and Self Formed
Pattern Transfer: Removal or Addition using solid, liquid, gas, plasma
Materials Interactions during formation and in use ...

- I would like to explore with the following perspective:
 - What are the applications and their needs?

- What are the characteristics of the technologies that we have?

- Therefore, what is likely to find a good match? And what are the challenges to the technology
Approaches

A third scale on this graph should be defect rate; it also affects the potential area of use

Pattern Formation: Lithography etc.

- **Photons**
 - UV, DUV, EUV, XRays
 - Diffraction and Depth of Focus

- **Charged Particles**
 - Electrons and Ions
 - Serial writing and Small area

- **Physical Contact**
 - Printing, Molding and Embossing
 - Adhesion at contact and pattern transfer flow

- **Edge-Based**
 - Near field phase shifting and topographic approaches
 - Diffraction

- **Deposition**
 - Shadow Evaporation
 - Low flexibility

- **Self Assembly**
 - Surfactant systems and Block Copolymers
 - Order control and density of defects
Photons

Approaches:
- 130 nm: Attenuated phase shift, Model-Based OPC
- 90 nm: Alternating phase shift
- 65 nm: Sub-resolution assist feature
- 45 nm: Restricted design rules, Immersion lithography

Photons - Discreteness

MC simulation of 80 nm contact hole in EUV

J. Cobb, Proc. SPIE
Photons

436 365 248 193 157 13 nm

XRay: Resolution limited by λ, mask-wafer gap and Xray generation

Laearly free of thin film effects but difficult infrastructure

Charged Particles: Electron Beam Lithography
Electron-Beam Lithography

Memories & Transistors

Most interesting working examples at nanoscale, but slow

Scanned Probe: Atom by Atom

note waves

D. Eigler, IBM Almaden
Scanned Probe Techniques: Dip Pen

Piner et al., Science (1999)

Ink Jets?

Thermal NanoImprint

1. Imprint
 - Press Mold

2. Pattern Transfer
 - RIE

MOSFETs?, TFT, Microfluidics
Ultra-Violet NanoImprint

Lower forces: 100 kPa instead of 500-5000 kPa
No heating, no cooling
Longer lifetime, faster imprint
Sub 5-nm demonstrated

But,
Production of templates
Defect control
Small throughput
Range of materials: high-quality solid-state

A) Bulk substrate
 Template
 Plastic
 Several levels and back side alignment are possible

B) Thin film
The stamp geometry defines the flow pattern the substrate undergoes.

Negative Master

Positive Master

Contact: Avoiding sticking?
Biology Applications

Embossed and assembled device

CNC machined master

Caco-2 cells growing on a membrane in the device

J. Munoz et al. (2006)

Extended Mold Techniques: Superlattice NanoPattern Transfer

Two Photon

Chromophores with nonlinear absorbance
Absorbance only inside the focal point of two photons
Femtosecond laser beam of high intensity =>
polymerization in close proximity
~150 nm practical, ~60 nm possible. slows speed

Uses:
Photonic crystals?
MEMS / NEMS
Protein matrices for drug delivery

Defects

CMP Residue
Contact-to-Gate Short
Interfacial Delamination

J.W. McPherson, IEDM(2005)
Defects

Fabrication technology has to be consistent with needs of long term use: Reliability issues?

Fabrication technology has to provide sufficient reproducibility to begin with

J.W. McPherson, IEDM(2005)
S. Mitra (2007)

Natural Nanotechnology: BioNanofabrication
Energy Scales of Processing

Koyama et al. Self Assembly: Oxide Growth

\[\Delta E = 0.1 \text{ to } 0.5 \text{ eV (self-assembly)} \]

Vladiviroma et al.

\[\Delta E = 1.5 \text{ to } 2.5 \text{ eV (oxide growth)} \]
\[\Delta E > 2 \text{ eV for dopants used} \]

Smaller activation energies lead to larger variance
Short range and long range order

Probabilities proportional to \(\exp \left(-\frac{\Delta E}{kT} \right) \)

Tiwari_Fabrication_NSTI – June 4, 2008

Self Assembly

Binary nanocrystals

J Urban, IBM

Control of long-range order and structure
Understanding and prediction of nanocomposite properties
Complex materials

1Tb/in² requires 25nm bit cells ⇒ 12.5nm lithography for equal bits and space

Basic physics challenges

\[E \sim K_{ij}V > 55 k_B T \]

- \(K_{ij}V = 100 k_B T \), \(\tau > \) age of universe
- \(K_{ij}V = 45 k_B T \), \(\tau \approx 10 \) years
- \(K_{ij}V = 25 k_B T \), \(\tau \approx 7 \) seconds

Direct Writing

- **E-Beam**
- **Proximal probe**
- **Two-Photon**
- **Optical & Related**
- **Self-Assembly**
- **Molding/Imprinting**

Pattern Complexity

- Diversity of materials
- Long range structure, registry
- Minimum feature size
- Pattern speed

Graph

- **Bad**
- **Difficult**
- **Fair**
- **Good**

Tiwari_Fabrication_NSTI – June 4, 2008
Challenges

- Three-dimensional nanostructure fabrication—<20nm feature size in 3D, ±1nm precision and reproducibility
 - High patterning speed, registry/order over large distances
 - Diverse materials palette—metal, semiconductor, dielectric, high-index, molecular
- Using nanostructures at the macro scale—Contacting/interconnecting large numbers of nanoscale objects
 - Integration of nanostructures with CMOS technology
 - High-throughput patterning, e.g., roll-to-roll or other large-volume production
- Complex nanocomposite materials and device structures—Predicting, engineering μ, ϵ, σ, κ, etc. in complex nanocomposites
 - Large area/volume assembly of nanocomposites, long-range structure/order, etc.

So, While there are Challenges

History is full of periods of saturation followed by rapid changes

Because we are never satisfied

So keep asking for more